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Foreword

Two millennia ago, encyclopedias, beginning with that of Pliny the Elder,

were the work of one person. Single authors remained the rule for almost

18 centuries until the Enlightenment, when Denis Diderot and Jean

d’Alembert assembled dozens of writers to produce their encyclopedia.

These days, encyclopedias must rely on hundreds of contributors if they are

to provide a reasonably full treatment – even if they are restricted to a single

field. No one individual could possibly construct an all-inclusive encyclope-

dia today. If some group had attempted to produce an encyclopedia of

mathematics education a century ago, the tome would necessarily have

been fairly meager. Mathematics education was just getting started as

a scholarly field and, in most countries, was not present in the academy.

Over the following decades, however, the field has continued to grow rapidly,

and its literature has become substantial. A search of the scholarly literature

on the Web using the term mathematics education yielded 129,000 hits in

2008 and 287,000 in 2013 – more than doubling in only 5 years.

The present encyclopedia offers an up-to-date, wide-ranging reference

source spanning a field that is growing and in continuing flux. The ambition

of the encyclopedia is to deal with every topic in mathematics education,

delineating theoretical positions, describing research findings, and citing

relevant literature. The length of an entry is tailored to its importance in the

field as determined by the editor in chief and his distinguished international

editorial board. The publication has three formats: a printed work in one

volume, an e-book and an online work that is searchable and will be updated.

The printed format will be usable everywhere, including locations without

online access; the online work will make the reference comparable to other

online encyclopedias, offering opportunities not simply for readers to search

the text but also for contributors to add new entries and revise old ones.

Novice mathematics educators will find that the encyclopedia provides

a panoramic view of the field, introducing them to whole realms of work they

may never have encountered. Old-timers will find entries by giants in the field

as well as by contributors from outside the usual circles. Whatever the topic,

every reader will find valuable information, including citations of prominent

publications. Researchers undertaking a study in mathematics education will

want to check first with this reference source to get not only pertinent
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theoretical analyses of the topic and relevant research but also a sense of

recent controversies and open questions. This encyclopedia represents

a major step forward in the field of mathematics education, bringing to

everyone with a professional interest in mathematics education access to

the latest and best thinking in the field. It is the most timely, comprehensive,

and useful reference we have.

Jeremy Kilpatrick
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Preface

The encyclopedia is intended to be a comprehensive reference text, covering

every topic in the field of mathematics education research with entries

ranging from short descriptions to much longer ones where the topic warrants

more elaboration. The entries have been written by leaders in the field as

a whole, and in most cases they are originators and innovators in the specific

entry topic.

The entries provide access to theories and to research in the area and refer

to some of the key publications for further reading, including the core texts as

well as cutting-edge research, and point also to future developments. We have

tried to be comprehensive in terms of drawing on work from around the

world, particularly through the knowledge and experience of the section

editors. The vast majority of the hard work of soliciting, encouraging, and

editing has been carried out by these editors. The list of entries was mapped

out at an intensive seminar of the editors, in sections of common theme. Each

editor took on responsibility for a theme according to their interests and

expertise. They then worked with all the authors to develop and edit the

entries in their section. As things progressed, while some editors were

overloaded with work, others took on part of their tasks. They have been

exemplary in their roles, and an enormous debt of gratitude is owed to them.

Michèle Artigue took responsibility for the section on research on math-

ematics curriculum topics and Information and Communication in education;

Ruhama Even, for research on teaching; Mellony Graven, for research on

teacher education; Eva Jablonka, for research on mathematics in out-of-

school contexts and for research methods, paradigms, and sociological per-

spectives; Robyn Jorgensen, for research on curriculum, assessment, and

evaluation; Yoshinori Shimizu, for research on learning; and Bharath

Sriraman, for research on the nature of mathematics and mathematical think-

ing and theories of learning.

We have been supported by the excellent team at Springer, including

Michael Hermann, Daniela Graf, Clifford Nwaeburu, and Jutta Jaeger-Hamers.

The SpringerReference system has been modified and developed in part by

the suggestions and needs of the section editors, and credit must go to the

developers for making those modifications. In the years to come, I am sure

further changes will be needed.

The encyclopedia should be informative for graduate students,

researchers, curriculum developers, policy makers, and others with interests

in the field of mathematics education. It can be used to support students in
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their review of literature and in finding the sources of knowledge in the field.

It is our hope, too, that it will enable researchers to connect their research with

what has gone before. Too frequently, we see research that either has largely

been done before or does not take the opportunity to build on prior work and

develop it, but repeats it. Furthermore, we hope that it will support researchers

in making links between theoretical approaches and frameworks and the ways

they carry out their research, their methodology, and methods. As experts in

the field, the entry authors exemplify how these connections should be made,

in their descriptions and in the references they provide.

In this first iteration of the encyclopedia, we have not succeeded fully in

our goal of being comprehensive. Some entries were not completed in time,

potential authors withdrew at the last minute, but on a more positive note

colleagues around the world have already indicated topics that should be

included in the future. This is not an open access encyclopedia. We welcome

and encourage comments, suggestions, critique, and further ideas, which can

be made on the particular entry pages. They will be reviewed and considered

by the entry authors, and we will periodically invite the authors to make

changes in their entry as they see fit, in communication with the editors.

We look forward, also, to reactions to me, editor-in-chief, about what

works and what does not, in more general terms, and we will do our best to

respond. Recently, we have celebrated 100 years of the international mathe-

matics education community, and we have seen a proliferation of research

orientations, journals, and conferences and the growth of research communi-

ties around the world. If this venture contributes in substantial ways to these

developments, we will be very satisfied that the work has been worthwhile.

Stephen Lerman
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the last 50 years for his significant contributions to research in mathematics
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Mathematics Teacher Education (JMTE) and Mathematics Education

Research Journal (MERJ).

Robyn Jorgensen has been working in the area of mathematics education

since undertaking her honors and doctoral work at Deakin University. She has

focused her work in the area of equity, particularly focusing on the social

practices that contribute to the patterns of success (or not) of social, cultural,

and linguistic groups. Her strong interest in equity has been in the areas of

social class, Indigenous, and issues around language and culture. She has

international recognition for her work in this area as evidenced by numerous

invitations for keynote addresses; state, national, and international panels;

and invited publications and submissions. In 2008 she was invited

co-convenor of the ICMI Centenary Conference for the social context work-

ing group; in 2008–2009, she was a member of the Ministerial Advisory

Committee for Science, Technology, Engineering and Mathematics (STEM)

as well as Chair of the Queensland Studies Authority Mathematics Advisory

Committee. From 2009, she has been serving as the eminent mathematics

education Professor on the national project (Turn the Page) of the Australian

Association ofMathematics Teachers for enhancingmathematics learning for

Indigenous Australians. She has worked in an advisory capacity for state

projects and innovations in various states including Queensland, South

Australia, and the Northern Territory. In 2009–2010, she took leave from

the university to work as CEO/Principal of an Aboriginal corporation in
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Robyn has secured numerous competitive grants including eight Austra-

lian Research Grants since 2001. Each grant has had a strong equity dimen-

sion to it. Collectively these have spanned the range of learning contexts from

early childhood through to workplace learning. She has a critical edge to her

work where she seeks to identify and redress issues of inequality in partici-

pation, access, and success in mathematics learning and teaching. Her work

focuses strongly on practice – whether in formal school settings or settings

beyond the school. The work seeks to challenge the status quo that has been

implicated in the construction of unequal outcomes for particular groups of

people. Her most recent ARC grants indicate the culmination of her challenge

to contemporary practices in mathematics education. The work in the

Kimberley region is an example of reforming teaching so as to enable

Indigenous students greater access to mathematics learning. The newest

ARC grant seeks to draw on the impact of digital technologies on young

people’s mathematical thinking. This project may provide explanations for

new numeracies that have been observed in other ARC projects where older

adolescents were found to have different dispositions to using and undertak-

ing numeracy than their employers and teachers. These two projects will offer

considerable challenges to current practices in school mathematics that are

known to have profound (and negative) implications for many disadvantaged

groups in Australia and internationally. Robyn is currently working on

a 4 year longitudinal study to investigate the effects of early years swimming

in under-5s on their development.
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Robyn’s work seeks to impact on the practices of the various sectors within

which she works – whether schools, workplaces, or policy. This can be seen in

the ways in which her research is undertaken with a range of industry partners

for whom the research is most relevant. In most cases, the industries are

actively involved in the studies and use the outcomes to inform their own

practice. She is frequently sought by various stakeholders – schools, commu-

nity groups, industry, policy, state authorities – to provide input into their

activities including reports, professional development work, and advice on

reform. The work that Robyn has undertaken has been recognized interna-
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mathematics education and general education journals, being as well an Oz

reviewer for the ARC and a reviewer for national research council grants

including for Israel and South Africa. She is currently chief editor of the

Mathematics Education Research Journal and serves on the editorial board of

the International Journal for Science and Mathematics Education.

Mellony Graven is the South African Chair of Numeracy Education, Rhodes

University. Her work as Chair involves the creation of a hub of mathematical

activity, passion, and innovation that blends teacher and learner numeracy

development with research focused on searching for sustainable ways for-

ward to the challenges of mathematics education. She is the President of the

Southern African Association for Research in Mathematics, Science and

Technology Education and past editor of the journal Learning and Teaching

Mathematics.
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Ability Grouping in Mathematics
Classrooms

Jo Boaler

School of Education, Stanford University,

Stanford, CA, USA

Definitions

Ability means a certain amount of intelligence

that individuals are thought to possess. Ability

grouping is a generic term to encompass any

grouping, whether it be within class or between

classes, flexible or inflexible, that involves

students being separated according to perceptions

of their ability.

The term setting is used for grouping organi-

zation used in England whereby students attend

different classes according to ideas of their abil-

ity. In primary schools there are typically 2–4 sets

for mathematics; secondary schools may have as

many as 10 sets. The varying sets move at

a different pace and cover different mathematics

content. Streaming is an older practice used in

England whereby students were grouped by

ability for all of their subjects together. This

was used in secondary schools with students

frequently being placed into streamed groups as

soon as they started the schools. Tracking is an

organizational practice used in the USA whereby

different classes are offered, with different

content, such as algebra, geometry, advanced

algebra, and calculus. Tracking usually begins

in middle school; the track students who are

placed in middle school determine the high

school courses they are able to take.

Introduction

Whether or not to group students according to

their current mathematics achievement is one

of the most contentious issues in education.

Research studies that have provided evidence to

inform this question have been conducted in

different subject areas and in various countries

throughout the world. This chapter will review

the ability grouping practices that are prevalent

and summarize the results of some of the research

studies conducted on the impact of ability group-

ing on students’ mathematics experiences and

understandings.

Ability Grouping Practices in Different
Countries

Beliefs about the purposes of education, the

potential of students, and the nature of learning

are deeply cultural (Altendorff 2012; Stigler and

Hiebert 1999) and result in different ability

grouping practices in countries across the world.

In some countries, such as England, there is

widespread belief that students have a certain

“ability,” and the role of teachers is to determine

what that is, as early as possible, and

teach different levels of content to different

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
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groups of students. This has resulted in extensive

ability grouping with children as young as 5, but

more typically 7 or 8, being placed into different

classes (sets) for mathematics according to per-

ceptions of their potential. By the time students

reach secondary school, they are likely to have

been placed in one of many (6–10) different sets.

In England students and parents often do not

know the implications of the set they are in,

until they are entered for final examinations.

Other countries in Europe have moved away

from ability grouping because it is judged to work

against the pursuit of equity (Sahlberg 2011;

Boaler 2008). In Scandinavian countries in

particular, ability grouping is rare or nonexistent.

Finland is one of the most successful

countries in the world in terms of international

achievement and chooses to group student het-

erogeneously for the majority of their school

career (Sahlberg 2011).

Many Asian countries, particularly those in

the Pacific Rim, have education systems that are

based upon the idea that learning is a process

determined by effort rather than fixed notions of

ability (Stigler and Hiebert 1999). The idea of

separating students into different levels is thought

to be undesirable or even acceptable, as reflected

in the following commentary about education in

Japan:

In Japan there is strong consensus that children
should not be subjected to measuring of capabili-
ties or aptitudes and subsequent remediation or
acceleration during the nine years of compulsory
education. In addition to seeing the practice as
inherently unequal, Japanese parents and teachers
worried that ability grouping would have
a strong negative impact on children’s self-image,
socialization patterns, and academic competition.
(Bracey 2003)

Mathematics classes in the USA are often

organized through a form of ability grouping

called “tracking.” Students usually learn together

in elementary school, but in middle school

different courses are on offer – usually algebra,

pre-algebra, and advanced algebra. The place-

ment in middle school determines the courses

available to students in high school, with only

those who have completed algebra in middle

school typically reaching calculus by the time

they finish high school. Tracking is a more

“open” practice than setting as it is clear to every-

one which course students are placed into.

These different countrywide practices in ways

of grouping students have been analyzed using

the results of both the Second and Third

International Mathematics and Science Studies

(SIMSS and TIMSS, respectively), with

researchers finding that countries that group by

ability, the least and the latest, are the most suc-

cessful countries in the world (Boaler 2008). In

recent international achievement tests (TIMSS

and PISA), Finland, Japan, and Korea, all

countries that reject rigid ability grouping, have

taken up the highest places in the world rankings.

Studies of ability grouping have also been

conducted within countries and these will be

summarized below.

Ability Grouping, Achievement, and
Equity

A number of studies have taken place within

the countries that divide students into ability

groups – this chapter will include examples

from England, Australia, Israel, and the USA –

comparing the achievement of those who are

taught in ability groups with those who are taught

heterogeneously.

In the USA, Burris et al. (2006) compared 6

annual cohorts of students attending a middle

school in the district of New York. For the first

3 years of the study, students were taught in

tracked classes with only high-track students

being taught an advanced curriculum, as is

typical for schools in the USA. In the next

3 years, all students in grades 7–9 were taught

the advanced curriculum in mixed-ability classes

and all of the 9th graders were taught an acceler-

ated algebra course. The researchers looked at the

impact of these different middle school experi-

ences upon the students’ achievement and their

completion of high school courses, using four

achievement measures, including scores on the

advanced placement calculus examinations.

They found that the students from de-tracked

classes took more advanced classes, pass rates
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were significantly higher, and students passed

exams a year earlier than the average in

New York State. The increased success from

de-tracking applied to students across the

achievement range – from the lowest to the

highest achievers.

In England researchers followed 14,000

children through years 4 and 6 comparing those

taught in sets with those grouped heteroge-

neously over the period of a year. They found

that setting hindered the progress of students and

that those taught heterogeneously performed

significantly better on tests of mathematical

reasoning (Nunes et al. 2009). The Primary

Review, a government report in the UK,

considered the impact of ability grouping and

concluded that “The adoption of structured

ability groupings has no positive effects on

attainment but has detrimental affects on the

social and personal outcomes for some children.”

The researchers conducting the review realized

that primary teachers choose to group children

according to notions of “ability” because they

think that they can offer more appropriate work

for children when they are in such groups.

However, the review found that “the allocation

of pupils to groups is a somewhat arbitrary affair

and often depends on factors not related to attain-

ment” and also that although teachers think they

are giving children in low groups more appropri-

ate work, “the evidence suggests that many pupils

find the work they are given is inappropriate;

often it is too easy” (Blatchford et al. 2008,

pp. 27–28).

In addition to studies that track large cohorts

of students through classes with different group-

ings, more detailed studies of students attending

schools in sets and heterogeneous groups have

found that ability grouping reduces achievement

for students overall. This takes place through two

processes – limiting opportunities for success by

teaching high-level content to only some students

(Porter and associates 1994) and discouraging

students through communication of the idea that

only some students are high achievers (Boaler

et al. 2005). Boaler conducted longitudinal stud-

ies of students progressing through schools with

contrasting grouping arrangements, in both the

UK (Boaler 2012, 2005, 2002, 1997a, b) and the

USA (Boaler and Staples 2008; Boaler 2008).

She followed 500 students through 3 years of

two schools in England and 700 students through

4 years of three schools in California. In both

studies the students who worked in schools in

mixed-ability groups performed at higher levels

overall than those who worked in set or tracked

groups. The schools teaching to mixed-ability

groups also achieved more equitable outcomes.

In a follow-up study of the students who had

attended the different schools in England,

some 8 years later, the adults who have been in

the school employing ability grouping were in

less professional jobs, and the adults interviewed

linked the limits in their job prospects to

the ability grouping used in school (Boaler

2012, 2005).

In Australia, Zevenbergen (2005) conducted

research on the beliefs of students in low- and

high-achievement groups and found that those in

low groups had a fundamentally different experi-

ence of mathematics and constructed a different

sense of self around their placement in groups.

Those in high groups reported high-quality teach-

ing and a sense of empowerment, whereas those

in low groups reported low-quality teaching and

a sense of disempowerment. Zevenbergen/

Jorgensen’s finding that students in low groups

reported work being too easy with their achieve-

ment being limited by not being taught content

that would be assessed in examinations was also

reported from students in low groups in England

(Boaler et al. 2000).

Linchevski and Kutscher (1998) conducted

two different studies in Israel, investigating the

impact of grouping upon student achievement.

They found that students of average and below

average attainment achieved at higher levels

when taught in mixed-ability classes and high

attainers achieved at the same level as those

taught in same-ability classes. This finding – of

high students achieving at similar levels in same-

or mixed-ability classes and low and average

students achieving at higher levels in mixed-

ability classes – is one that has been reported in

different studies (Slavin 1990; Hallam and

Toutounji 1996).
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In addition to the lower overall achievement of

students taught in ability groups, reported in

studies of setting and tracking, ability grouping

has also been found to result in severe inequities

as lower-ability classes are disproportionately

populated by students of lower socioeconomic

status and ethnic minority students and are

usually taught by less well-qualified teachers

and teachers who often have low expectations

for their students (Oakes 1985). Mixed-ability

approaches to teaching have consistently demon-

strated more equitable outcomes (Boaler 2008,

2005; Cohen and Lotan 1997; Linchevski and

Kutscher 1998).

Conclusion

The weight of evidence from countries across the

world indicates that ability grouping harms the

achievement of students in low and middle

groups and does not affect the achievement of

high attaining students. Despite this evidence,

ability grouping continues to be widespread in

some countries – particularly English-speaking

countries in the West, probably reflecting

a common Western belief that students have

a certain ability that is relatively unchangeable.

Where countries recognize that high achievement

is possible for all students (Dweck 2006) or hold

equity as a central principle (Sahlberg 2011),

ability grouping is less prevalent and not used

with young children. Deeply held cultural beliefs

about learning and about what it means to be

“smart” are difficult to change, which may be

the reason for the persistence of ability grouping

in some countries, a practice that appears to

benefit some students at the expense of others.

References

Altendorff L (2012) An exploration of the ‘cultural
script’ for teaching and learning mathematics in
English secondary schools and its relationship
with teacher change. Unpublished DPhil: University
of Sussex

Blatchford P, Hallam S, Kutnick P, Creech A (2008)
Classes, groups and transitions: structures for teaching

and learning. Primary review research survey 9/2.
University of Cambridge, Cambridge

Boaler J (1997a) Setting, social class and survival of the
quickest. Br Educ Res J 23(5):575–595

Boaler J (1997b) When even the winners are losers:
evaluating the experience of ‘top set’ students.
J Curric Stud 29(2):165–182

Boaler J (2002) Experiencing school mathematics: tradi-
tional and reform approaches to teaching and their
impact on student learning. Lawrence Erlbaum Asso-
ciates, Mahwah

Boaler J (2005) The ‘Psychological Prison’ from which
they never escaped: the role of ability grouping in
reproducing social class inequalities. FORUM
47(2&3):135–144

Boaler J (2008) What’s math got to do with It? Helping
children learn to love their least favorite subject – and
why it’s important for America. Penguin, New York

Boaler J (2012) From psychological imprisonment to
intellectual freedom – the different roles that school
mathematics can take in students’ lives. Paper
presented at the 12th international congress on mathe-
matical education, Seoul, Korea

Boaler J, Staples M (2008) Creating mathematical futures
through an equitable teaching approach: the case of
Railside School. Teach Coll Rec 110(3):608–645

Boaler J, Wiliam D, Brown M (2000) Students’
experiences of ability grouping – disaffection, polari-
zation and the construction of failure. Br Educ Res
J 26(5):631–648

Bracey G (2003) Tracking, by accident and by design. Phi
Delta Kappan 85:332–333

Burris C, Heubert J, Levin H (2006) Accelerating
mathematics achievement using heterogeneous group-
ing. Am Educ Res J 43(1):103–134

Cohen E, Lotan R (eds) (1997) Working for equity in
heterogeneous classrooms: sociological theory in
practice. Teachers College Press, New York

Dweck CS (2006) Mindset: the new psychology of suc-
cess. Ballantine Books, New York

Hallam S, Toutounji I (1996) What do we know about
the grouping of pupils by ability? A research review.
University of London Institute of Education, London

Linchevski L, Kutscher B (1998) Tell me with whom
you’re learning and I’ll tell you how much you’ve
learned: mixed ability versus same-ability grouping
in mathematics. J Res Math Educ 29:533–554

Nunes T, Bryant P, Sylva K, Barros R (2009) Develop-
ment of maths capabilities and confidence in primary
school (vol Report RR118). DCSF

Oakes J (1985) Keeping track: how schools structure
inequality. Yale University Press, New Haven

Porter AC and associates (1994) Reform of high school
mathematics and science and opportunity to learn.
Consortium for Policy Research in Education, New
Brunswick

Sahlberg P (2011) Finnish lessons: what can the world
learn from educational change in Finland? Series on
school reform. Teachers College Press, New York

A 4 Ability Grouping in Mathematics Classrooms



Slavin RE (1990) Achievement effects of ability grouping
in secondary schools: a best evidence synthesis. Rev
Educ Res 60(3):471–499

Stigler J, Hiebert J (1999) The teaching gap: best ideas
from the world’s teachers for improving education in
the classroom. Free Press, New York

Zevenbergen R (2005) The construction of a mathematical
habitus: implications of ability grouping in the middle
years. J Curric Stud 37(5):607–619

Abstraction in Mathematics
Education

Tommy Dreyfus

Department of Mathematics Science and

Technology Education, Joan and Jaime

Constantiner School of Education, Tel Aviv

University, Tel Aviv, Israel

Keywords

Processes of abstraction; Concretion; Empirical

abstraction; Reflecting abstraction; Objectifica-

tion; Reification; Procept; Shift of attention;

APOS; Webbing; Situated abstraction; Abstrac-

tion in context

Definition

An abstraction, to most mathematicians, is an

object, such as a vector space, which incorporates

a structure – elements and relationships between

them – common to many instances appearing in

diverse contexts. For the example of vector space,

these instances include Euclidean 3-space, the

complex plane, the set of solutions to a system

of linear equations with real coefficients, and the

space of states of a quantum mechanical system.

The nature of the elements that serve as vectors

in different contexts may be different: an

element of Euclidean 3-space is a point, an ele-

ment of the complex plane is a complex number,

a solution of a system of linear equations is an

n-tuple of (real) numbers, and a state of a

quantum mechanical system is represented by

a function. Nevertheless, if we ignore (abstract

from) these contextual differences, in each case

the vectors can be added and multiplied by sca-

lars (numbers) according to exactly the same

rules, and each of the spaces is closed under

these two operations. Focusing on operations

with and relationships between vectors while

ignoring the specific nature and properties of the

vectors in each context, the mathematician

obtains the abstract vector space. Hence, to math-

ematicians, abstraction is closely linked to

decontextualization.

Characteristics

Mathematics educators, on the other hand, are

more interested in the processes that lead

learners to grasp a structure than in the structure

itself. Hence, for mathematics educators,

abstraction is a process rather than an object.

Mathematics educators investigate the pro-

cesses by which learners attempt, succeed, or

fail to reach an understanding of the structure

of a concept or a strategy or a procedure,

where structure refers to the elements and the

relationships and connections between them.

Mathematics educators also study conditions,

situations, and tasks that facilitate or constrain

such processes. Since mathematical notions

generally have some structure, these processes

are relevant not only to unquestionably abstract

structures like vector space or group but also to

most of the notions usually learned in schools

including addition, the algorithm for multiply-

ing multi-digit numbers, negative number, ratio,

rate of change, sample space, and the integral.

Moreover, since learners are usually led to

approach these notions in a restricted context,

context is an important factor to be taken into

consideration when investigating processes of

abstraction.

Wilensky (1991) has remarked that “concre-

tion” might be a more appropriate term than

abstraction for what mathematics educators

intend to achieve: attaining an understanding

of structure means establishing connections

and “the more connections we make between
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an object and other objects, the more concrete

it becomes for us” (p. 198). Hence, the goal is

to make notions that are considered abstract

by mathematicians more concrete for learners.

Piaget may have been the first to attend to the

issue of abstraction as a cognitive process in

mathematics and science learning, in particular

young children’s learning; his distinction

between empirical and reflecting abstraction and

his work on reflecting abstraction have been enor-

mously influential. Empirical abstraction is the

process of a learner recognizing properties com-

mon to objects in the environment. Reflecting

abstraction is a two-stage process of (i) projecting

properties of a learner’s actions onto a higher

level where they become conscious and (ii)

reorganizing them at the higher level so they

can be connected to or integrated with already

existing structures. As Campbell, the editor,

remarks, projecting refers to the optical meaning

of reflecting, whereas reorganizing refers to its

cognitive meaning, and the term “reflecting” is

more accurate than the usually used “reflective.”

Mitchelmore and White (1995) focus on and

further develop Piaget’s notion of empirical

abstraction. They build on Skemp’s elaboration

of empirical abstraction as lasting change

allowing the learner to recognize similarities

between new experiences and an already formed

class and propose a theory of teaching for

abstraction that links the lasting nature of the

change to the learner’s connections between

different contexts.

A number of researchers have further devel-

oped Piaget’s thinking about reflecting abstraction

and applied it to school age learners. Among them,

Thompson (1985) has proposed a theoretical

framework in which mathematical knowledge is

characterized in terms of processes and objects.

The central issue is how a learner can conceptual-

ize a process such as counting, multiplication, or

integration as a mathematical object such as

number, product, or integral. The learner usually

first meets a notion as a process and is later asked

to act on the object corresponding to this process.

The transition from process to object has been

called objectification. The notion of reification,

proposed by Sfard (1991), is closely related to

objectification; the relationship has been discussed

in the literature by Thompson and Sfard.

Gray and Tall (1994) have pointed out that

mathematical understanding and problem solving

requires the learner to be able to flexibly access

both, the process and the object. They proposed

the term procept to refer to the amalgam of three

components: a process, which produces a mathe-

matical object, and a symbol, which is used to

represent either process or object.

The notions of process and object are central to

learning mathematics, and it is very important

for mathematics educators to gain insight into

learners’ processes of objectification and into how

such processes can be encouraged and supported.

Mason (1989) proposed to consider abstraction as

a delicate shift of attention and the essence of the

process of abstraction as coming to look at some-

thing differently than before. The shift from a static

to a dynamic view of a function graph may be an

example; the shift from seeing an (algebraic)

expression as an expression of generality to seeing

it as an object is another one. Researchers investi-

gating processes of abstraction only gradually took

Mason’s perspective seriously, possibly because of

the heavy investment in time and effort it implies.

Indeed, in order to gain insight into learners’ shifts

of attention and hence processes of abstraction,

microanalytic analyses of learning processes are

required. Such analyses have been carried out by

several teams of researchers and are at the focus of

the remainder of this article.

Dubinsky and his collaborators (2002)

observed undergraduate students’ learning pro-

cess by means of the theoretical lens of schemas

composed of processes and objects; they did this

for case of mathematical induction, predicate

calculus, and several other topics. For each

topic, the analysis led to a genetic decomposition

of the topic and to conclusion on the design for

instruction supporting conceptual thinking.

In parallel, Simon et al. (2004), using the frac-

tion concept as illustrative example, elaborated

a mechanism for conceptual learning. The ele-

ments of that mechanism include the learners’

goals, their activities in attempting to attain
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these goals, and their observation of the effect of

each activity. The researchers then link the rela-

tionship between activity and effect as perceived

by the learner to reflecting abstraction.

Taking upWilensky’s (1991) theme, Noss and

Hoyles (1996) stress the gain of new meanings

(rather than a loss of meaning) in the process of

abstraction and hence consider this process as

experiential, situated, activity-based, and build-

ing on layers of intuition, often in a technology-

rich learning environment. They introduce the

metaphor of webbing, where local connections

become accessible to learners, even if the

global picture escapes them. Recognizing that

in each instance such webbing is situated in

a particular setting, they coin the term situated

abstraction. Pratt and Noss have recently

discussed design heuristics implied by this

view of abstraction.

Another characteristic of situated abstraction,

possibly because of the authors’ focus on the use

of computers, is a strong role of visualization in

processes of abstraction. This has led Bakker and

Hoffmann (2005) to propose a semiotic theory

approach according to which learners proceed by

forming “hypostatic abstractions,” that is, by for-

ming new mathematical objects which can be used

asmeans for communication and further reasoning.

Whereas Noss and Hoyles’ approach to

abstraction is fully situated, the other approaches

discussed above are cognitive in nature. An

approach that bridges cognition and situatedness

by analyzing cognitive processes with respect to

the context in which they occur has been pro-

posed and developed by Schwarz et al. (2009)

under the name Abstraction in Context. Schwarz

et al.’s view of abstraction has its roots in the

notion of vertical mathematization in the sense

of the Freudenthal school and in Davydov’s

ascent to the concrete (which recalls Wilensky’s

concretion). Their methodology is determined

by a model of three nested epistemic actions

that have been identified as relevant to processes

of abstraction: recognizing, building with, and

constructing. This model provides the tools for

analyzing learners’ progress through processes

of abstracting in a manner that is strongly linked

to the learning environment as well as to the

mathematical, the social, the historical, and the

physical context. This notion of context is, of

course, far wider than the one mentioned above,

in the first paragraph. It allows the researcher, for

example, to follow the flow of ideas in small

groups of students during processes of abstrac-

tion or to analyze the influence of technological

and other tools on processes of abstraction. The

analytical power of the model has been demon-

strated by its power to determine learners’ par-

tially correct constructs and by identifying

patterns of interaction of constructing actions

that are indicative for the learner’s enlightenment

in justification processes (see Dreyfus 2012 for

references).
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The Mental Structures and Mechanisms
of APOS Theory

APOS Theory is a theory of mathematical under-

standing, its nature, and its development. It is an

outgrowth of Piaget’s theory of reflective abstrac-

tion (Piaget 1971) and, although originally

created to apply Piaget’s ideas about children’s

learning to postsecondary mathematics, it has

been applied to elementary school and high

school mathematics as well. The basic tenet of

APOS Theory, a constructivist theory, is that an

individual’s understanding of a mathematical

topic develops through reflecting on problems

and their solutions in a social context and

constructing or reconstructing certain mental

structures and organizing these in schemas to

use in dealing with problem situations. The

main ideas in APOS Theory were introduced in

Dubinsky (1984). The acronym APOS was first

used in Cottrill et al. (1996).

The mental structures proposed by APOS

Theory are actions, processes, objects, and

schemas (and thus the acronym APOS). The struc-

tures are constructed by means of certain mental

mechanisms including interiorization, encapsula-

tion, de-encapsulation, coordination, reversal, gen-

eralization, and thematization. Following are brief

descriptions and examples of these mental struc-

tures and mechanisms.

According to APOS Theory, a mathematical

concept is first understood as an action, a set of

step-by-step instructions performed explicitly to

transform physical or mental objects. For exam-

ple, with the function concept, an action would

consist of plugging a value into an expression and

calculating the result. As an individual repeats

and reflects on the action, it may be interiorized

into a mental process. A process is a mental

structure that performs the same operation as

the action but wholly in the mind of the individ-

ual. For the concept of function, this means that

the individual can imagine any element in the

domain being transformed into an element of

the range by an expression or by any other

means. As the individual becomes aware of the

total process, realizes that transformations can act

on it, and/or actually constructs such transforma-

tions, the process is encapsulated into a mental

object. With an object conception of function,

an individual is able, for instance, to perform

arithmetic operations on functions to obtain

new functions. In developing an understanding

of a mathematical topic, an individual may

construct many actions, processes, and objects.
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When these are organized and linked into

a coherent framework, the individual has

constructed a schema for the topic. The coher-

ence of a schema is what allows one to decide

if it can be used in a particular mathematical

situation. For example, the coherence of an

individual’s function schema might consist of

an abstract definition of function: a domain set,

a range set, and a means of going from an element

of the domain to an element of the range. This

would allow the individual to see functions

in situations where “function” is not explicitly

mentioned, and use functions to solve problems.

The mental mechanism of coordination is

used to construct a new process from two or

more processes that already exist in the mind of

the individual. This coordination can take the

form of connecting processes in series, in paral-

lel, or in any other manner. One example of

coordination is the composition of two functions

in which the process is constructed by taking

outputs of one function and using them as inputs

to the other function. The mechanism of reversal

creates a new process by reversing the operation

of an existing process, as in forming the inverse

of a function, and generalization changes

a process by applying it to objects in a context

more general than previously considered, as, for

example, in extending the domain of a function

represented by an expression from real numbers

to complex numbers. Finally, thematization

constructs an object by applying actions and/or

processes to existing schemas. For instance,

comparing the concept of function with the

concept of relation, which may result in the impli-

cation “every function is a relation,” is an example

of an action on two schemas resulting in an object,

the implication. For a more detailed description of

APOS Theory, see Arnon et al. (in press).

Studies That Use APOS Theory

APOS Theory is an analytic tool that can be, and

has been, used for investigating individuals’

understanding of a mathematical concept and

for describing the development of that under-

standing in the individual’s mind. Some studies

use APOS Theory for evaluating understanding,

some use it for describing development, and

some use it for both. The description of develop-

ment of understanding a concept obtained from

a developmental study is called a genetic decom-

position. It is often used to design an APOS-based

instructional treatment of the concept which is

implemented and studied in a subsequent evalu-

ative study. Such evaluative studies may involve

comparison of results with a control group that

received instruction not based on an APOS

analysis.

For example, studies of the process conception

of functions, the definite integral and area, calcu-

lus graphing schemas, the set P(N) of all subsets

of the natural numbers, infinite iterative pro-

cesses, and the relation between the infinite

repeating decimal 0.999. . . and 1 investigated

how various mathematical concepts might be

constructed in the mind of an individual. Studies

of prospective elementary school teachers’

understanding of the multiplicative structure

of the set of natural numbers, including least

common multiple; college students’ understand-

ing of the set of natural numbers; and preservice

teachers’ understanding of the relation

between an infinite repeating decimal and the

corresponding rational number evaluated the

effectiveness of APOS-based instructional treat-

ment. Finally, studies of college students’ under-

standing of permutations and combinations,

calculus students’ graphical understanding of

the derivative, comparative APOS Theory

analyses of linear transformations on vector

spaces, and grade 5 students’ understanding of

fractions were all investigations of both the men-

tal constructions of mathematical concepts and

evaluations of the effectiveness of APOS-based

instructional treatments.

APOS-Based Instruction

As we indicated above, APOS-based research

often involves APOS-based instruction, and thus,

evaluation applies not only to the understanding

that students have but also to the extent to which

that understanding is due to the instruction thatwas
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used. APOS-based instruction applies the basic

tenet of APOS Theory mentioned in the first par-

agraph of this entry. According to this hypothesis,

students deal with mathematical problem situa-

tions by constructing and reconstructing mental

structures. One result of these constructions,

according to APOS Theory, is that learning can

then take place. Therefore, the first goal of APOS-

based instruction for a particular concept is to help

students make the mental constructions called for

in the genetic decomposition for that concept. If

this happens, APOS Theory hypothesizes, under-

standing the concept will not be difficult for the

student and can be achieved through a number of

pedagogical strategies, both traditional and

nontraditional.

The question then arises of what pedagogical

strategies might help students perform actions,

interiorize actions into processes, encapsulate

processes into objects, and gather everything

into coherent schemas. Although work in APOS

Theory has gone on for several decades and has

had considerable success, there is still much that

needs to be done in the area of pedagogical strat-

egies. Several approaches have been used involv-

ing cooperative learning, role-playing, and

writing essays. So far, the most effective peda-

gogy involves students writing computer pro-

grams. For example, if students can express an

action as a computer procedure and run it with

various inputs, then they will tend to interiorize

this action into a process. If the software used has

the capability of treating such a procedure as data

and performing operations on it (e.g., ISETL),

then using this feature to solve problems helps

students encapsulate the process underlying the

computer procedure into an object. It has also

been shown that it is possible to foster encapsu-

lation by having students use specially designed

software to perform operations on processes,

even infinite processes. In another approach,

APOS has been used as a grounding learning

theory for the development of textbooks for

college-level courses in calculus, discrete

mathematics, abstract algebra, linear algebra,

and Euclidean and non-Euclidean geometries.

The textbooks rely on the use of various software

such as ISETL, Maple, and Geometer’s

Sketchpad. Working with such software can help

students make themental constructions that lead to

learning mathematical concepts and provide

a dynamic interactive environment for students to

explore the properties of geometric and other

mathematical objects and their relationships.

Results

There has been considerable research and curric-

ulum development based on APOS Theory since

its inception in the early 1980s. Most of this work

demonstrates the efficacy of this theory for

theoretical analysis, evaluation of learning, and

describing the development of concepts in the

mind of an individual. A survey by Weller et al.

(2003) summarizes the results of student learning

through the use of APOS-based instruction dur-

ing the first two decades of its existence. Mathe-

matical topics included in this summary are the

derivative, the chain rule, and the definite integral

in calculus; binary operations, groups, subgroups,

cosets, normality, and quotient groups in abstract

algebra; the concept of function; existential

and universal quantification; and mathematical

induction. In the decade since that summary

appeared, work with APOS Theory has

expanded. Many research reports and doctoral

theses have been written and additional topics

have been investigated. These include fractions;

permutations and combinations; vector spaces,

bases, spanning sets, systems of linear equations,

and linear transformations in linear algebra; and

divisibility properties of integers, functions of

several variables, differential equations, count-

able and uncountable infinity, equivalence struc-

tures on sets, statistics, and logic. It would not be

easy to survey this growing body of work.

Ongoing and Future Work

APOS Theory is a developing set of ideas as new

studies and new researchers appear. For example,

several researchers are providing new insights

into the development of understanding many

topics in linear algebra. And a recent study has
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produced data suggesting the need for a new stage

in APOS Theory, tentatively called totality,

which would lie between process and object and

refers to seeing a process as a whole, with all

steps present at once. One area in which it may

be time to begin investigations would be the

relationship between APOS Theory and related

theoretical frameworks such as the duality theory

of Sfard (1991) and the procepts of Gray and Tall

(1994). Another possible area of study would be

to investigate whether there is a connection

between thinking at one of the APOS stages and

brain function. Finally, it would be interesting

and possibly important to study the relation

between APOS Theory and the sociology of

mathematical knowledge as it develops in the

classroom. With a successful foundation devel-

oped over the past 30 years, it is reasonable

to expect continued development of APOS

Theory and its use in helping students understand

mathematical concepts.
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Definition

Activity theory is the result of an attempt to

construct a psychology that draws on and con-

cretely implements epistemological principles of

materialist dialectics as K. Marx presented them

(Leont’ev 1978; Vygotsky 1997). Like Marx’s

Das Kapital, activity theory is intended to explain

change, learning, and development as an imma-

nent feature of a system rather than in terms of

externally produced cause-effect relations.

History of Activity Theory

L. S. Vygotsky generally is recognized as the

founding father of activity theory because he

introduced the idea of tool-mediated activity as

a way of overcoming on-going psychological
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ideas consistent with stimulus–response or

disembodied thinking approaches to cognition.

Responding to the crisis of psychology, he

explicitly stated the need for developing

a Marxist psychology. Expanding on Vygotsky’s

work, A. N. Leont’ev articulated what is now

known as second-generation cultural-historical

activity theory in his Activity, Consciousness,

and Personality (Leont’ev 1978), in which the

first two chapters are devoted to establish the

Marxist foundation of the theory. The third-

generation activity theory was formulated in

two different lineages. The Helsinki version orig-

inally established by Y. Engeström (1987)

focuses on the structural-systemic aspects of

activity, whereas the Berlin version, developed

by K. Holzkamp (1993) and his colleagues, is

a subject-oriented psychology that focuses on

the person and consciousness. Fourth-generation

cultural-historical activity theory builds on both

third-generation versions and also includes

emotions (affect) and ethics as irreducible

fundamental moments of human activity

(Roth and Lee 2007).

Minimum Unit

In all other psychologies, individuals and objects

are the minimal units of analysis. Thus, for exam-

ple, the transformation of a square into

a parallelogram by means of shearing would

involve a human agent, who, by acting on the

square, would turn it into the result (Fig. 1a).

The action is external to the object. The human

subject and his/her actions are the causes for

the transformation. Activity theory, on the other

hand, conceives the situation in a radically

different way. In this theory, the entire production

of some outcome from the beginning conception

to its material realization is the minimum

unit (Fig. 1b). This unit bears an inner contradic-

tion, because depending on how and when we

look at it, we would see a square, a person, a

parallelogram, none of which exists independent

of the entire unit. Because of this inner contra-

diction, the unit is referred to as a dialectical

unit; it sublates – simultaneously integrates and

overcomes – what manifests itself in irreconcil-

able differences. If we were to look at school

mathematics, then prior knowledge, post-unit

knowledge, grades, teacher, and students would

all be part of this minimal unit and could not be

understood independent of it. By using this unit,

change is immanent to the minimum category and

does not require external agents. To understand

the key principles, consider the following two

scenarios.

Scenario 1: Connor and his peers in a second-

grade mathematics class sort objects into

groups, which become constitutive of geomet-

rical relations within and between the objects.

Scenario 2: Erica, a fish culturist, talks about the

production of coho salmon smolt to be

released into the river to increase natural

stocks; she monitors and controls the produc-

tion process using a spreadsheet-based data-

base and mathematical functions such as

graphs, histograms, and mathematical func-

tions (e.g., to calculate amount of food).

In the first scenario, the minimal unit would be

schooling; as part of doing schooling, the second-

grade students complete tasks. That is, not their

grouping task, where a collection of objects is

sorted is the activity, but the before and after in

the context of schooling belongs into the minimal

unit as well (Fig. 2). This is so because the ulti-

mate productions that really count are grades and

Activity Theory inMathematics Education, Fig. 1 (a)
In traditional theories, people and objects are the mini-
mum units; change is the result of outside actions on
objects (elements). (b) In activity theory, the minimum
unit encompasses the entire change process; it is impossi-
ble to speak of causes and effects
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grade reports. Activity theory explains learning

as a by-product in the production of grades. It

does not account for mathematical activity as if it

could occur outside and independent of the

schooling context. In the second scenario, the

ultimate product is a population of young salmon

released into the river. The computer and the

mathematics that Erica draws on are means

employed in the production. What she can be

observed to do is subsumed into the one category

of salmon production – which contributes to

increased opportunities for commercial fishing

(generalized dietary needs), native sustenance

fishing (specific dietary needs), and tourism

focusing fishing (leisure) (Roth et al. 2008).

Structure of Activity

The structural approach, as embodied in the

mediational triangle, is perhaps the most

well-known and used version of cultural-

historical activity. As Fig. 3 shows, it makes

thematic 7 moments that constitute the parts of

the irreducible unit of productive activity:

subject, object, means (of production), product,

rules, society, and division of labor. All produc-

tion is oriented towards ultimate consumption,

which meets some generalized basic (e.g., food,

shelter) or extended need (e.g., leisure). School-

ing, in the course of which the second-graders

complete the sorting, involves teachers and stu-

dents who have different roles (division of labor),

school buildings, (school) rules of engagement,

and society. It is society that ultimately comes to

be reproduced in the activity of schooling, both in

terms of certain practices as in the hierarchical

relationships between those who go to university

and those who end up doing menial labor or drop

out and never finish school. Society also benefits

from the activity in which Erica is a part, because

the salmon she contributes to producing ulti-

mately lead to the generalized satisfaction of

needs. Thus, dietary needs may be satisfied

directly or in exchange of a salary for working

on a fishing vessel or in the tourism industry

(as fishing guide or maid in a hotel or lodge).

What Erica does with the mathematical tools

and with mathematics, for example, graphs, num-

bers, equations, and histograms, cannot be under-

stood outside of the system as a whole. Activity

theorists are not interested in understanding the

structure at a given point; rather, the entire trans-

formation of goods into products is an integral

part of the same unit. A better representation

would be similar to Fig. 1, with two different

triangles within the same unit. Nothing within

the unit makes sense on its own. That is why

activity theorists speak of the mediation of

actions by the activity as a whole.

Central to activity theory is the transformation

of the object into a product, which initially only

consists ideally. The intended transformation is

the motive of activity. Activity theorists therefore

speak of the object/motive. By definition, this

category includes both material (the materials

started with) and ideal dimensions (e.g., the

envisioned product). For Erica, the intended out-

come is clear. She wants to end the work cycle

with a healthy brood of about one million coho

Activity Theory in

Mathematics Education,
Fig. 2 The entire process
by means of which a
collection of objects into a
groups of like-objects,
together with institution,
tools, and people
constitutes the minimum
unit
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salmon, with an average weight per specimen of

about 20 g. In contrast, the second-grade students

do not know the intended outcome of their task;

and they are not likely aware of the ultimate

motive of schooling (Roth and Radford 2011).

As a result, they have to engage in the activity

constituting task without knowing its object/

motive. With respect to the task, they can become

conscious of the reasons for doing what they do –

that is, they can become aware of the goal – only

when they have completed their task. It is when

they realize the grouping in Fig. 2 that they can

come to understand why the teacher, for example,

asked Connor to rethink his actions when he

placed one of the squares with the rectangles

rather than with the other squares.

Subjectification and Personality

Cultural-historical activity theory allows us to

understand two developmental processes. On

the one hand, when a person participates in an

activity, such as Connor in schooling or Erica in

producing young coho salmon, they undergo

subjectification. This concept names the process

by means the person, together with everything

else that makes the activity system, undergoes

change. This change can be noted as the emer-

gence of new capacities for actions of a body

together with new forms of talk, neither of

which has been identifiable previously. Together,

these changes in objects, bodies, and forms of talk

reconfigure the field of experience. Thus, for

example, as Erica uses the spreadsheet to track

and model the coho salmon population, she

becomes more proficient with spreadsheets,

mathematical models, calculating feed needs,

graphs, histograms, and calculations. With

these changes, her entire field of experience is

reconfigured. Most importantly, activity theory

does not allow us to speak of her development

independent of everything else at her worksite;

her transformation also means transformation of

the entire field.

For Erica, working in the hatchery is only part

of her everyday life, just as for Connor going to

school is only part of his everyday life. Both

participate in many other activities: as family

members, shoppers, participants in leisure activ-

ities, or as members in urban traffic systems. That

is, in the course of their everyday lives, both

contribute to realizing other object/motives

other than producing a population of young

coho salmon and doing schooling. Leont’ev

introduced the category personality to integrate

all these object/motives. Thus, personality is

understood as a network of societal object/

motives. That is, personality is made up of an

ensemble of collective object/motives. However,

each network is highly individual. Personality,

therefore, is utterly singular while being entirely

constituted by societal/collective moments.

A Holistic Psychology

Cultural-historical activity theory is a holistic

approach to psychology. It does not reduce the

individual to its thoughts (mental constructions).

It in fact integrates body and mind, on the one

hand, and individual and collective, on the other

hand (Vygotsky 1989). It focuses on change as

inherent in life and society and, therefore,

Activity Theory in

Mathematics Education,
Fig. 3 Productive activity
may be analyzed in terms of
the seven moments that
constitute a system; the
products are exchanged,
coming to be distributed in
society, and ultimately are
consumed (or used up)
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inherent in individual life and understanding.

That is, everything we do has to be understood

in terms of this intersection of dimensions,

which manifest themselves in mutually exclud-

ing ways: mind versus body, individual versus

society, and the natural world versus the social

world. The developments at the different time-

scales also are irreducible and therefore mutu-

ally constitute each other. The moment-to-

moment changes – e.g., the transformation of

a collection of objects in the second-grade mathe-

matics classroom or the entering of fish size and

weight into the database – are related to the devel-

opment of system and people (i.e., subjectification)

over time, and because people and systems are part

of society, the cultural-historical changes of the

human life form.
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Definitions: Contested Meanings in an
Emerging Field

Adults learning mathematics is a young field of

study and research, emerging towards the end of

the twentieth century in what Wedege (2010)

has called the borderland between mathematics

education and adult education.

Like someotherborderlands, thisone isdisputed,

with the area variously termed as follows: “numer-

acy” (or “numeracies,” after Street (2005) and

others), “quantitative literacy,” “mathematical liter-

acy,” “techno-mathematical literacy,” and “mathe-

matics education”; the latter sometimes linked with

the other STEM subjects (science, technology, and

engineering) and often prefaced by “adult.”

Numeracy is a particularly contested term.

Since its first appearance in 1959 denoting what

might now be called scientific literacy (Ministry of

Education 1959, p. 270), it has been used variously

to denote computational and functional concepts,

as well as ideas of numeracy as social practice.
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In current usage, there is often a link with literacy

and usually a focus on the use of mathematics in

adult life; the mathematics involved (sometimes

number skills only) is nowadays usually at a basic

level (Coben et al. 2003, p. 9). The evolution of

concepts of numeracy has been analyzed by

Maguire and O’Donoghue (2003) as a continuum

with three phases of increasing sophistication: For-

mative, Mathematical, and Integrative. The latter

phase is conceptualized as a complex, multifaceted

construct incorporating the mathematics, commu-

nication, cultural, social, emotional, and personal

aspects of numeracy for each individual in

a particular context.

The link with literacy persists. Numeracy was

included in the United Nations’ Declaration of

Education For All, ratified at Jomtien, Thailand, in

1990, as an “essential learning tool,” encompassed

within literacy and covering the ability “to make

simple arithmetical calculations (numeracy)”

(Haddad et al. 1990, p. ix). Seven years later,

numeracy first appeared in the International

Standard Classification of Education as “Literacy

and numeracy: Simple and functional literacy,

numeracy” (UNESCO 1997).

Numeracy is still sometimes explicitly sub-

sumed within literacy, as in an Australian defini-

tion which states that literacy “incorporates

numeracy” (Campbell 2009, p. 11). Often the

subsumation is implicit, making it difficult to

tell whether numeracy is included in statements

about literacy and in literacy programs, including

those listed on UNESCO’s “Effective Literacy

Practice” website (UNESCO 2009-2014).

The latest international survey, the Programme

for the International Assessment of Adult Compe-

tencies (PIAAC), and its immediate precursor, the

Adult Literacy and Life Skills Survey (ALLS),

both include numeracy, with PIAAC defining

numeracy as:

The ability to use, interpret and communicate
mathematical information and ideas in order to
engage in and manage the mathematical demands
of a range of situations in adult life. (OECD 2012,
p. 34)

An alternative term, quantitative literacy, is

defined in the first such survey, the International

Adult Literacy Survey (IALS), as:

the knowledge and skills required to apply arith-
metic operations, either alone or sequentially, to
numbers embedded in printed materials, such as
balancing a checkbook, figuring out a tip, complet-
ing an order form, or determining the amount of
interest on a loan from an advertisement. (Murray
et al. 1998, p. 17)

The Programme for International Student

Assessment (PISA), which assesses 15-year-

olds on the competencies required in adulthood,

defines mathematical literacy as follows:

Mathematical literacy is an individual’s capacity to
identify and understand the role that mathematics
plays in the world, to make well-founded judg-
ments and to use and engage with mathematics in
ways that meet the needs of that individual’s life as
a constructive, concerned and reflective citizen.
(OECD 2006, p. 12)

The notion of techno-mathematical literacies

builds on the PISA definition as “a specific char-

acterization of mathematical literacy [. . .] that

takes account of the character of the workplace

in which IT is pervasive” (Kent et al. 2007).

Programs in which adults learn mathematics

are also variously termed as follows: “adult numer-

acy education,” “bridging mathematics” (denoting

programs preparing students for university study

involving mathematics), “mathematics learning

support” or “academic numeracy” (denoting pro-

grams in which mathematics is a service subject,

supporting students to cope with the mathematical

demands of their post-school courses), and “basic

mathematics.” Within and outside formal educa-

tional provision, such programs may be geared to

the mathematics involved in vocational areas, in

work with families, and communities or be more

abstract in focus. They may include financial liter-

acy (Atkinson and Messy 2012) or statistical liter-

acy (Gal 2002). The mathematics involvedmay be

at a range of levels, including in the so-called

numerate disciplines where an ability to analyze

or extrapolate data is required. Mathematics also

features to varying degrees in programs termed as

the following: “basic education,” “basic skills,”

“foundation learning,” “functional skills,” “func-

tional mathematics,” “vocational skills,” “work-

place learning,” “essential skills,” “development

education,” “educación popular” (in Latin Amer-

ica), and “bildung” (in parts of Europe).
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This diversity of forms and nomenclature

reflects the emergent nature and borderland loca-

tion of the field and the diversity of purposes for

which adults learn mathematics, the contexts in

which they do so, the forms of educational pro-

vision and organization involved, the areas and

levels of mathematics covered, and the practice,

policy, and research trajectories of the work.

Here we consider adults learning mathematics

to be the focus of a field of practice, research, and

policy development encompassing the formula-

tions outlined above. At the heart of the field is

the learning and use of mathematics by those

who are regarded as adults in the society in

which they live.

In the following sections, we outline the emer-

gence of the field of adults learning mathematics

through an overview of key events, organiza-

tions, research, publications, international sur-

veys, and national strategies.

Characteristics of an Emerging Field

A series of events led to the emergence (or rec-

ognition) of the field in the early 1990s. As noted

above, in 1990 the JomtienDeclaration put numer-

acy on the world’s educational map as a comple-

ment to literacy. At the same time, concern about

adults’ skill deficits led to a series of international

OECD (Organization for Economic Cooperation

and Development) surveys which assessed, with

respect to mathematics, first, quantitative literacy

(in three waves of IALS: 1994; 1996; 1998) and

then numeracy, assessed in ALLS in two waves in

2002 and 2006, and in PIAAC, which is due to

report from October 2013.

In response to poor results in IALS and ALLS,

together with growing evidence of the negative

impact of poor numeracy (and literacy) on adults’

lives (Bynner 2004) and concerns about the

impact of low skills on productivity, national

strategies with an adult focus were established

in several OECD countries. For some, numeracy

was linked to literacy, as in the Skills for Life

strategy in England, launched in 2001 (DfEE

2001). National centers of various kinds were

established to support these strategies, including,

for example, the National Research and Develop-

ment Centre for Adult Literacy and Numeracy

(NRDC, www.nrdc.org.uk) in England. In

New Zealand, also, a plan to improve adult liter-

acy and numeracy was launched in 2001 (Walker

et al. 2001), supported since 2009 by the National

Centre of Literacy and Numeracy for Adults

(http://literacyandnumeracyforadults.com/). In

Australia, the Adult Literacy and Numeracy

Australian Research Consortium (ALNARC,

www.staff.vu.edu.au/alnarc/index.html) is a

national collaboration between university-based

research centers funded from 1999 to 2002 under

Adult Literacy National Project funds. In the US

research in adult language, literacy and numeracy

was spearheaded from 1991 to 2007 by the

National Center for Adult Literacy (NCAL, later

the National Center for the Study of Adult Learn-

ing and Literacy: NCSALL), which published

a call for research on adult numeracy in 1993

(Gal 1993). A parallel concern with mathematics

as a STEM subject led to the establishment in

Ireland of the National Centre for Excellence in

Mathematics and Science Teaching and Learning

(NCE-MSTL, www.nce-mstl.ie/) in 2009. In

England the National Centre for Excellence in

the Teaching of Mathematics (NCETM, https://

www.ncetm.org.uk/) was set up in 2006 to

enable access to continuing professional devel-

opment for teachers of mathematics to learners of

all ages.

Meanwhile, in the poorer nations of the South,

Torres’ comment on the “continued reduction of

adult basic education, and even adult education in

general, to literacy, and continued narrow per-

ceptions of literacy as a simple, elementary skill”

applies equally to numeracy, subsumed, as it

often is, within literacy (Torres 2003, p. 16).

Adults learning mathematics are largely invisible

in the literature of “developing education”

despite their presence in, for example,

microfinance initiatives aimed at alleviating pov-

erty and education geared to adults’ livelihoods,

as highlighted in a review of Adult Numeracy:

Policy and practice in global contexts of lifelong

learning (Johnston and Maguire 2005). The

REFLECT (Regenerated Freirean Literacy

Through Empowering Community Techniques)
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program is a notable exception: “distinguished

from almost all other literacy programs by its

inclusion of numeracy, not just as an add-on,

but as a core element in the process of empower-

ment” (Johnston and Maguire 2005, p. 36).

In 1992, the worldwide response to an article

by Coben (1992) stressing the need to bridge the

gulf between the cultures of academic researchers

and practitioners led to the founding of the inter-

national research forum Adults Learning Mathe-

matics (ALM) (www.alm-online.net), an event

described by Wedege (2010, p. 13) as “decisive

for the growth into a field of what were until then

sparse research activities.” ALM’s focus on

research has helped to propel the shift from a

field of practice to a field of research and practice

in which ideas, evidence, and experience

are shared across time and across continents.

In 1998, the first Mathematics Education and

Society (MES) international conference provided

a forum for discussing the social, political,

cultural, and ethical dimensions of mathematics

education, geared to all ages and including

a focus on adult learning that is often absent

from mathematics education conferences.

Recognition of the emerging field by the wider

mathematics education community came with

the inclusion of the first working group on

“Adults Returning to Study Mathematics” at the

8th International Congress on Mathematics Edu-

cation (ICME-8) in 1996. Adult-focused topic

study groups subsequently met at ICMEs 9, 10,

and 11, and edited proceedings were published

(Coben and O’Donoghue 2011; FitzSimons et al.

2001); in the case of ICME-10, selected papers

were published in the Adults LearningMathemat-

ics International Journal (ALMIJ (1)2; www.

alm-online.net), and a chapter was included in

the ICME-10 Proceedings (Wedege et al. 2008).

At ICME-11 in 2012, adult educators were

catered for in the topic study group “Mathematics

education in and for work.”

The publications of centers such as NRDC,

NCSALL, and NCE-MSTL, the Proceedings of

the ICME groups, andALM’s conference proceed-

ings and online journal (Adults Learning Mathe-

matics International Journalwww.alm-online.net)

together constitute a major contribution to the

literature of the field. ALM members have also

contributed to a growing reference literature, with

chapters in the first and second InternationalHand-

books of Mathematics Education (FitzSimons et al.

2003, 1996). FitzSimons and Coben also contrib-

uted to the UNESCO-UNEVOC International

Handbook of Technical and Vocational Education

and Training (FitzSimons and Coben 2009) and,

with O’Donoghue, edited the first book to review

the field, Perspectives on Adults Learning Mathe-

matics: Research and practice (Coben et al. 2000).

The publication of The Adult Numeracy Hand-

book: Reframing Adult Numeracy in Australia

(Kelly et al. 2003) added to Australia’s strong

reputation in adult numeracy education.

The emerging research field (dubbed adult

numeracy) wasmapped in the first comprehensive

review of research in 2003 byNRDC (Coben et al.

2003). This was followed by Condelli et al.’s

(2006) review for the US Department of

Education and then by Carpentieri et al.’s (2009)

review for the BBC. Most recently, NRDC’s

Review of Research and Evaluation on Improving

Adult Literacy and Numeracy Skills concluded

that continuing investment is needed, but

based on stronger evidence of which skills are

required than currently exists. The authors recom-

mend “better quality interventions, and large,

well designed and more sophisticated studies,

that allow for the time and complex causality

that connects learning interventions to their out-

comes” and recommend that lessons are learned

from the US Longitudinal Study of Adult Learn-

ing (Reder 2012; Vorhaus et al. 2011, p. 14).

We endorse these comments while noting that

despite these limitations, a wealth of research on

adults learning mathematics has emerged over a

short period. Researchers draw on diverse disci-

plines and theoretical and methodological frame-

works to investigate a wide range of themes.

Overall there is a strong orientation towards

improving professional practice and outcomes

for adult learners and a strong international

focus. An international comparative project,

“Policies and pedagogies for lifelong numeracy,”

a collaboration between ALM members in

Australia and Ireland, provides a snapshot of

the field of practice from the perspective of
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practitioners in various countries, including

several seldom represented in the literature

(Maguire et al. 2003). The picture of an emerging

field, with much hitherto unrecorded practice, is

borne out.

Here we give a brief selective overview of this

work, focusing on adults as workers, critical cit-

izens, and thinking beings with emotions and

experiences and on teaching, learning, and pro-

fessional development.

Adults as Workers

Work on adults learning mathematics in and for

the workplace predates the growing interest in

the field generally and continues to develop

strongly. For example, research for the Cock-

croft Report (DES/WO 1982) investigated the

mathematics used in work (FitzGerald and Rich

1981), Howson and McClone (1983) reviewed

ways in which mathematics is used in adults’

working lives, and Sticht and Mikulecky’s

(1984) examined job-related basic skills in

the USA.

Studies of specific work practices include

Lave’s study of Liberian tailors (Lave 1977),

Zevenbergen’s (1996) work on the “situated

numeracy of pool builders” in Australia,

Llorente’s (1997) Piagetian analysis of the

work-related activities of building workers with

little schooling in Argentina, and Smit and Mji’s

(2012) research on the assessment of numeracy

levels of workers in South African chrome mines.

Numeracy for nursing has emerged against the

background of concern about patient safety and

problems with the assessment of numeracy for

nursing (Coben et al. 2009). Research has been

undertaken in several countries, including

Australia (Galligan et al. 2012; Galligan and

Pigozzo 2002), the UK (Coben et al. 2010;

Hoyles et al. 2001; Pirie 1987) and Finland

(Grandell-Niemi et al. 2006).

The impact of technological change in the

workplace is another strong theme. For example,

Hoyles and colleagues (2010) describe the

emerging need to go beyond mere procedural

competence with calculations, to interpret and

communicate fluently in the language of mathe-

matical inputs and outputs to technologies.

The focus in these studies is on understanding

the mathematical demands and affordances of

workplaces in order to increase knowledge in

and of the field among educators, employers,

policy makers, and workers themselves and

make evidence-based recommendations for

good practice to equip learners to meet those

demands.

Adults as Critical Citizens

A concern with social justice and critical citizen-

ship is evident in the work of many researchers,

for example, in Civil’s (2002) work with His-

panic parents and communities in the USA,

Knijnik’s (1997) work with the Landless Peo-

ple’s Movement in Brazil and in Benn’s (1997)

book Adults Count Too. Harris’ (1997) book,

Common Threads, celebrates the often

unrecognized mathematics in work traditionally

done by women, while FitzSimons (2006)

explores “numeracy for empowerment in the

workplace.” The first edited book on

ethnomathematics (the study of the relationship

between mathematics and culture) was published

in 1997 (Powell and Frankenstein 1997) with

a worldwide scope and a strong focus on issues

of power. In the same period, the REFLECT

program was piloted in Uganda, Bangladesh,

and El Salvador. REFLECT uses Freirean and

ethnographic participatory rural appraisal tech-

niques whereby groups of learners work with

a facilitator to produce learning materials such

as maps, matrices, calendars, and diagrams that

“represent local reality, systematize the existing

knowledge of learners and promote the detailed

analysis of local issues” (Archer and Cottingham

1996, p. i). Ethnography was also at the heart

of work “to bring about change and broaden

horizons” (Lide 2007, p. 5) of rural women in

South Asia. Like REFLECT, the project is

unusual in focusing strongly on numeracy.

Adults as Thinking Beings with Emotions and

Experiences

Biographical research by Hauk (2005) and

Coben (2000) has found mathematics to be

often the focus of strong feelings, positive and

negative, stemming from adults’ life experience.
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Wedege (1999) has examined adults’ personal

relationships with mathematics in school, infor-

mal settings, and workplaces, using inter alia

Bourdieu’s concept of habitus and Lave’s con-

cept of situated learning to explore the apparent

contradiction between many adults’ experience

of being blocked in relation to mathematics in

formal settings and yet competent in their every-

day life. Evans’ (2000) work on “adults’ numer-

ate practices” is noteworthy here. He investigated

the ways in which numerate thinking and perfor-

mance are context-related; the inseparability of

thinking and emotion in mathematical activity;

the understanding of mathematics anxiety in psy-

chological, psychoanalytical, and feminist theo-

ries; and the social differences in mathematics

performance, anxiety, and confidence and devel-

oped a set of guidelines for teaching and learning.

Other authors (e.g., Buxton 1981; Peskoff 2001)

have also investigated mathematics anxiety in

adults, a factor which can inhibit mathematics

learning. Meanwhile, the OECD’s Brain and

Learning project (2002–2006) focused on liter-

acy, numeracy, and lifelong learning within three

transdisciplinary and international networks, in

which cognitive neuroscientists were challenged

to tackle questions of direct educational rele-

vance (OECD 2007).

Teaching, Learning, and Professional

Development

Studies of teaching, learning, and professional

development in the field include, for example,

NRDC’s studies of effective practice in adult

numeracy (Coben et al. 2007), teaching and

learning measurement (Baxter et al. 2006), and

making numeracy teaching meaningful to adults

(Swain et al. 2005). The largest of these, the

“Maths4Life: Thinking Through Mathematics”

project, aimed to help teachers to develop more

connected and challenging evidence-based and

learner-centered teaching methods to encourage

active learning of mathematics (Swain and Swan

2007). Earlier, in Australia, an 84-h training

course for adult numeracy teachers, based on

the idea that numeracy is “not less than maths

but more” used a critical constructivist approach

grounded in learners’ and local communities’

experiences and perspectives (Johnston et al.

1997, p. 168). The US EMPower project (www.

terc.edu/work/644.html) is a mathematics curric-

ulum development project for adult and out-of-

school young people (Schmitt et al. 2000). Also in

theUSA, an environmental scan of adult numeracy

professional development initiatives and practices

was undertaken in 2007, laying the groundwork

for future research in adult numeracy education

and professional development and for testing

potential models of adult numeracy professional

development (Sherman et al. 2007).

Concluding Remarks

This brief overview aims to give an indication of

the scope and vitality of the emerging field of

adults learning mathematics. Much remains to

be done.
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Definition

There are two different uses for the word “affect”

in behavioral sciences. Often it is used as an

overarching umbrella concept that covers atti-

tudes, beliefs, motivation, emotions, and all

other noncognitive aspects of human mind. In

this article, however, the word affect is used in

a more narrow sense, referring to emotional states

and traits. A more technical definition of emo-

tions, states, and traits will follow later.

From Anxiety and Problem Solving to

Affective Systems

Mathematics is typically considered as the most

objective and logical of academic disciplines. Yet,

it has been widely acknowledged that mathemati-

cal thinking is not purely logical reasoning, but

influenced much by affective features. The first

systematic research agenda to study mathematics-

related affect was initiated within social psychol-

ogy in the 1970s, focusing onmathematics anxiety

as a specific branch of anxiety research. Anxiety is

an unpleasant emotion of fear, which is directed

towards an expected outcome in the future and it is

often out of proportion to the actual threat. Based

on a meta-analysis of 151 studies (Hembree 1990),

it has been concluded that mathematics anxiety is

related to general anxiety, test anxiety, and low

mathematics attainment. Also, gender differences

have been found. Female students have been found

to be more prone to be anxious than male students,

although they also seem to cope with their anxiety

more efficiently than male students. Moreover, out

of different treatments for mathematics anxiety,

systematic desensitization was found to be the

most effective.

An important distinction in anxiety research is

that made between state and trait type of anxiety,

which is a specific case of the distinction between

emotional (affective) state and trait. The emo-

tional state refers to the emotion that arises in

a certain situation, i.e., it is contextual and may

change rapidly. On the other hand, more stable

personal characteristics are called emotional

traits, which refer to a person’s tendency to expe-

rience certain emotional states across a variety of

situations (Hannula 2012).

Within mathematics education, the research on

problem solving notified the role of affect early on;

already Polya in his classical work (1957)

mentioned hope, determination, and emotions.
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More explicitly the role of affect in mathematical

problem solving was elaborated in several works

published in the 1980s (e.g., Cobb et al. 1989;

Schoenfeld 1985; for details, see McLeod 1992

or Hannula 2012). This literature on problem solv-

ing typically addressed the rapidly changing affec-

tive states in the dynamics of problem solving.

Somewhat surprisingly, it was found out that in

non-routine problem solving both experienced and

novice problem solvers experience positive and

negative emotions and that these emotions serve

an important function in a successful solution pro-

cess (e.g., Schoenfeld 1985; McLeod 1992).

Most of the research on mathematics-related

affect by that time was summarized by McLeod

(1992). He also suggested a theoretical frame-

work that has been influential in mathematics

education research. He identified emotions as

one of the three major domains in the research

of mathematics-related affect. Emotions were

seen to be less stable, more intense, and to

involve less cognition than attitude or beliefs.

He also explicated the relationships between

these categories in a theoretical framework:

beliefs were seen as an element that influenced

the initiation of emotions and repeated emotional

reactions were seen as the origin of attitudes.

Also more recent research on affect in mathe-

matics education emphasizes the relations between

emotions and other affective variables (Hannula

2012). These include not only attitudes and beliefs

but also values, motivations, social norms, and

identity. The general trend is that a student who

has a positive disposition towards mathematics

tends to experience positive emotions more fre-

quently and negative emotions less frequently

than a student with a negative disposition. On the

other hand, different theories (e.g., McLeod 1992)

suggest that emotional experiences play a signifi-

cant role in the formation of attitudes, beliefs, and

motivation. Positive emotional experiences are

seen as an important ingredient in the formation

and development of a positive disposition. How-

ever, details are more complex than that. Some of

the complexity is analyzed in a recent study

(Goldin et al. 2011) that identified a number

of behavioral patterns that integrate students’ affec-

tive and social interactions in mathematics classes.

Defining Emotions

In the literature, there are several definitions for

emotions stemming from three distinct traditions:

Darwinian, Freudian, and cognitive tradition

(cf. Hannula 2012). Yet, there is a general agree-

ment that emotions consist of three processes:

physiological processes that regulate the body,

subjective experience that regulates behavior,

and expressive processes that regulate social

coordination. Moreover, most emotion theories

agree that emotions are closely related to per-

sonal goals and that they have an important role

in human coping and adaptation. Negative emo-

tion (e.g., frustration) is experienced when pro-

gress towards a goal (e.g., solving a task) is

prevented, and they may suggest approaches

(e.g., give up that task and try another) to over-

come the perceived causes. Positive emotions, on

the other hand, are experienced when progress is

smooth. Emotions are an important part of

memories and they will influence the choice of

strategies in the future.

Emotion theories vary in the number of emo-

tions they identify, the degree of consciousness

they attribute to emotions, and the relation they

perceive to be between emotion and cognition

(ct. Hannula 2011). Some emotion theories

identify a large number of different emotions

based on the different social scenarios and

cognitive appraisals related to the emotion,

while some other emotion theories identify a

small number of basic emotions (e.g., happiness,

sadness, fear, anger, disgust, shame, surprise, and

attachment) that differ in their physiology,

and the different cognitive appraisals and social

scenarios are seen as external (though closely

related) to the emotion.

The Role of Emotional States in Self-

Regulation

Emotions function on three different levels of

self-regulation: physiological, psychological,

and social (Power and Dalgleish 1997). The

most clear example of the physiological adapta-

tion is the “fight-or-flight” response to surprising

threatening stimulus. Such physiological func-

tions of emotions may have side effects that are

relevant for learning. For example, the effects of
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high anxiety (fear) are detrimental for optimal

cognitive functioning.

The psychological self-regulation of cognitive

processing is an important function of emotions

in any learning context, especially if we acknowl-

edge the learner’s agency in the construction of

knowledge. This function of emotions is deeply

intertwined with metacognition. Empirical

research has identified curiosity, puzzlement,

bewilderment, frustration, pleasure, elation,

satisfaction, anxiety, and despair to be significant

in the self-regulation of mathematical problem

solving (DeBellis and Goldin 2006). It is now

well established that emotions direct attention

and bias cognitive processing. For example, fear

(anxiety) directs attention towards threatening

information and sadness (depression) biases

memory towards a less optimistic view of the

past (Power and Dalgleish 1997; Linnenbrink

and Pintrich 2004). Although there is not yet suf-

ficient evidence to conclude it for all emotions, it

seems that positive emotions facilitate creative

processes, while the negative emotions facilitate

reliable memory retrieval and performance of

routines (Pekrun and Stephens 2010). Emotions

also seem to play an important role as a memory

“fixative.” For example, neuropsychological

research has identified that activity in the amygdala

during an “Aha!” experience predicts which solu-

tions will be remembered (Ludmer et al. 2011).

As learning typically takes place in a social

setting of the classroom, the function of emotions

in the social coordination of a group is inevitably

present. Most emotions have a characteristic

facial expression, typically identifiable by move-

ments in the brow region and lip corners. In

addition, some emotions have specifically behav-

ioral (e.g., slouching, clenched fists) or physio-

logical (e.g., blushing, tears) expressions.

Humans learn to interpret such expressions auto-

matically and they form an important part of

intrapersonal communication. Moreover, such

visible expressions are more reliable than self-

reported thoughts and feelings, which make emo-

tions important observable indicators for related

variables, such as goals, attitudes, or values.

Perhaps the first to recognize the social emotions

in mathematics education were Cobb et al. (1989)

who identified students’ emotions to be related to

two types of problems in collaborative problem

solving: mathematical problems and cooperation

problems.

The Spectrum of Emotional Traits

While the research on emotional states in mathe-

matical problem solving and in social coordination

of the class has recognized the variety of different

emotions, emotional traits have often been

explored along a simple positive–negative dimen-

sion with anxiety (e.g., Hembree 1990) and enjoy-

ment (e.g., OECD 2004) being measured most

frequently. Only recently has the variety of emo-

tional traits in the learning context been addressed

quantitatively. Pekrun and his colleagues (2007)

have developed a survey instrument to measure a

number of achievement emotions, defined as

emotions tied directly to achievement activities

or achievement outcomes. Achievement-related

activities are the origin of activity emotions

(enjoyment, boredom, and anger). Outcome

emotions include anticipatory emotions (hopeless-

ness and anxiety) as well as emotions based on

feedback (anger, pride, and shame).

Emerging empirical research indicates that

classrooms are often emotionally flat, and bore-

dom is one of the most frequently experienced

emotions (Vogel-Walcutt et al. 2012).

Regulation of Emotions

Although emotions are functional for the human

species, not all emotional reactions are functional

in a learning context. For example, expert prob-

lem solvers seem to be controlling their emotions

better than novices (e.g., Schoenfeld 1985). Emo-

tion regulation refers to “the ways individuals

influence which emotions they have, when they

have them, and how they experience and express

these emotions” (Gross 1998, p. 275). Few

studies have addressed how students regulate

their emotions in a mathematics class. A study

by De Corte et al. (2011) suggests that active

coping (i.e., effort), joking and acceptance, and

social-emotional coping (i.e., seeking social

support) as well as abandoning and negation are

important strategies to reduce negative emotions

or their effects.
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The teacher can help students’ emotion

regulation through modeling emotion regulation

strategies or provide more direct support through

controlling student emotions. Perhaps more effec-

tive than direct focusing on students’ emotion reg-

ulation is to develop the classroom climate. Feeling

of community, an autonomy supportive teaching

style, and an expressive environment have been

found to support development of student emotion

regulation strategies (Fried 2012).

Creating an Emotionally Supportive Learning

Environment

Although few studies have explored the individ-

ual strategies of emotion regulation, there is sig-

nificant amount of general educational research

on characteristics of a classroom that promote

optimal emotional climate. Teacher enthusiasm,

emphasis on mastery goals, positive feedback,

optimal level of challenge, student autonomy

and feeling of control, and meeting students’

needs can enhance positive student emotions

(Pekrun and Stephens 2010).

Several schools have implemented programs

to enhance students’ social and emotional learn-

ing in order to promote a healthy learning envi-

ronment. Specific goals for these programs

include competencies to recognize and manage

emotions. According to a meta-analysis, such

programs have beneficial effects on positive

social behavior, problem behaviors, and aca-

demic performance (Durlak et al. 2011).

Cobb et al. (1989) also emphasized the rela-

tionship between social norms and emotions.

In their experimental classroom, engagement

in mathematical activity was the goal, and

therefore, even weaker students experienced

and expressed positive emotions as they par-

ticipated in group activities and whole class

discussions.
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Definition

The learning and teaching of the area of mathe-

matics known as school algebra – and the

research base accompanying this branch of

mathematics education – has typically involved

the secondary school student and has focused on

forming and operating on polynomial and

rational expressions using properties and the

field axioms, as well as representing word

problems with algebraic expressions containing

variables and unknowns. However, over the past

several decades, changes in perspective as to

what constitutes school algebra have occurred,

in addition to its extension in various forms to

the elementary school level. Thus, current defini-

tions of school algebra can differ widely, all the

more so because what one takes to be algebra

depends on factors that vary across communities

(see, e.g., Stacey et al. 2004). Decades ago,

Freudenthal (1977) characterized school algebra

as including not only the solving of linear and

quadratic equations but also algebraic thinking,

which includes the ability to describe relations

and solving procedures in a general way. His

characterization remains timely today because it

captures not only the symbolic aspects of

algebraic activity but also the kinds of relational

thinking that underlie algebraic reasoning and

that distinguish it from arithmetic activity,

which is typically computational in nature.

Changing Views on School Algebra Over

the Years

Up until the second half of the twentieth century,

algebra was viewed as the science of equation

solving – as per its invention by Al-Khwârizmı̂

in the ninth century. This perspective on algebra,

as a tool for manipulating symbols, was reflected

in school curricula as they emerged and took

shape through the 1800s and into the 1900s.

Accordingly, the research conducted during the

first half of the twentieth century on the learning

of school algebra – scant though it was – tended

to focus on the relative difficulty in solving

various types of equations, on the role of

practice, and on students’ errors in applying

equation-solving algorithms. During the 1960s,

the research took a psychological turn when

cognitive behaviorists used the subject area as

a vehicle for studying more general questions

related to skill development and the structure of

memory. In the late 1970s, when algebra educa-

tion researchers began to increase in number and
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to coalesce as a community (Wagner and Kieran

1989), research began to center on the ways in

which students construct meaning for algebra, on

the nature of the algebraic concepts and proce-

dures used by students during their initial

attempts at algebra, and on various novel

approaches for teaching algebra (e.g., Bednarz

et al. 1996). While the study of students’ learning

of algebra favored a cognitive orientation for

some time, sociocultural considerations have

added another dimension to the research on

school algebra since the end of the 1990s

(Lerman 2000).

The years since the late 1980s have also

witnessed a broadening of the content of school

algebra. While functions had been considered

a separate domain of mathematical study during

the decades prior, the two began to merge at this

time in school algebra curricula and research.

Functions, with their graphical, tabular, and

symbolic representations, gradually came to be

seen as legitimate algebraic objects (Schwartz

and Yerushalmy 1992). Concomitant with

this evolution was the arrival of computing

technology, which began to be integrated in

varying degrees into the content and emphases

of school algebra. A further change in perspective

on school algebra was its encompassing in an

explicit way what has come to be called algebraic

reasoning: that is, a consideration of the

thinking processes that precede – and eventually

accompany – activity with algebraic symbols,

such as the expression of general rules with

words, actions, and gestures. This widening of

perspective on algebraic activity in schools

reflected a double concern aimed at engaging

primary school students in the early study of

algebra and at making algebra more accessible

to all students.

A Focus on Algebraic Meaning

As the vision of school algebra widened consid-

erably over the decades – moving from a letter-

symbolic and symbol-manipulation view to one

that included multiple representations, realistic

problem settings, and the use of technological

tools – so too did the vision of how algebra is

learned. The once-held notion that students learn

algebra by memorizing rules for symbol manip-

ulation, and by practicing equation solving and

expression simplification, has largely been

replaced by perspectives that take into account

a multitude of factors and sources by which

students derive meaning for algebraic objects

and processes.

Several researchers have studied the specific

question of meaning making in school algebra

(e.g., Kaput 1989; Kirshner 2001). More recently,

the various ways of thinking about meaning

making in algebra have been expanded

(see, e.g., Kieran 2007) to suggest a triplet of

sources: (a) meaning from within mathematics,

which includes meaning from the algebraic

structure itself, involving the letter-symbolic

form, and meaning from other mathematical

representations, including multiple representa-

tions; (b) meaning from the problem context;

and (c) meaning derived from that which is

exterior to the mathematics/problem context

(e.g., linguistic activity, gestures and body

language, metaphors, lived experience, and

image building). Further theoretical development

of this area has been carried out by Radford

(2006) with his conceptualization of a semiotic-

cultural framework of mathematical learning,

which has been applied to the learning of algebra.

Through words, artifacts, and mathematical

signs, which are referred to as semiotic means

of objectification, the cultural objects of algebra

are made apparent to the student in a process by

which subjective meanings are refined.

Characterizing Algebraic Activity

Some research studies have used the nature of

algebraic activity as a lens for investigating

various constituents of students’ learning

experiences in algebra. Several models have

been proposed for describing algebra and its

activities (see, e.g., Bell 1996; Mason et al.

2005; Sfard 2008). For example, a model devel-

oped by Kieran (1996) characterizes school

algebra according to three types of activity:

generational, transformational, and global/

meta-level.

The generational activity of algebra is

typically where a great deal of meaning building
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occurs and where situations, properties, patterns,

and relationships are interpreted and represented

algebraically. Examples include equations

containing an unknown that represent problem

situations, expressions of generality arising from

geometric patterns or numerical sequences,

expressions of the rules governing numerical

relationships, as well as representations of

functions by means of graphs, tables, or literal

symbols. This activity also includes building

meaning for notions such as equality, equiva-

lence, variable, unknown, and terms such as

“equation solution.”

The transformational activity of algebra,

which involves all of the various types of symbol

manipulation, is considered by some to be

exclusively skill based; however, this interpreta-

tion would not reflect current thinking in the

field. In line with a broader view, mathematical

technique is seen as having both pragmatic

and epistemic value, with its epistemic value

being most prominent during the period when

a technique is being learned (see Artigue 2002).

In other words, the transformational activity

of algebra is not just skill-based work; it

includes conceptual/theoretical elements, as for

example, in coming to see that if the integer

exponent n in xn�1 has several divisors,

then the expression can be factored several

ways and thus can be seen structurally in more

than one way. However, for such conceptual

aspects to develop, technical learning cannot be

neglected.

Lastly, there are the global/meta-level

activities, for which algebra may be used as

a tool but which are not exclusive to algebra.

They encompass more general mathematical

processes and activities that relate to the purpose

and context for using algebra and provide

a motivation for engaging in the generational

and transformational activities of algebra. They

include problem solving, modeling, working with

generalizable patterns, justifying and proving,

making predictions and conjectures, studying

change in functional situations, and looking for

relationships or structure – activities that could

indeed be engaged in without using any

letter-symbolic algebra at all.

What Does Research Tell Us About the

Learning of School Algebra?

There is a considerable body of research on the

learning of algebra that has been accumulating

since the late 1970s.What does this research have

to say?

Many students beginning the study of algebra

come equipped with an arithmetical frame

of mind that predisposes them to think in terms

of calculating an answer when faced with

a mathematical problem. A considerable amount

of time is required in order to shift their thinking

toward a perspective where relations, ways of

representing relations, and operations involving

these representations are the central focus.

Teaching experiments have been designed to

explore various approaches to developing in

students an algebraic frame of mind. Approaches

that have generally been found to be successful

include those that (a) emphasize generalizing and

expressing generality by using patterns, func-

tions, and variables; (b) focus on thinking about

equality in a relational way, starting with number

sentences with multiple terms on both sides and

moving toward more complex examples involv-

ing the “hiding” of the same number on both sides

by a box and then by a letter, so as to generate

a literal-symbolic equation with an unknown on

each side; and (c) use problem situations that are

amenable to more than one equation repre-

sentation and engage pupils in comparing the

two (or three) resulting equation representations

to determine which one is better in that it is more

generalizable.

Research also tells us that students have

difficulty with conceptualizing certain aspects of

school algebra, for example, (a) accepting

unclosed expressions such as x + 3 or 4x + y as

valid responses, thinking that they should be

able to do something with them, such as solving

for x; (b) counteracting well-established

natural-language-based habits in representing

certain problem situations such as the

well-known students-and-professors problem;

(c) moving from the solving of word problems

by a series of undoing operations toward the

representing and solving of these problems with

transformations that are applied to both sides of
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the equation; and (d) failing to see the power of

algebra as a tool for representing the general

structure of a situation.

These findings illustrate only a very small

portion of the information to be gleaned from

the large corpus of research literature that is

available (see also Kieran 1992, 2006, 2007) –

literature that has shifted in focus over the years,

due to theoretical developments regarding the

learning of algebra, as well as curricular change

and the growing use of technological tools. While

the research of the 1970s and 1980s was oriented

primarily toward issues related to the transition

from arithmetic to algebra, later work illustrates

the interest in patterning, students’ generalizing

and use of multiple representations, as well as the

ways in which technology environments (e.g.,

spreadsheets, graphing calculators, calculator-

based rangers, computer algebra systems, cell

phone technology, and specially designed soft-

ware environments) can support algebra learning.

The studies on the role of technology have

reported that students receive the most benefit

when the technological tools they use have

a pedagogical role in the classroom and are avail-

able not just for drill and practice or for checking

work; however, exploiting their potential peda-

gogical role requires special curricular materials

that are designed for such tool use. Another shift

that has been witnessed concerns what is meant

by algebra problem solving. In the past, this

phrase tended to refer almost exclusively to

word problems – an area of algebra learning that

continues to challenge many algebra students.

However, a much broader interpretation of the

phrase exists today that includes many types of

nonroutine algebraic tasks, even those in purely

symbolic form with no connection at all to

so-called “real-world” problems.

With respect to the body of research

literature on algebra learning, it is noted that the

12–15-year-old student has received the bulk of

the attention of algebra researchers; however,

since the turn of the millennium, there has been

a significant interest in the development of alge-

braic reasoning in younger students of elemen-

tary and middle school age (see, e.g., Kaput et al.

2007, as well as the Early Algebra Teaching and

Learning entry in this volume). Nevertheless, the

student older than 15 years of age has not been

entirely neglected. Research with this age group

has investigated the learning of more advanced

algebraic topics, including the study of structure

and equivalences, conceptual and technical work

involving quadratics and higher-degree expres-

sions, and proof and proving of number-theoretic

relations. It has been found, for example, that

while many students experience difficulty in

“seeing structure,” they have shown improve-

ments over their younger counterparts in

representing word problems with equations.

Older students have also been found to prefer to

work with literal symbolic representations than

with the graphical. Computer algebra system

(CAS) technology has figured in several studies

with the older student. Much of this research,

which has been grounded in the instrumental

approach to tool use (Artigue 2002), has been

able to provide evidence for the role played by

the CAS tool in the co-emergence of students’

technical and conceptual knowledge in algebra.

Research Involving the Teacher of Algebra

With the main focus in most of the research in

school algebra during the 1970s and 1980s on the

learner, as well as on teaching approaches aimed

at improving student learning, little was revealed

about the teacher of algebra. From the few reports

available, one could only discern that, just as with

teachers of other mathematical subjects, algebra

teachers viewed themselves primarily as pro-

viders of mathematical information and tended

to follow the textbook in their teaching. However,

a research interest in the teacher of algebra

and the nature of algebra teaching practice took

shape in the early 1990s and has continued to

this day – research that has begun to deepen our

knowledge of this domain. Doerr (2004) has

stated that this research tends to fall into three

areas: teachers’ subject matter knowledge and

pedagogical content knowledge, teachers’ con-

ceptualizations of algebra, and teachers learning

to become teachers of algebra. However,

according to Doerr, progress in teacher-oriented

research has been hampered by the lack

of development of new methodological and
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theoretical approaches to effectively investigate

the practices of teachers of algebra.

Although the research on teachers’ practice

with respect to promoting algebraic reasoning

may still be relatively sparse, it has nevertheless

been able to point to two aspects in particular

as being critical to student learning. These are

the roles played by task design and teacher

questioning in encouraging algebraic thinking.

Many of the recent studies on innovative

approaches to teachers’ professional develop-

ment in the area of school algebra have focused

directly on the issue of tasks and their design.

These studies have been able to show that the

content-related design and careful sequencing of

tasks have a clear impact upon the ways in which

students come to conceptualize a variety of alge-

braic ideas and operations, including the follow-

ing: relational views of equality; meaningful

interpretations of algebraic symbols; awareness

of the theoretical-technical interface in algebraic

work; perception of form, structure, and general-

ity; and the pedagogically effective use of

technological tools in algebraic activity.

The role of teacher questioning in developing

students’ algebraic reasoning has been found to

be no less important than that of good task design.

For example, data drawn from the eighth-grade

TIMSSVideo Study (Stigler et al. 1999) illustrate

the ways in which teachers’ well-conceived

questions during whole-class discussions can

encourage students to make explicit their

problem-solving approaches and to generalize

them into literal-symbolic form. However, this

research also shows that despite the use of tasks

designed to help students engage in classroom

discussions that focus on making conjectures

and reasoning mathematically, simply using

such tasks will not spontaneously promote the

desired discussions. Skillful teacher guidance is

needed in order to help students engage in the

algebraic reasoning that is intended by the tasks.

For Further Research

The following closing remarks return to a central

issue regarding the practice of teaching algebra.

The research that was synthesized just above

emphasized the need for a certain kind of support

by the teacher in order to promote students’ alge-

braic reasoning – support involving both task

design and whole-class teacher questioning.

However, as has also been noted, research involv-

ing the development of such support in teachers

has been hindered, at least up to the early 2000s,

by a lack of appropriate methodological and the-

oretical tools. While some advances have clearly

been made in this area, including teachers’ shar-

ing of their effective approaches with other

teachers, further work is needed. A general

framework for thinking about models for devel-

oping teaching practice that can support students’

algebraic reasoning, and which offers a

perspective for moving forward in this area, has

been described in a recent article on connecting

research with practice (Kieran et al. in press). In

that article, the researchers attempt to close the

distinctive gap between research and practice that

exists in much of the mathematics education

research literature by viewing teachers as

key stakeholders in research – stakeholders who

coproduce professional and scientific knowledge –

instead of as “recipients of research” and some-

times even as “means” to generate or disseminate

knowledge. Their elaboration of the notion of the

teacher as key stakeholder with examples drawn

from five international projects, all of them

involving teachers researching their own or

their colleagues’ practice, offers several viable

models and a useful lens for considering how

teachers and researchers might collaborate in

further developing the teaching and learning of

school algebra.
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Definition

“Algorithmics” can be defined as the design and

analysis of algorithms (Knuth 2000). As

a mathematical domain, algorithmics is not prin-

cipally concerned by human execution of
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algorithms, for instance, for arithmetic computa-

tion (see 2010/index/chapterdbid/313187 for

a discussion), but rather by a reflection on how

algorithms are built and how they perform.

Algorithms exist and have been studied since

the beginning of mathematics. However, the

emergence of algorithmics as a mathematical

domain is contemporary to digital computers,

the work on computability by Church (1936),

Turing (1937), and other mathematicians being

often considered as seminal. Computer science,

also emerging at the same time, is concerned with

methods and techniques for machine implemen-

tation, whereas algorithmics focuses on the

properties of algorithms.

Typical questions addressed by algorithmics

are the effectiveness of an algorithm (whether or

not it returns the expected result after a finite

number of steps), the efficiency (or complexity)

of an algorithm (an order of the number of steps

for a given set of data), and the equivalence of

algorithms (e.g., iterative and recursive equiva-

lent forms). Djiskra (1976, p. 7) notes that “as

long as an algorithm is only given informally, it is

not a proper object for a formal treatment” and

therefore that “some suitable formal notation” is

needed “to study algorithms as mathematical

objects.” This formal notation for algorithms or

“language” is a vehicle for abstraction rather than

for execution on a computer.

Algorithms in Mathematics Education

Research

Research in mathematics education and com-

puters most often concentrates on the use of tech-

nological environments as pedagogical aids.

Authors like Papert and Harel (1991), Dubinsky

(1999), or Wilensky and Resnick (1999) pro-

posed computer programming as an important

field of activity to approachmathematical notions

and understanding. This strand of research does

not consider the design and analysis of algorithms

as a goal in itself. The hypothesis is that building

algorithms operating on mathematical objects

and implementing these in a dedicated program-

ming language (LOGO or ISTL) is able to

promote a “constructive” approach to scientific

concepts. The language’s features (recursivity,

functions, etc.) are chosen in order to support

this approach. Students’ access to a formal

algorithmic language is generally not an issue

because the tasks proposed for students gener-

ally imply short programs with a simple

structure.

In a few countries and regions, curricula

for algorithmics have been implemented and,

in parallel, research studies have been

conducted. For instance, at the end of the year

1980, a curriculum has been written and tested

for 7th- and 8th-grade students in a region of

Germany (Cohors-Fresenborg 1993). Concepts

of algorithmics were taught by making students

solve calculation problems using a concrete

“register machine.”

These research studies are few and do not

really tackle questions at the core of algorithmics

like effectiveness and complexity, reflecting the

fact that at school levels investigated by research

studies, students’ consideration of algorithmics is

still limited by the difficult access to a symbolic

language.

Students’ Understanding of Algorithmic

Structures and Languages

In France, programming algorithms has been

proposed as a task for secondary students in

various curricula. Because the time devoted for

these tasks was short, students’ understanding of

algorithmic structures and languages appeared

to be the real challenge, algorithmics in the

sense of Knuth (2010) being inaccessible to

beginners without this prerequisite. Didactic

research studies were developed focusing on

this understanding.

Samurcay (1985) was interested by 10th-grade

students’ cognitive problems relatively to variables

in iteration. The method was to ask students to

complete iterative programs in which instructions

were missing. Missing instructions were of three

types: the initialization of the iterative variable, an

assignment of the iterative variable in the loop

body, and the condition for exiting the loop.

Important misunderstandings of the semantics of

variables were identified. For instance, regarding

the initialization, some students think that the

initial value has necessarily to be entered by
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a reading instruction; others systematically initial-

ize variables to zero. They are clearly influenced

both by preconception of how a computer works

and by previous examples of algorithms that did

not challenge these preconceptions. The author

concludes that more research studies are essential

in order to understand how students conceptualize

the notions associated to iteration and to design

adequate didactical situations.

Samurcay, Rouchier (1990) studied students’

understanding of recursive procedures distinguishing

between two aspects: self-reference (relational

aspect) and nesting (procedural aspect). They

designed teaching sessions with the aim to help

pupils to construct a relational model of recur-

sion, challenging students’ already existing pro-

cedural model. After sessions of introducing the

students to the LOGO graphic language without

recursion, they designed ten lessons: first intro-

ducing the students to graphic recursive proce-

dures, making them distinguish between initial,

central, and final recursion and then helping them

to generalize recursive structures by transferring

recursive procedure to numerical objects for tasks

of generating sequences. Observing students,

they conclude that introducing recursion is

a nonobvious “detour” from already existing

procedural model of iteration and a promising

field for research.

Lagrange (1995) considered the way 10th- and

11th-grade students understand representations

of basic objects (strings, Booleans) in

a programming language. Analyzing students’

errors in tasks involving simple algorithmic

treatments on these objects, he found that

misunderstandings result from assimilation to

“ordinary” objects and treatments. For instance,

when programming the extraction of a substring

inside a string, students often forgot to assign the

result to a variable; the reason is that they

were not conscious of the functional nature of

the substring instruction, being influenced by

the “ordinary” action oriented language. Another

example is that students generally did not

consider the assignment to a Boolean value, not

understanding that in an algorithmic language,

“conditions” are computable entities. Similar

difficulties found in this study were analyzed

in relationship with analogous obstacles in

accessing the algebraic symbolism at middle

school level. Programming simple algorithms

involving these nonnumerical objects seemed

promising for overcoming such obstacles.

Nguyen (2005) questioned the introduction of

elements of algorithmics and programming in the

secondary mathematical teaching, showing that

on one hand, there is a fundamental solidarity

between mathematics and computer science

based on the history and the current practice of

these two disciplines and that on the other hand,

the ecology of algorithmics and programming in

secondary teaching is not obvious. Focusing on

the teaching/learning of loop and of computer

variable notions in France and in Vietnam, he

proposed an experimental teaching unit in order

that 10th-grade students learn the iterative struc-

ture. He chose to make students build suitable

representations of this structure by solving

tasks of tabulating values of polynomial using

a dedicated calculator, emulated on the computer,

and based on the model of calculator existing in

the secondary teaching of the two countries with

the additional capacity to record the history of the

keys pressed.

The experimental teaching was designed as

a genesis of the machine of Von Neumann: the

students had to conceive new capabilities for the

calculator especially erasable memories and

controlled repetition in order to perform iterative

calculations and programming through the

writing of the successive messages (programs)

to machines endowed with different characteris-

tics. This allowed for the emergence of the

notion of iterative variables and treatments. In

the framework of the Theory of Didactical

Situations, a milieu and a fundamental situation

are then offered for the construction of the

iterative structure.

Algorithmics and Programming

Competencies

In parallel to mathematics education research,

studies have been carried out in the field of

psychology of programming. Most studies in

the field address professional programming

and discuss opportunities and constraints of
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programming languages and design strategies for

experts (e.g., see Petre and Blackwell 1997).

Some studies focused on programming problem

solving by beginners with tasks very close to

students’ activity in early algorithmics courses.

For instance, Rogalski and Samurçay (1990)

focused on the acquisition of programming

knowledge “as testified by students’ ability to

solve programming problem”, that is to say,

to pass from “real” world objects and situations to

an effective program implementation. Rogalski

and Samurçay (1990) insist on “the variety of

cognitive activities and mental representations

related to program design, program understanding,

modifying, debugging (and documenting).”

They stress the necessity for beginners of

adequate mental models of data representation

and processing.

These models include static schemas and

plans. Schemas are defined as sets of organized

knowledge used in data processing that help to

achieve small-scale goals. Plans are organized

sets of dynamic procedures related to the

schemas. For instance, when programming the

sum of numbers in a list of arbitrary length,

schemas are related to different sub-tasks like

entering the list and computing iteratively partial

sums, and the plans help to define a strategy,

separating the two sub-tasks or merging these in

a single iteration. More generally, research in the

field of psychology of programming by beginners

usefully complements math education research

because it introduces theoretical models of

human thinking to give account of competencies

required to build or understand programs or

algorithms.

Perspectives

In spite of nearly 30 years of existence,

mathematics education research in algorithmics

remains in its infancy. It is conditioned by polit-

ical decisions to include algorithms in the math-

ematics curriculum. Finding ways to help

students access an algorithmic language together

with adequate mental models of data representa-

tion and processing appears to be a condition in

order that they could tackle central questions like

complexity or proof of algorithms. This is

consistent with Djiskra’s (ibid.) epistemological

view that a suitable formal notation is needed

to study algorithms as mathematical objects.

It is also a stimulating challenge that the

abovementioned research studies just started

to take up.
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Definition

The word algorithm probably comes from

a transliterated version of the name al-Khwarizmi

(c. 825 CE), the Arabic mathematician who

described how to solve equations in his publica-

tion al-jabr w’al-muqabala. An algorithm com-

prises a step-by-step set of instructions in logical

order that enable a specific task to be accom-

plished. Due to its nature it can be programmed

into a computer, although some problems may

not be computable or solvable by an algorithm.

In his famous paper, Turing (1936) showed,

among other things, that Hilbert’s Entscheidung-

sproblem can have no solution. He did this by

proving “that there can be no general process for

determining whether a given formula U of the

functional calculus K is provable, i.e., that there

can be no machine which, supplied with any one

U of these formulae, will eventually say whether

U is provable” (1936, p. 259).

An example of a simple well-known algorithm

is that for sorting a sequence of real numbers into

descending (or with a minor change, ascending)

order, sometimes called a bubble sort. In this we

perform something similar to the following steps,

which describe the algorithm:

1. Set the count to 0.

2. Compare the first two numbers a1 and a2 in the

sequence. If a1 < a2 then swap a1 and a2 and

add 1 to the count. If a1 > a2 then proceed

directly to step 3.

3. Compare the numbers a2 and a3 in the

sequence and repeat as in step 2.

4. When the last two numbers in the sequence

have been compared, consider the count of the

number of changes. If the count is zero then

the sequence is sorted into order. If the count is

greater than zero repeat from step 1.

We note that two algorithms to accomplish the

same task may vary or be entirely different. For

example, there are a number of different algo-

rithms for sorting numbers into order, often much

more efficiently than the bubble sort, such as the

quicksort algorithm.

Another common example referred to as the

Euclidean algorithm for finding the greatest com-

mon divisor (gcd) of two integers n andmmay be

stated as:

1. If n¼m then output n as the gcd (n,m) and end.

2. If n > m the initialize a ¼ n and b ¼ m.

Otherwise, initialize a ¼ m and b ¼ n.

3. Apply the division theorem to a and b by

finding integers q and r such that a ¼ q.b + r,

where 0 � r � b.

4. If r¼ 0 then output b as the gcd (n,m) and stop.

Otherwise set a ¼ b and b ¼ r. Go to step 3.

Based on Khoussainov and Khoussainova

(2012), p. 29.

In this case we illustrate how algorithms to

accomplish the same task may be equivalent but

presented differently, and thus not necessarily

appear to be the same. Consider, for example,

a second version of the Euclidean algorithm

(based on the version found at http://www.math.

rutgers.edu/�greenfie/gs2004/euclid.html):

1. If m < n, exchange m and n.

2. Divide m by n and get the remainder, r.

If r ¼ 0, report n as the gcd.
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3. Replace m by n and replace n by r. Return to

the previous step.

What do we notice about these two versions?

While they are the same algorithm, that is, they

accomplish the same task in the same way, the

first one appears more complex. This is because it

uses function notation (gcd (n, m)); it is not self-

contained, but refers to a previous result (the

division theorem); and it introduces more vari-

ables (an extra a, b) than the second. These dif-

ferences may be the result of attempts to be

rigorous or to make the algorithm more amenable

to computerization.

It is perfectly possible to be able to carry out

an algorithm, such as the quicksort or Euclidean

algorithms above, without understanding how it

works. In this case an individual would demon-

strate what Skemp (1976) called instrumental

understanding, whereas knowing the reasons

why it works would constitute relational under-

standing. It would also be a mistake to think that

mathematics may be reduced to a series of algo-

rithms. The idea of an algorithm is closely related

to what, in mathematics education terms, are

often called procedures, since these may be

accomplished using algorithms. They contrast

with other crucial elements of mathematics,

such as objects, constructs, or concepts. While

both procedures and concepts are important in

learning mathematics (Hiebert and Lefevre

1986), teaching algorithms is often easier than

addressing concepts and so this approach may

prevail in school (and sometimes university)

teaching. For example, the formula for solving

a quadratic equation ax2 + bx + c ¼ 0 with real

roots x ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffi

b2�4ac
p
2a

leads to an algorithm for

solving these equations. However, it may be

the case that students who can successfully find

the roots of a quadratic equation ax2 + bx + c ¼ 0

only have instrumental understanding and do not

understand well why the formula works, what an

equation is (Godfrey and Thomas 2008), or even

what a solution of an equation is. They may not

appreciate, for example, that the formula arises

from completing the square on ax2 + bx + c ¼ 0;

that if p and q are real roots of ax2 + bx + c ¼ 0,

then ap2 + bp + c ¼ 0 and aq2 + bp + c ¼ 0 by

definition; and that a factorization of the form

ax2 + bx + c ¼ a(x � p)(x � q)[¼0] is possible.

One drawback of the step-by-step nature of an

algorithm is that it leaves no room for deviation

from the method. Hence, it cannot encourage or

promote the versatile thinking (Thomas 2008;

Graham et al. 2009) that is needed in order to

understand some mathematical constructs and

hence to solve certain mathematical problems.

For example, it may be both useful and enlight-

ening to switch representations or registers to

comprehend an idea better (Duval 2006) or

to view a written symbolism (described as

a procept) as either a process or an object (Gray

and Tall 1994) depending on the context. One

example of this is appreciating the relationship

between the roots of the quadratic equation above

and the graph of the function. Another is the

calculation of integrals through the use of limits

of Riemann sums. Algorithms can be constructed

for processes that allow students to find

a Riemann sum or its limit, but there is evidence

that far fewer students understand the nature of

the limit object itself (Tall 1992; Williams 1991).
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Characteristics

This entry encompasses two interrelated though

distinct approaches to mathematics education:

the anthropological theory of the didactic (ATD

for short) and the joint action theory in didactics

(JATD). Historically, the germs of ATD are to be

found in the theory of didactic transposition

(Chevallard 1991), whose scope was at first lim-

ited to the genesis and the ensuing peculiarities of

the (mathematical) “contents” studied at school;

from this perspective, ATD should be regarded as

the result of a definite effort to go further by

providing a unitary theory of didactic phenomena

as defined in what follows. As for JATD, it has

emerged from the theory of didactic situations

(Brousseau 1997) and the anthropological theory

of the didactic by focusing on the very nature

of the communicational epistemic process

within didactic transactions. ATD and JATD

share a common conception of knowledge as

a practice and a discourse on practice together –

i.e., as a praxeology – along with a pragmatist

epistemology which gives a prominent place to

praxis. Their well-thought-out anthropological

stance leads the researcher to study didactic

facts wherever they are located in social

practices. Although these theorizations are by

necessity expounded tersely, we hope their

forthright presentation will allow the reader to

catch the gist of them.

The Anthropological Theory of the Didactic

The (seemingly) heavy theoretical load of the

presentation that follows should not be

misinterpreted. On the one hand, every and all

notions delineated hereinafter do refer to con-

crete didactic practice (from which they gradu-

ally emerged) and have led, in our view, to some

major scientific breakthroughs (Bosch et al.

2011; Bronner et al. 2010; Chevallard 1990,

2006, 2007, to appear; Chevallard and Ladage

2008; Ruiz-Higueras et al. 2007). On the other

hand, we strongly believe that, according to

a well-known remark by Lewin (1952), p. 169,

“there is nothing more practical than a good

theory,” which is exactly what we aim at

providing the interested reader with (Chevallard

1980, 1991, 1992).

Didactic Systems

Didactics can be defined as the (historically

incipient) science of knowledge diffusion and

acquisition in society. The founding problem of

didactics has long been reduced to two charac-

ters: some object of knowledge O and some

human subject x supposed to “study” O. This

problem lays in what ATD calls the “relation of

x to O,” written in symbol R(x, O). If x knows

nothing about O, her relation to O is void:

R(x, O) ¼ Æ. How can this relation change,
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grow, and possibly achieve proficiency, so that

one can say that x “knows” O? Such is the key

question in classical didactics. But the traditional

two-character play to which it applies has long

since been challenged by the theory of didactic

transposition, that forerunner of ATD which

questions the nature of object O, its genesis. and

alterations during the process that leads to the

face-to-face encounter of x and O. The meeting

between x and O takes place in some institution –

another keyword of ATD – which imposes upon

O a number of conditions that reshapeO and “fix”

the conditions under which x will study O. ATD

is critical of the common view of the two-

character didactic scene. Its main tenet holds

that in order to “explain” x, O, and R(x, O), one

has to take into account a greater number of

conditions. First of all, the “binomial” arrange-

ment made up of x and O is generally part of

a “trinomial” layout, including a third character,

y, to constitute a didactic system S(x, y, O),

where y is a person supposed to help x to study

O. When y is missing, the system reduces to an

autodidactic system, S(x, O), the basic “binomial

arrangement” we started with. What is the use of

such a formal description? Before answering this

question, let’s generalize a bit our symbolic

gobbledygook: instead of a person x, let’s con-

sider a group of persons X; instead of y, let’s

introduce a team of y, Y, so that a didactic system

is now denoted by S(X, Y, O). Didactic systems

S(x, y, O) are particular cases of this general

form. When no y helps X, we’ll denote the

corresponding system by S(X, Æ, O) or simply

S(X, O). Any class of students X studying some

object O under the supervision of some “official”

teacher y can be written as S(X, y, O). Two

students x1 and x2 working together on their

homework O are part of the didactic system

S({x1, x2}, Æ, O) or S({x1, x2}, O). When

a student x receives help from her mother y,

they form together a system S(x, y, O). The

symbolic notation used thus allows us to “see”

not only the didactic systems insistently shown

to us – within classrooms, basically – but also

the more or less informal, but no less

crucial, didactic systems that may appear

almost everywhere in society: at school in

and outside classrooms, in the family, on the

telephone yesterday, on the Internet today, etc.

The Didactic

In ATD, the adjective “didactic” applies to any

action induced by the intention to help

someone study something. In any didactic system

S(x, y, O), x and y act to help x study O. It is

customary to say that x performs didactic moves

(or didactic gestures) with respect to the didactic

stake O, to help herself study O, and that y

achieves didactic moves or gestures with respect

to x and O with the same intention. Most didactic

moves occurring in a system S(x, y, O) involve

both x and y, who work together to produce some

determined didactic effect: didactic tasks are

generally cooperative tasks, jointly performed

by x and y (or by X and y, etc.). Considered within

the larger frame of society, the fuzzy set of

didactic moves, which ATD calls the didactic

(as one can speak of the religious, the economic,

etc.), is thus everywhere around us, and it is the

specific object of study of the science we

call didactics.

Praxeological Analysis

By definition, any didactic study refers to some

stake O and some category of “students” x. Both

O and x impose conditions on the moves that can

appropriately be performed by x and y. Tradition-

ally, O pertains to some discipline such as math-

ematics, physics, or geography. All these entities

are human made: they are, up to a point, artifacts,

i.e., “works of art,” this expression being

understood here in its most primitive meaning.

We shall say for short that O is “a work.”

Analyzing any work O amounts to making clear

its structure, its functioning, and its distinct uses.

It has become common practice in ATD to

describe the set of conditions borne by the

disciplinary field to which O belongs – as partak-

ing of a four-scale hierarchy of disciplinary sub-

fields. Firstly, O is situated within some domain

of the discipline – say, algebra – which in turn is

dissociated into a number of sectors, each of

which is made up of themes (or topics) that finally

separate into subjects. Any work O that can be

offered for study in a system S(X, y, O) may fall
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under any of these disciplinary levels: O may be

“algebra” (domain) or “equations” (sector) or

“quadratic equations” (theme) or “incomplete

quadratic equations with no constant term”

(subject). This four-level structure is one part of

the story. For ATD purports that the ultimate

building block of all works is a four-component

structure called a praxeology. The first compo-

nent of a praxeology is a type of tasks T (e.g., “to

solve a quadratic equation”). The second compo-

nent is a technique t(tau), i.e., a way of

performing the tasks of type T (or at least some

of them). The third component is a technology

q(theta), i.e., a way of explaining and justifying

or even of “designing” the aforesaid technique t.

Last but not least (although often ignored), there

is a fourth component, the theory Q(“big theta”),

which should explain, justify, or generate what-

ever part of technology q may sound unobvious

or missing. It is a crucial precept of classical

didactics – one that severs didactics from the

old “pedagogy” – that the didactic generated in

any system S(x, y, O) depends essentially on the

conditions ingrained in the stake O, acting in this

respect as a quasi-autonomous system. ATD

posits that O is a combination of a number of

praxeologies (T, t, q, Q) that usually share parts

of their theory Q and of their technology q.

Of course, O can be also a “mere” detail of

a praxeology, e.g., some instrument used to carry

out a given technique t. More often than not,

praxeologies are identified by some emblematic

“detail”: studying “Pythagoras’ theorem,” for

instance, usually does not boil down to learning

a bare statement (“In any right-angled triangle,

the area. . .”) but amounts to studying at least

a whole praxeology whose technological compo-

nent q crucially features Pythagoras’ theorem.

Didactic Analysis

The study of work O consists in providing some

praxeological analysis of O. To do so, x

(helped by y) engages in hard didactic work to

analyze the praxeological structure of O as well

as the raisons d’être of O, i.e., the role O plays in

the functioning of the praxeologies of which it is

an ingredient and, by the same token, the raisons

d’être or ultimate purpose of these praxeologies.

Analyzing what x and y can do in this respect –

their possible moves – is tantamount to producing

a didactic analysis, i.e., an analysis of the didac-

tic situations that the system S(x, y, O) goes

through. Any didactic analysis implies some

degree of praxeological analysis of O (e.g., even

if O is praxeologically far from complete: the

raisons d’être of O are almost always lacking in

today’s mathematics education). Provided this is

done appropriately, ATD offers a model to guide

didactic analysis. In the case of a praxeology

O ¼ (T, t, q, Q), to which much can be reduced,

there comes a moment when, in some didactic

situation, x meets the type of tasks T for the first

time – also, there will come a moment when x

tries to design and then master a technique

t relating to T; this model of didactic moments is

essentially dictated by the aforementioned prax-

eological model. To this model, ATD adds

another decisive multilevel structure without

which this theory would not fully deserve to be

called “anthropological”: the scale of levels of

didactic codetermination that can be sketched as

follows: humankind, civilizations, societies,

schools, pedagogies, disciplines . . . O. The

conditions to be taken into account in any didac-

tic analysis should not be limited to conditions

carried by the stake O (or by the “discipline” to

which O “belongs”). Contrary to other

approaches, which regard higher-level conditions

as “neutralized variables,” ATD allows for

conditions originating at the levels of pedagogy,

school, society, civilization, and even human-

kind, in so far as they determine (think, e.g., of

class and gender) the didactic opportunities open

to x and y. At the same time, ATD classically holds

that themanipulation of conditions of higher levels

(starting from the pedagogic level) is of little avail

if we ignore the conditions properly pertaining

to O. This anthropological turn results in a deep

change in didactics’ theory and practice.

Toward an Anthropology of Didactic Inquiry

In ATD, a school is any institutional arrangement

devoted to study, i.e., in which it is legitimate to

study some works O – a family is thus usually
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a school for some of its members. The contract

linking a society and a school can be of one of two

kinds. The traditional contract decides in advance

which works O will be studied, a work O being in

this case some praxeological entity supposed

to allow one to answer questions of a given

type – e.g., “What are the roots of this quadratic

equation?” Such works are classified beforehand

as belonging to mathematics, physics, biology,

music, etc. But a different kind of contract can be

considered, more akin to the mores of scientific

research, in which the stake O is no longer a tool

for answering questions but is itself a question Q,

which is a (humanmade)work aswell. In this case,

the study of Q ceases to be a priori governed by

a discipline determined in advance: these primary

questionsQ are not clearly introduced as questions

of mathematics, of biology, etc. It is the role of x to

find out the secondary questions Q’, the tertiary

questions Q”, etc., and the other works O that will

prove useful to answer Q. The study of Q, i.e., the

inquiry into question Q led by x (with some help

from y), is now “co-disciplinary” in that it

generally requires combined contributions from

several, known as well as unknown, disciplinary

fields. As of today, ATD is increasingly concerned

with the analysis of conditions of every level that

may hinder or facilitate the advent of such an

anthropological pedagogy of inquiry.

The Joint Action Theory in Didactics

One cannot understand the didactic system S(X,

Y, O) without taking into account the relation-

ships between the three subsystems (teacher,

student, the piece of knowledge at stake) as

a whole. With this respect, the JATD (Sensevy

2012) puts the emphasis on the “actional turn”

in didactics. Emerging from a comparative

approach in didactics (Ligozat and Schubauer-

Leoni 2009), the JATD institutes a specific unit

of analysis that we call an epistemic joint act. The

linguistic criterion of the description of such an

act is that it is impossible to describe it without

describing at the same time the teacher’s action,

the student’s action, and the way the knowledge

at stake shapes these actions. This assertion

is a very general and anthropological one.

For example, if a parent holds her hands out to

a young child, who is learning to walk, as an

incentive to make her walk towards these hands,

while the young child tries to take some steps to

reach these hands, this is an epistemic joint act.

One cannot understand each behavior (parent/

teacher or child/student) without taking into

account the joint process and the knowledge

(walking) that gives its form to the enacted ges-

tures. In this perspective, in the JATD, knowledge

is always seen as a power of acting, in a specific

situation, within a given institution.When a person

knows something, she becomes able to do

something that she was previously unable to do.

The Didactic Game

We aim to describe the didactic interactions

between the teacher and the students as a game of

a particular kind, a didactic game (Sensevy 2011a).

What are the prominent features of this game?

It involves two players, X and Y.

Y wins if and only if X wins, but Y cannot give

the winning strategy to X directly.

Y is the teacher (the teaching pole). X is the

student (the studying pole). Under this descrip-

tion, the didactic game is a collaborative game,

a joint game, within a joint action. To identify the

very nature of the didactic game, we have to

consider it as a conditional game, in which

the teacher’s success is conditioned by the stu-

dent’s success. This structure logically entails

a fundamental characteristic of the didactic

game. In order to win the game, the teacher can-

not act directly. For example, in general, she

cannot ask a question to the student and immedi-

ately answer this question. She needs a certain

kind of “autonomy” from the student. In order to

win, Y (the teaching pole) has to lead X (the

studying pole) to a certain point, a particular

“state of knowledge” which allows the student

to play the “right moves” in the game, which can

ensure the teacher that the student has built the

right knowledge. At the core of this process,

there is a fundamental condition: in order to be

sure that X has really won, Y must remain tacit

on the main knowledge at stake. She has to be

reticent. On her side, the student must act
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proprio motu; the teacher’s help must not allow

the student to produce a “good” behavior without

calling on the adequate knowledge. This proprio

motu clause is necessarily related to the reticence

of the teacher (Sensevy 2011b). Indeed the

proprio motu clause and the teacher’s reticence

compose the general pattern of didactic transac-

tions and give them their strongly asymmetrical

nature.

Learning Games

We call learning game the didactic game we

modelize by using the concepts of didactic

contract and didactic milieu (Sensevy et al.

2005). Consider this example: at primary school,

students have to reproduce a puzzle by enlarging

it, in such a way that a segment which measures

4 cm on the model will measure 7 cm on the

reproduction. The pieces of this puzzle constitute

the milieu that the students face for this “enlarge-

ment problem.” The didactic contract (Brousseau

1997; Sensevy 2012) refers to the strategic system

the student uses in order to work out the problem at

stake. This strategic system has been shaped

mainly in the previous joint didactic action. In

our example, it is mainly an “additive” contract,

in that students try to add 3 to every dimension of

the puzzle. The milieu (Brousseau 1997; Sensevy

2012a) refers to the set of symbolic forms that the

didactic experience transforms in an epistemic

system. In our example, the fact that the puzzle

pieces are not compatible has first to be an incen-

tive to refute the additive strategy. Modelizing the

teaching process by using the concept of learning

game enables the researcher to identify the

teacher’s game on the student’s game. When

teaching a piece of knowledge, the teacher may

rely on the contract properties (by having the stu-

dents recognize the previous taught knowledge

necessary to deal with the problem at stake) or

on the milieu structure (by orienting the students

so that they experience some epistemic features of

this milieu, in our example, the fact that the puzzle

pieces do not fit together). The JATD considers

such a joint work as a didactic equilibration

process, relying on the research of equilibrium,

in the teacher’s discursive work, between

expression and reticence (Mercier et al. 2000;

Sensevy et al. 2012b). Documenting this joint

action needs a specific methodological instrumen-

tation process (Sensevy and Forest 2012;

Tiberghien and Sensevy 2012).

Epistemic Games

In a nutshell, the notion of learning game is a way

of modelizing what the teacher and the student

jointly do in order for the student to learn

something. The notion of epistemic game is

a way of modelizing this something, i.e., what

has to be learned.

Speaking of epistemic game rather than of

“knowledge” or “subject content” is a way of

actualizing the JATD’s actional turn. An episte-

mic game is a modelization of what we can call

a knowledge practice (the practice of

a mathematician, a fiction writer, an historian,

etc.). We argue that these practices have to be

carefully scrutinized in a comprehensive way that

may express their fundamental principles, rules,

and strategies. For example, if one intends to

some extent to have students as mathematicians,

one has to modelize this practice (that of the

mathematician) so that the teachers may monitor

students’ activity in a relevant way by relying on

this model. In this respect, an epistemic game is

a model (Sensevy et al. 2008), which attempts to

grasp the fundamental dynamic structure of

a knowledge practice and which can help

the designers of a curriculum in the didactic

transposition process.

Cooperative Engineering

In order to contribute to the elaboration of new

forms of schooling, the JATD aims at theorizing

a specific process of design-based research,

called cooperative engineering (Sensevy 2012)

in which teachers and researchers jointly act to

build teaching-learning sequences grounded on

learning games nurtured by specific epistemic

games. This process rests on the dilution of

dualisms between theory and practice, ends and

means. In this way, teachers and researchers may

temporally occupy the same position, that of

didactician engineer, by sharing the same educa-

tional ends and by working out together the means

which will allow to reach these ends and to
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reconceptualize them. In this respect, the JATD

endeavors to overcome the classic distinction

between applied and fundamental research by pro-

posing concrete curriculum designs.

Concluding Remarks

Beyond different results and uses, ATD and

JATD suggest a new school epistemology and

urge a thorough reconstruction of the form of

schooling, more open to the basics of cooperative

studying and learning that they jointly advocate.
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Definition

Argumentation refers to the process of making an

argument, that is, drawing conclusions based on

a chain of reasoning. Götz Krummheuer suggests

that argumentation can be thought of as a social

process in which the cooperating individuals

“adjust their intentions and interpretations by

verbally presenting the rationales for their actions”

(Cobb and Bauersfeld 1995, p. 13). In mathemat-

ics, unlike any empirically based discipline, the

validity of an argument in its final form is judged

solely on whether it is logically consistent.

Characteristics of Argumentation

The origins of logic, a key component of mathe-

matical argumentation, can be traced back to

Aristotelian logic and his use of syllogisms,

with thinkers making improvements to this

method over time as they were confronted with

paradoxes. Argumentation was primarily the

domain of theologians and medieval and

postmedieval scholastics for over 1,700 years

after Aristotle. Some well-known examples of

theological argumentation are the Italian

prelate St. Anselm of Canterbury’s (1033–1109)

“ontological argument” in the Proslogion, which

was later revised by Leibniz and Gödel. Today,

sophisticated versions of the ontological argu-

ment are written in terms of modal logic,

a branch of logic which was familiar to the medi-

eval scholastics. Modal logic today is a useful

language for proof theory, the study of what can

and cannot be proved in mathematical systems of

deduction. Issues of completeness of mathemati-

cal systems, the independence of axioms from

other axioms, and the consistency of formal

mathematical systems are all part of proof theory.

One also finds the use of logical argumentation to

prove the existence of God in the theological

works of Descartes, Leibniz, and Pascal.

The importance of the role of formal logic in

mathematical argumentation continued to increase

and reached its apex with the work of David

Hilbert and other formalists in the nineteenth and

first half of the twentieth century. The Principia

Mathematica, by Alfred North Whitehead and

Bertrand Russell, was a three-volume work that

attempted to put the foundations of mathematics

on a solid logical basis (Whitehead and

Russell, 1927). However, this program came

to a definitive end with the publication of

Gödel’s incompleteness theorems in 1931, which

subsequently opened the door for more complex

views of mathematical argumentation to develop.

Given this historical preview of the

development of logic and its role in mathematical

argumentation, we now turn our attention to

contemporary views of mathematical argumenta-

tion, and in particular its constituent elements.

Efraim Fischbein claimed that intuition is an

essential component of all levels of an argument,

with qualitative differences in the role of intuition

between novices [students] and experts [mathema-

ticians]. For novices, it exists as a primary compo-

nent of the argument. Fischbein (1980) referred to

this use of intuition as anticipatory, i.e., “. . .while

trying to solve a problem one suddenly has the

feeling that one has grasped the solution even

before one can offer an explicit, complete justifi-

cation for that solution” (p. 10). For example, in

response to why a given solution to a problem is

correct, the novicemay respond “just because . . . it

has to be.” The person using this type of intuition

accepts the given solution as the truth and believes

nothing more needs to be said. In a more advanced

argument, intuition plays the role of an “advanced

organizer” and is only the beginning of an
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individual’s argument. In this sense, a personal

belief about the truth of an idea is formed and

acts as a guide for more formal analytic methods

of establishing truth. For example, a student may

“see” that the result of a theorem is obvious, but

realize that deduction is needed to establish truth

publicly. Thus intuition serves to convince oneself

about the truth of an idea while serving to organize

the direction of more formal methods.

In an attempt to determine howmathematicians

establish the truth of a statement in mathematics,

Kline (1976) found that a group of mathematicians

said they began with an informal trial and error

approach guided by intuition. It is this process

which helped these mathematicians convince

themselves of the truth of a mathematical idea.

After the initial conviction, formal methods were

pursued. “The logical approach to any branch of

mathematics is usually a sophisticated, artificial

reconstruction of discoveries that are refashioned

many times and then forced into a deductive sys-

tem.” (p. 451). There definitely exists a distinction

between how mathematicians convince them-

selves and how they convince others of the truth

of mathematical ideas. Another good exposition of

what constitutes argumentation in mathematics is

found in Imre Lakatos’ (1976) Proofs and Refuta-

tions, in the form of a thought experiment. The

essence of Lakatos’ method lies in paying attention

to the casting out of mathematical pathologies in

the pursuit of truth. Typically one starts with a rule

and clearly identifies the hypothesis. This is

followed by an exploration of the possibility of

its truth or falsity. The process of conjecture-

proof-refutation results in the refinement of the

hypothesis in the pursuit of truth in addition to

the pursuit of all tangential hypotheses that arise

during the course of discourse. The Lakatosian

exposition of mathematical argumentation brings

into focus the issue of fallibility of a proof,

either due to human error or inconsistencies

in an axiomatic system. However, there are

self-correcting mechanisms in mathematics, i.e.,

proofs get fixed or made more rigorous and axi-

omatic systems get refined to resolve inconsis-

tencies. For example, non-Euclidean geometries

arose through work that resolved the question of

whether the parallel postulate is logically

independent of the other axioms of Euclidean

geometry; category theory is a refinement of set

theory that resolves set theoretic paradoxes; and

the axioms of nonstandard analysis are a reorgani-

zation of analysis that eliminates the use of the law

of the excluded middle.

However, the mathematical community has on

numerous occasions placed epistemic value on

results before they were logically consistent

with other related results that lend credence to

its logical value. For instance, many of Euler and

Ramanujan’s results derived through their phe-

nomenal intuition and self-devised methods of

argumentation (and proof) were accepted as true

in an epistemic sense but only proved much later

by mathematicians using a more rigorous form of

mathematical argumentation to meet contempo-

rary standards of proof. If one considers Weyl’s

mathematical formulation of the general theory

of relativity by using the parallel displacement

of vectors to derive the Riemann tensor, one

observes the interplay between the intuitive and

the deductive (the constructed object). The

continued evolution of the notion of tensors in

physics/Riemannian geometry can be viewed as

a culmination or a result of the flaws discovered

in Euclidean geometry. Although the sheer

beauty of the general theory of relativity was

tarnished by the numerous refutations that arose

when it was proposed, one cannot deny the

present day value of the mathematics resulting

from the interplay of the intuitive and the logical.

Many of Euler’s results on infinite series have

been proven correct according to modern

standards of rigor. Yet, they were already

established as valid results in Euler’s work. This

suggests that mathematical argumentation can be

thought of as successive levels of formalizations

as embodied in Lakatos’ thought experiment.

Such a view has been expressed in the writings

of prominent mathematicians in Hersh’s (2006)

18 Unconventional Essays on Mathematics.
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Definition

“Argumentation in mathematics education” can

mean two things:

1. The mathematical arguments that students

and teachers produce in mathematics

classrooms

2. The arguments that mathematics education

researchers produce regarding the nature of

mathematics learning and the efficacy of

mathematics teaching in various contexts.

This entry is about the first of these two

interpretations.

Mathematics Classrooms and Argumentation

In the context of a mathematics classroom, we

will take a “mathematical argument” to be a line

of reasoning that intends to show or explain why

a mathematical result is true. The mathematical

result might be a general statement about

some class of mathematical objects or it might

simply be the solution to a mathematical prob-

lem that has been posed. Taken in this sense,

a mathematical argument might be a formal or

informal proof, an explanation of how a student

or teacher came to make a particular conjecture,

how a student or teacher reasoned through a

problem to arrive at a solution, or simply a

sequence of computations that led to a numeri-

cal result. The quantity and nature of mathemat-

ical arguments that students and teachers

produce in mathematics classrooms varies

widely. Observational studies of mathematics

classrooms indicate that in some there

is essentially no dialogue between students

and students and teacher that would constitute

an argument that is more complex than a

series of calculations. In some classrooms, the

teacher produces the majority of arguments, in

others the teachers and students coproduce

arguments, while in a very few, students spend

time working together to develop arguments

which they then present or even defend to the

entire class.

The different ways in which mathematical

arguments are enacted in classrooms reflect

different philosophies about the kinds of math-

ematical arguments that belong in there and

the different belief systems held by teacher

related to how students develop the knowledge

and skill to produce such arguments. These

philosophies and belief systems are largely

cultural in that teachers learn them implicitly

through their own schooling; such knowledge

is often tacitly held. In some cases, however,

teachers believe that students should be engag-

ing in more complex argumentation but do

not have the practical skills to structure class-

room episodes so that students are successful

in creating or defending more complex

mathematical arguments.
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Approaches to Argumentation in

Mathematics Education

An exemplary case study of student’s success-

fully creating and defending mathematical

arguments is found in Fawcett’s (1938) classic

book The Nature of Proof, in which students are

guided to create their own version of Euclidean

geometry. This 2-year teaching experiment with

high school students highlighted the role of argu-

mentation in choosing definitions and axioms and

illustrated the pedagogical value of working

with a “limited tool kit.” The students in

Fawcett’s study created suitable definitions,

chose relevant axioms when necessary, and cre-

ated Euclidean geometry by using the available

mathematics of Euclid’s time period (Sriraman

2006). The glimpses of the discourse one finds in

Fawcett’s study also illustrate the Lakatosian ele-

ments of the possibilities in an “ideal” classroom

for argumentation. In the case of Lakatos, the

argumentation (or classroom discourse) occurs

in his rich imagination in the context of

a teacher classifying regular polyhedra and

constructing a proof for the relationship between

the vertices, faces, and edges of regular polyhedra

given by Leonhard Euler as V + F � E ¼ 2. The

essence of the “Lakatosian” method lies in pay-

ing attention to the casting out of mathematical

pathologies in the pursuit of truth. Typically one

starts with a rule and clearly identifies the

hypothesis. This is followed by an exploration

of the possibility of its truth or falsity. The pro-

cess of conjecture-proof-refutation results in the

refinement of the hypothesis in the pursuit of

truth in addition to the pursuit of all tangential

hypotheses that arise during the course of dis-

course. Mathematics educators have attempted

to implement the technique of conjecture-proof-

refutation with varying degrees of success in the

context of number theoretic or combinatorial

problems (see Sriraman 2003, 2006). An impor-

tant aspect of argumentation in the context of

Fawcett’s (1938) study is that while the proofs

themselves are student created, the format they

take on is largely orchestrated by the teacher.

The first objective of the class in Fawcett’s

study was to emphasize the importance of

definitions and accepted rules. The class was

also trained in identifying hidden assumptions

and terms that need no definition. That is, stu-

dents were trained to start with agreed upon pre-

mises (be they axioms, definitions, or generally

accepted criteria outside of mathematics) and

produce steps that lead to the sought conclusions.

Included in this training is the analysis of other

arguments on the basis of how well they do the

same. This is a deductivist approach to argumen-

tation (Sriraman et al. 2010) and allows for only

a single method of proof. Direct proof is given to

students with little regard to the way in which

they will internalize the method. In the book

Proofs and Refutations (1976), Lakatos makes

the point that this sort of “Euclidean methodol-

ogy” is detrimental to the exploratory spirit of

mathematics. Not only can an overreliance on

deduction dampen the discovery aspect of

mathematics; it can also ignore the needs of

students as they learn argumentation that

constitutes a proof.

In Patterns of Plausible Inference, Polya

(1954) lays out heuristics via which the plausibil-

ity of mathematical statements may be tested for

validity. By doing so, he gives a guide for stu-

dents as they go about exploring the validity of

a statement. “I address myself to teachers of

mathematics of all grades and say: Let us teach

guessing” (Polya 1954, p. 158). This is quite

different from the deductive view which holds

fast to inferences that can be logically concluded,

where inconclusive but suggestive evidence has

no place. While we do not doubt that the

deductivist approach leaves room for guessing, it

is not its primary emphasis. This is not to say,

either, that the heuristic approach would abandon

demonstrative proof. In Polya’s (1954) heuristic

approach, students are exposed to ways familiar to

mathematicians when they are judging the poten-

tial validity of a statement and looking for proof.

Lakatos (1976) makes a similar case. In his fic-

tional class, the students argue in a manner that

mirrors the argument the mathematical commu-

nity had when considering Euler’s formula

for polyhedra. He states that an overly deductive

approach misrepresents the ways the mathematics
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community really works. Fawcett shows, how-

ever, a way in which a deductivist classroom can

model the mathematical community to a certain

extent. Like in the mathematics community, dis-

agreements arise and the need for convincing

fosters the need for proof (Sriraman et al. 2010).

Over the past several decades, philosophers of

mathematics have been attempting to describe

the nature of mathematical argumentation (e.g.,

Lakatos, Hersh, others; see ▶Argumentation in

Mathematics). Many mathematics education

researchers have called for teachers to engage

students in the practice of doing mathematics as

mathematicians, which has mathematical

argumentation at its core, for example, Deborah

Ball http://ncrtl.msu.edu/http/craftp/html/pdf/

cp903.pdf, Schoenfeld (1985).

In the USA, this call was brought to the national

conversation through the inclusion of the process

standards in the NCTM Principles and Standards

for School Mathematics and has evolved to

become more specific and concrete in the recent

Standards for Mathematical Practice in the Com-

mon Core State Standards for Mathematics. Such

standards, when coupled with the picture painted in

US classrooms, show a wide gulf between the

vision the mathematics education community has

for how mathematical argumentation might look

and what actually transpires in classrooms, at least

in the USA. However, the US mathematics educa-

tion researcher community is not alone; other

countries’ educational systems also grapple with

similar issues, although the framing and details

vary as they reflect cultural attitudes about the

appropriate nature of mathematical argumentation

in mathematics classrooms.

Caveat emptor: Neither Lakatos nor Polya were

mathematics educators in the contemporary sense

of the word. The former was a philosopher of

science who was trying to address his community

to pay attention to the history of mathematics,

whereas the latter an exemplary mathematician

that became interested in pedagogy. Both Lakatos

and Polya’s work has found an important place in

the canon of literature in mathematics education

that addresses discourse, argumentation, and

proof and hence made central in this encyclopedia

entry.
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Definition

Practices and processes used to assess the

mathematical knowledge of teachers. This
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information is frequently used to establish

certification of new teachers, to give promotion

and recognition to current teachers, to determine

the need and content of professional development

for current teachers, and to provide information to

researchers about teacher knowledge. Methods to

assess the mathematical knowledge of teachers

include paper and pencil or oral examinations

with multiple choice, short answer, or open-ended

questions; portfolios; interviews; and demonstra-

tions of teaching.

The need to systematically assess mathemat-

ics teacher knowledge was initiated by the

publication in the early 1980s of reports about

the low quality of mathematics in schools

(e.g., the Cockcroft report in the UK, Nation at

Risk in the US; see Howson et al. 1981). These

reports stirred the need for reform in mathematics

classrooms, and in particular to attend to

“salary, promotion, tenure, and retention deci-

sions [of teachers, which] should be tied to an

effective evaluation system that includes

peer review” (National Commission on Excel-

lence in Education 1983, Recommendation

D.2 Teaching). Reports of the low attainment

of students in international comparisons of

mathematics achievement in the studies

conducted by the IEA, the OECD, and the

UNESCO also have heightened awareness of

the need to assess teachers’ knowledge and to

find its connections to student performance.

Several decades later, many educational systems

have passed resolutions that impose stringent

requirement to certify teachers, to maintain

them in the profession, and that have led

researchers to investigate methods to measure

this knowledge with a goal of producing valid

results that are useful in policymaking.

Certification of New Teachers

Assessment of mathematics teacher knowledge can

be associated with processes of certification or

licensing of teachers. Certification ensures that

people who wish to work as mathematics teachers

have sufficient knowledge and competence to

practice the profession. Certification processes

have changed over time (see Ravitch, n.d., http://

www2.ed.gov/admins/tchrqual/learn/preparingteac

hersconference/ravitch.html for a brief history in

the US), from requiring a demonstration of moral

character, to demonstration of competency in ele-

mentary subjects (e.g., arithmetic, reading, history,

and geography), to more specialized processes that

may include demonstrations of teaching specific

mathematics topics. In countries without a central-

ized system for regulating certification, more than

one process can exist. The processes of certification

vary across educational systems, with some requir-

ing various examinations in several selection stages

(e.g., written, oral, microteaching in Korea, http://

www.MEST.go.kr) and some requiring a written

test only (e.g., PRAXIS, in the USA, http://www.

ets.org/praxis/about/praxisii).

Promotion and Recognition of Practicing

Teachers

Assessment of mathematics teacher knowledge is

relevant to the employment status of current

teachers. An educational system may use evi-

dence that teachers hold or have gained sufficient

knowledge and competence to retain the teachers

in their current jobs, to recognize them, and to

promote them. Current teachers may also use the

processes to guide their professional develop-

ment. These processes include peer reviews or

observation of instruction by administrators, or

in more formal cases, teachers may document

their knowledge and create a portfolio that is

evaluated by a national board (e.g., National

Board for Professional Teaching Standards,

http://www.nbpts.org/for_candidates/certificate_

areas1?ID¼3&x¼57&y¼8).

Research on Teacher Knowledge

Assessment of mathematics teacher knowledge

has lately been associated with measures ofmath-

ematical knowledge for teaching (MKT). The

impetus for this work can be traced to Shulman’s

(1986) categorization of teachers’ knowledge

into content, pedagogical, and curricular. Prior

to Shulman’s publication, a standard way to mea-

sure teachers’ knowledge was by the number of

subject-matter courses teachers had been exposed

to during training or the number of hours of

professional development in which they have

engaged as practicing teachers.
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The need for measuring teacher knowledge

has become more prominent as demands for

establishing links between teacher behaviors and

student achievement have increased. Initial attempts

to establish connections using characteristics such as

the number of mathematics courses taken or the

number of hours of professional development as

proxies for teacher knowledge led to inconclusive

results (Blömeke and Delaney 2012).

Research in this area has proposed that math-

ematics teacher knowledge includes six areas,

three related to subject-matter knowledge

(common content knowledge, knowledge at the

mathematical horizon, and specialized content

knowledge) and three related to pedagogical

content knowledge (knowledge of content and

students, knowledge of content and teaching,

and knowledge of curriculum, Ball et al. 2008).

Research since the late 1990s has focused on

the construction of an instrument that can

measure specialized content knowledge. This

instrument has been successfully validated with

US-practicing elementary teachers (Hill et al.

2008). The instrument is not meant to be used for

certification or promotion, rather for establishing

a connection between teacher knowledge, student

achievement, and quality of instruction (Hill et al.

2005). Because teaching is a highly contextual-

ized practice, current research on the instrument

focuses on validity of the instrument in other

countries (see the 44th issue of ZDM Mathemat-

ics Education, 2012 on assessment of teacher

knowledge).

Similar efforts to measure teacher knowledge

with the purpose of connecting it to student

achievement have been pursued in other

countries. In Germany the impetus for the

Cognitive Activation in the Classroom

(COACTIVE) project (Krauss et al. 2008) was

German students’ lower than expected perfor-

mance in the Program of International Student

Assessment (PISA) compared to other European

countries. Other recent efforts to assess mathe-

matics teacher knowledge in other countries

Assessment of Mathematics Teacher Knowledge, Table 1 Examples of assessments of teacher knowledge

Assessment,
location Level, purpose What is assessed Format of assessment

Teacher
education
test, South
Korea

Preservice teachers,
certification

Mathematics knowledge Three tests: multiple choice (for all areas),
open ended (mathematics and general), oral
and microteaching (general and specific)

General pedagogical
knowledge

Specific knowledge for
teaching mathematics

PRAXIS,
USA

Preservice teachers,
certification

Varies from state to state,
primarily content, although
pedagogy is offered

Multiple choice, usually 2-h long.
Requirements vary by state

NBPTS, USA Practicing teachers,
National Board
Certification

Knowledge of
mathematics, students, and
teaching

Four portfolio entries, two of which are
video, followed by six short answer
assessment exercises, which are 30 min each

MKT, USA,
other
countries

Elementary teachers,
research, and professional
improvement

Mathematical knowledge
for teaching, with six
subcategories

Primarily multiple choice, occasional short
answer with optional interviews depending
on purpose of test (validation, research, and/
or professional improvement)

COACTIV,
Germany

Secondary teachers whose
students participated in
PISA, research

Content knowledge and
three areas of pedagogical
content knowledge

Two short answer paper and pencil tests
(70 min for pedagogical content knowledge
and 50 min for content). There 2 h more
available for follow-up questions

TEDS-M,
international

Preservice teacher
education programs,
research, comparative
studies

Content knowledge,
pedagogical content
knowledge, and beliefs

60-min paper and pencil, some open-ended
questions
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come from the international Teacher Education

and Development Study (TEDS), which is

designed to describe the quality of teacher

education programs in the 16 participating

countries (http://www.iea.nl/teds-m.html). As

part of the data collected, an instrument to assess

mathematics teachers’ knowledge and beliefs

was used.

In Table 1 we present an overview of different

types of processes to assess mathematics teacher

knowledge.

Future research on this area of assessment of

teacher knowledge will be in three fronts:

calibration of the instrument for different

contexts, validation of the construct with local

definitions of instructional quality, and connec-

tions between the measures of teacher knowledge

obtained and student performance within

educational systems and as part of the interna-

tional studies of student achievement.
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Definition

The role of authority relations in mathematics

education.

Characteristics

As a topic for inquiry, authority enters into math-

ematics education by way of two main argu-

ments. The first is that because sociology,

anthropology, and politics are relevant to under-

standing mathematics education, as is discussed

elsewhere in this encyclopedia, authority must be

as well, being a central construct in all these
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attendant fields; indeed, any treatment of power,

hierarchy, and social regulation and relations

must refer to the notion of authority in some

way. The second argument, more specific to

mathematics education per se, is that, owing to

the perception of mathematics as certain and

final, the discipline itself is authoritarian, at

least in a manner of speaking. Whether or not

authority can be attributed to mathematics strictly

speaking is moot of course; however, because of

this perception of mathematics, authority, often

in matters having little to do with mathematics,

tends to be transferred to those who are consid-

ered mathematical experts. The latter links the

second argument with the first, but it also shows

how difficulties with authority can arise in class-

room situations, for the authority of the mathe-

matics teacher may trump the authority of the

discipline, however that is understood.

The Social Science Context

In the social sciences generally, the locus

classicus for the treatment of authority is surely

Max Weber’s The Theory of Social and

Economic Organization (Weber 1947). There,

Weber describes “authority” (Herrschaft) as

“. . .the probability that a command with a given

specific content will be obeyed by a given group

of persons” (p. 139). Weber’s definition stresses

that true authority involves more than power of

one person or body over another, more than mere

coercion: it involves “. . .a certain minimum of

voluntary submission” on the part of the con-

trolled and an interest in obedience on the part

of the authority (p. 247). The crucial point is that

for authority to be authority, it must be recog-

nized as legitimate by those who submit to it; it

is this that distinguishes it from mere power

(Macht) (p. 139).

Weber identifies three grounds of legitimacy

and three concomitant “ideal types” of authority:

traditional, charismatic, and legal authority.

Traditional authority is the authority of parents

or of village elders. Charismatic authority is the

authority of one endowed with superhuman

powers, a shaman for example. Legal authority

is authority within an “established impersonal

order,” a legal or bureaucratic system; the system

within the legal authority acts is considered ratio-

nal, and, accordingly, so too are the grounds of

authority and the obedience it commands. These

“ideal types” are not necessarily descriptions of

given individual authority figures. Weber’s claim

is that authority can be analyzed into these types:

the authority of any given individual is almost

always an amalgam of various types.

Expert authority, which is an essential aspect

of teachers’ authority, does not appear inWeber’s

writings, but it is clear that because the grounds of

such authority are rational and sanctioned by

official actions, for example, the bestowing of

an academic degree or a license, Weber could

reasonably categorize it as a form of “legal

authority.” Still, it is different enough and impor-

tant enough for educational purposes to distin-

guish expert authority as a distinct type with its

legitimacy founded on the possession of knowl-

edge by the authority figure (regardless of

whether the knowledge is true or truly possessed).

Students’ lives are influenced by a broad web

of authorities, but the teachers’ authority is the

most immediate of these and arguably the most

important. It has been suggested too that

teachers’ authority manifests elements not only

of expert authority, but also traditional, legal, and

even charismatic authority (Amit and Fried

2005). It is not by accident, then, that early socio-

logical studies of education, such as Willard

Waller’s classic 1932 sociological study of edu-

cation (see Amit and Fried 2005) and Durkheim’s

works on education (Durkheim 1961), underlined

the authority of teachers, nor is it surprising that

these sociological studies particularly empha-

sized the function of authority as a socializing

force and its connection, accordingly, with

moral instruction and discipline.

Because of the strength of teachers’ authority,

it can conflict with modes of teaching and learn-

ing which mathematics education has come to

value. Such a conflict arises naturally between

teachers’ authority and democratic values.

This was studied by Renuka Vithal (1999), who
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concluded that the teachers’ authority, although

opposed to democracy, could actually live

with democracy in a relationship of complemen-

tarity. She suggests that the very fact of

the teacher’s authority, if treated appropriately,

could provide an opportunity for students to

develop a critical attitude toward authority

(see also Skovsmose 1994).

To take full advantage of authority as Vithal

suggests, or in any other way, it is essential to

understand the mechanisms by which relations of

authority are established and reproduced. Indeed,

these may be embedded not only in social struc-

tures already in place when students enter

a classroom, but in subtle aspects of classroom

discourse. Herbel-Eisenmann and Wagner

(2010), for example, have looked at lexical-

bundles, small segments of spoken text, reflecting

one’s position in an authority relationship. These

lexical-bundles are as much a part of the students’

discourse as the teachers’, recalling how author-

ity relations are always a two-way street, as

Weber was at pains to stress.

Paul Ernest’s study of social semiotics (Ernest

2008) gives much support to Herbel-Eisenmann

and Wagner’s approach. Ernest shows how the

analysis of classroom-spoken texts brings out the

existence of overlapping forms of teachers’

authority, different roles in which teachers’

authority is manifest. In particular, he says, the

teacher is both one in authority, a “social regula-

tor” determining how a class is run, and also an

authority, a “knowledge expert” (p. 42) determin-

ing, for example, what tasks are set to the

students.

The Authoritarian Nature of
Mathematics

The role of teachers as expert authorities, as task

controllers, to use Ernest’s term, has verymuch to

do with mathematical content and how it is

passed on to students. We are brought, thus, to

the second argument concerning authority and

mathematics education, for the degree of the

overlap Ernest refers to is very much related

to the authoritarian nature of mathematics

itself. This is not a new phenomenon. Judith

Grabiner (2004), writing about Colin Maclaurin

(1698–1746), has argued that mathematics in the

eighteenth century attained an authority greater

even than that of religion, since mathematics was

perceived as having the power to achieve agree-

ment with a universality and finality unavailable

to religion. How far that authority was transferred

to a mathematician like Maclaurin can be judged

by the remark of a contemporary referring to

actuarial work carried out by Maclaurin, not

strictly mathematical work, that “The authority

of [Maclaurin’s] name was of great

use. . .removing any doubt” (quoted in Grabiner

2004, p. 847).

The tension between teachers’ authority and

democratic modes of teaching has already been

noted. But that had little to do with mathematics

as such. The authority of mathematics combined

with the authority subsequently transferred to

practitioners and teachers of mathematics,

however, creates a tension arising directly from

the nature of mathematical authority. This is

because what is essential about mathematical

authority is precisely its independence from

any human authority: a great mathematician

must yield even to a child who has discovered

a flaw in the mathematician’s work. But Keith

Weber and Juan Mejia-Ramos (in press)

have shown that mathematicians themselves

are influenced by human authorities or by

authoritarian institutions – all the more so with

students.

How this plays out in a specific mathematical

context can be seen in Harel and Sowder’s (1998)

category of proof schemes based on external con-

viction, which includes a subcategory called

“authoritarian proofs.” Typical behavior associ-

ated with this proof scheme is that students

“. . .expect to be told the proof rather than take

part in its construction” (Harel and Sowder 1998,

p. 247). The authority of a teacher presenting

a proof can thus take precedence over the internal

logic behind the authority of the discipline: the

whole notion of “proof” is vitiated when this

happens, since the truth of a claim becomes
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established not because of argument but because

of a teacher’s authoritative voice.

Reminiscent of Vithal’s (1999) argument

above, the challenge of mathematics teachers

must then be, paradoxically, to use their authority

to release students from teachers’ authority. Jo

Boaler (2003) suggests as much when she

remarks favorably about a teacher in her study

that she “employed an important teaching

practice—that of deflecting her authority to the

discipline [of mathematics]” (p. 8).

Since the authority of mathematics as

a discipline becomes ultimately the posses-

sion of the student as the teacher deflects

her own authority, we see that the problem

of authority in mathematics education is how

to devolve authority. The problem of author-

ity, in this way, becomes the mirror problem

of agency.

Future Avenues of Research

One of the important conclusions from Vithal’s

(1999) work as well as Amit and Fried’s (2005)

work is that authority may be more than

a necessary evil in mathematics education. But

exactly how authority can be used to create

a more democratic classroom and a more auton-

omous student needs to be investigated: what the

actual mechanisms are through which this is

achieved. This will be particularly important

for teacher education, since it is teachers who

command authority in the most explicit way.

This presupposes that researchers have ways of

tracing authority relations in the classroom. In

this regard, a second necessary avenue of

research is the identification of how authority

relations are reproduced, research of the sort

represented here by Herbel-Eisenmann and

Wagner (2010).
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Definition

Autism spectrum conditions are lifelong

neurodevelopmental conditions that are

characterized by often striking difficulties in

social communication and repetitive and rigid

patterns of behavior (American Psychiatric

Association APA 2000). Current estimates

indicate that 1 in every 100 children is on the

autism spectrum, meaning that all schools and

colleges are likely to include pupils who lie

somewhere on the autism spectrum.

Characteristics

Although autism is now considered a highly

heritable disorder of neural development

(Levy et al. 2009), specific genes, and the ways

that these genes interact with the environment,

are not yet fully understood (Frith 2003). The

diagnosis of autism therefore relies on

a constellation of behavioral symptoms, which can

vary substantially from individual to individual.

This variability includes marked differences in

the degree of language skills: some individuals do

not use oral language to communicate, while others

use grammatically correct speech, but the way that

they use languagewithin social contexts can be odd

and often one sided. Also, a substantial minority,

roughly a third, meet the criterion for intellectual

disability (Levy et al. 2009). Furthermore, there is

wide variation in developmental outcomes: while

some individuals with autism will go on to live

independently and gain qualifications, many indi-

viduals are unable to live on their own or enjoy

friendships and social contacts (Howlin et al. 2004).

The unusual abilities of some people with ASD

show, such as Dustin Hoffman portrayed in the

film Rain Man, have captured public attention.

The most common ASD ability is calendar calcu-

lation, the ability to name weekdays corresponding

to dates in the past or present. Some mathemati-

cians have delighted in calendar calculation (e.g.,

Berlekamp et al. 1982), but autistic calendar cal-

culation does not reflect any substantial mathemat-

ical abilities. Instead, autistic calendar calculators

seem to solve date calculation problems by using

a combination of memory for day-date combina-

tions, addition and subtraction, and knowledge of

calendrical patterns, such as the 28-year rule, i.e.,

2 years 28 years apart are the same unless the

interval contains a non-leap century year such as

2100 (Cowan and Frith 2009). The degree of skill

they exhibit may result from practice. Several autis-

tic calendar calculators do not appear to know how

to multiply or divide. Most children with autism do

not show any exceptional numerical ability.

There are remarkably few studies of the

mathematical progress of children with ASD

and most have relied on standardized tests that

use arithmetic word problems to assess mathe-

matical skill. The results should be interpreted

cautiously as standardized tests can be extremely

limited in the skills they assess (Ridgway 1987)

and difficulties with arithmetic word problems

may reflect autistic children’s problems in verbal

comprehension rather than difficulties in their

computational skill. Nevertheless a recent review

concludes that most children with autism show

arithmetical skills slightly below those expected

from their general ability with some doing

markedly worse in arithmetic and others doing

markedly better (Chiang and Lin 2007). The

reasons for this variation have not been examined

and individual differences in mathematical

learning by children with ASD are as little under-

stood as the reasons for individual differences in

typically developing children.

Some of the core features of autism – including

rigid and repetitive ways of thinking and behaving

and heightened responses to environmental

features (such as the sound of the school bell) –

can make learning difficult for many children.

Guidance on teaching children with autism

therefore emphasizes the need for educators both

to help the individual child/young person to

develop skills and strategies to understand situa-

tions and communicate needs and to adapt the

environment to enable the child to function and

learn within it (Jordan and Powell 1995; Jones

2006; Freedman 2010; Charman et al. 2011; see

also websites run by the National Autistic Society

and the Autism Society of America). As we have
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stressed, children with autism differ enormously.

For this reason, mathematical educators must be

adept at understanding each student’s individual

needs and use innovative methods of modifying

the curriculum, exploiting autistic students’

strengths and interests, to make mathematics

accessible and rewarding for such students.
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Definition

Bilingual and multilingual issues in learning

mathematics refer to questions regarding

bilingual and multilingual learners as they

learn mathematics. Research in mathematics

education focusing on bilingual and multilin-

gual issues in learning mathematics is primar-

ily concerned with the study of bilingual and

multilingual mathematics learners. Below is

an overview of some key issues, ideas, and

findings that focus on research on learners

rather than on teaching practices, although

the two are clearly connected.

Characteristics

Theoretical Perspectives

The study of bilingual and multilingual mathe-

matics learners requires theoretical notions

that simultaneously address not only the cogni-

tive and domain-specific aspects of learning

mathematics but also the linguistic and cross-

cultural nature of this work. Therefore, research

addressing these issues draws on work from out-

side mathematics education. For example, educa-

tional anthropology and cultural psychology

have been used to ground cross-cultural aspects

of this work. Similarly, linguistics, especially

approaches to bilingualism and multilingualism,

has been used to ground linguistic aspects of

this work. In particular, psycholinguistics and

sociolinguistics are two theoretical perspectives

frequently used in the study of bilingual and

multilingual issues in learning mathematics.

Bilingualism

“Bilingualism” (Peña and Bedore 2010) is an

example of a concept that has different meanings

depending on the theoretical perspective used.

Definitions of bilingualism range from native-

like fluency in two languages to alternating

use of two languages, to participation in

a bilingual community. A researcher working

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
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from a psycholinguistic perspective would define

a bilingual person as an individual who is in

some way proficient in more than one language.

This definition would include someone who has

learned a second language in school with some

level of proficiency but does not participate in

a bilingual community. In contrast, a researcher

working from a sociolinguistic perspective would

define a bilingual person as someone who partic-

ipates in multiple language communities and is

“the product of a specific linguistic community

that uses one of its languages for certain functions

and the other for other functions or situations”

(Valdés-Fallis 1978, p. 4). The second definition

frames bilingualism not as an individual but as

a social and cultural phenomenon that involves

participation in the language practices of one or

more communities. Some researchers propose

using “monolingual” and “bilingual” not as labels

for individuals but as labels for modes of com-

municating (Grosjean 1999).

A common misunderstanding of bilingualism

is the assumption that bilinguals are equally

fluent in their two languages. If they are not,

then they have been described as not truly

bilingual or labeled as “semilingual” or “limited

bilingual.” In contrast, current scholars of

bilingualism see “native-like control of two or

more languages” as an unrealistic definition.

Researchers have recently strongly criticized

the concept of semilingualism (Cummins 2000)

and propose we leave that notion behind.

Research Findings

There are several research findings relevant to

bilingual and multilingual issues in learning

mathematics. Overall, there is strong evidence

suggesting that bilingualism does not impact math-

ematical reasoning or problem solving. There are

also relevant findings regarding two common prac-

tices among bilingual and multilingual mathemat-

ics learners, switching languages during arithmetic

computation and code-switching.

Older bilingual students may carry out arith-

metic computations in a preferred language, usu-

ally the language in which they learned

arithmetic. There is evidence that adult bilinguals

sometimes switch languages when carrying out

arithmetic computations and that adult bilinguals

may have a preferred language for carrying out

arithmetic computation, usually the language of

arithmetic instruction. Language switching can

be swift, highly automatic, and facilitate rather

than inhibit solving word problems in the

language of instruction, provided the student’s

proficiency in the language of instruction is

sufficient for understanding the text of a word

problem. These findings suggest that classroom

instruction should allow bilingual and multilin-

gual students to choose the language they prefer

for arithmetic computation and support all stu-

dents in learning to read and understand the text

of word problems in the language of instruction

(Moschkovich 2007).

Another common practice among bilinguals

is switching languages during a sentence or

conversation, a phenomenon linguists call

“code-switching” (Mercado 2010). Bilingual and

multilingual mathematics students may use two

languages during classroom conversations. In

mathematics classrooms, children will use one or

another language. Which language children use

principally depends on the language ability and

choice of the person addressing them. After the

age of five, young bilinguals (beyond age 5) tend

to “speak as they are spoken to”. If Spanish–

English bilinguals are addressed in English, they

reply in English; if they are addressed in Spanish,

they reply in Spanish; and if they are addressing

a bilingual speaker, they may code-switch.

Another common misunderstanding is that

code-switching is somehow a sign of deficiency.

However, empirical research in sociolinguistics

has shown that code-switching is a complex

language practice and not evidence of deficiencies.

In general, code-switching is not primarily

a reflection of language proficiency, discourse pro-

ficiency, or the ability to recall (Valdés-Fallis

1978). Bilinguals use the two codes differently

depending on the interlocutor, domain, topic,

role, and function. Choosing and mixing two

codes also involves a speaker’s cultural identities.

Research does not support a view of code-

switching as a deficit itself or as a sign of any
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deficiency in mathematical reasoning. Researchers

in linguistics agree that code-switching is not

random or a reflection of language deficiency –

forgetting a word or not knowing a concept. There-

fore, we cannot use someone’s code-switching to

reach conclusions about their language profi-

ciency, ability to recall a word, knowledge of

a particular mathematics word or concept, mathe-

matical reasoning, or mathematical proficiency.

It is crucial to avoid superficial conclusions

regarding code-switching and mathematical cog-

nition. For example, we should not conclude that

bilingual and multilingual students switch into

their first language because they do not remember

a word, are missing vocabulary, or do not under-

stand amathematical concept. Rather than viewing

code-switching as a deficiency, instruction for

bilingual mathematics learners should consider

how this practice serves as a resource for commu-

nicating mathematically. Bilingual speakers have

been documented using their two languages and

code-switching as a resource for mathematical

discussions, for example, first giving an explana-

tion in one language and then switching to the

second language to repeat the explanation

(Moschkovich 2002).

History

Research on bilingual mathematics learners dates

back to the 1970s. Early research focused on

the disadvantages that bilinguals face, focusing,

for example, on comparing response times

between monolinguals and bilinguals (for exam-

ples and a review see Moschkovich 2007) or the

obstacles the mathematics register in English

presents for English learners (for some examples

see Cocking and Mestre 1988). Studies focused

on the disadvantages bilingual learners faced

did not consider any possible advantages

of bilingualism, for example the documented

“enhanced ability to selectively attend to infor-

mation and inhibit misleading cues” (Bialystok

2001, p. 245). Studies that focused on the differ-

ences between bilinguals and monolinguals may

also have missed or de-emphasized any similari-

ties, for example, that both groups may have

similar responses to syntactic aspects of algebra

word problems.

Some early research used vague notions of

language and narrow conceptions of mathematics

as arithmetic or word problems and focused on

two scenarios, carrying out arithmetic computa-

tion and solving word problems (Moschkovich

2002, 2010). Later studies developed a broader

view of mathematical activity, examining not

only responses to arithmetic computation but also

reasoning and problem solving, detailed protocols

of students solving word problems, the strategies

children used to solve arithmetic word problems,

and student conceptions of two digit quantities.

(The volume “Linguistic and cultural influences

on learning mathematics” edited by Cocking and

Mestre includes both types of research studies.)

More recent research uses broader notions of

mathematics and language, in particular by

using sociocultural, sociolinguistic, and ethno-

mathematical perspectives. A central concern

has been to shift away from deficit models of

bilingual and multilingual students to theoretical

frameworks and practices that value the resources

these students bring to the mathematics class-

room from their previous experiences and

their homes. More recently, researchers have

studied language, bilingualism, and mathematics

learning in many different settings (for examples

see Adler 1998; Barton et al. 1998; Barwell et al.

2007, 2009; Barwell 2003b and 2009; Clarkson

and Galbraith 1992; Dawe 1983; Kazima 2007;

Roberts 1998; Setati 1998).

This work can provide important resources for

addressing issues for bilingual and multilingual

students in other settings, as long as differences

among settings are considered. One difference is

how languages are used in the classroom. Barwell

(2003a) provides some useful distinctions among

different language settings, using the terms

monopolist, pluralist, and globalist. In monopolist

classrooms, all teaching and learning take place in

one dominant language; in pluralist classrooms,

several languages used in the local community

are also used for teaching and learning; in globalist

classrooms, teaching and learning are conducted

in an internationally used language that is not used

in the surrounding community.
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Another difference to consider across settings

is the nature of the mathematics register in stu-

dents’ first language. For example, the mathemat-

ics register in Spanish is used to express many

types of mathematical ideas from everyday to

advanced academic mathematics. This may not

be the case for the home languages of students in

other settings. Barwell (2008) makes two crucial

observations: (1) “all languages are equally capa-

ble of developing mathematics registers, although

there is variation in the extent to which this has

happened” and (2) “the mathematics registers of

different languages. . . stress different mathemati-

cal meanings.” These differences in mathematics

registers, however, should not be construed as

a reflection of differences in learner’s abilities to

reason mathematically or to express mathematical

ideas. Furthermore, we should not assume that

there is a hierarchical relationship among lan-

guages with different ways to express academic

mathematical ideas, for example using one word

versus using (or inventing) multiple word phrases.

Issues in Designing Research

One challenge researchers face when designing

research with bilingual and multilingual learners

is that these labels are used in ambiguous ways

and with multiple meanings. Research studies

need to specify how the labels bilingual or mul-

tilingual are used, when applied to learners or

classrooms. These labels do not describe exactly

what happens in the classroom in terms of how

teachers and students use languages. Studies

should document students’ language profi-

ciencies in both oral and written modes and

also describe students’ histories, practices, and

experiences with each language across a range

of settings and mathematical tasks.

“Language proficiency” is a complex con-

struct that can reflect proficiency in multiple

contexts, modes, and academic disciplines.

Current measures of language proficiency may

not give an accurate picture of an individual’s

language competence. We do not have measures

or assessments for language proficiency related to

competence in mathematics for different ages or

mathematical topics. There are serious chal-

lenges that research still needs to address, given

the complexity of defining a construct such as

language “proficiency”: (a) the lack of instru-

ments sensitive to both oral and written modes

for mathematical communication and (b) the

scarcity of instruments that address features of

the mathematics register for specific mathemati-

cal topics. Studies should not assess language

proficiency in general but rather specifically for

communicating in writing and orally about

a particular mathematical topic. Students have

different opportunities to talk and write about

mathematics in each language, in informal

or instructional settings, and about different

mathematical topics. Assessments of language

proficiency, then, should consider not only

proficiency in each language but also proficiency

for using each language to talk or write about

a particular mathematical topic.

Future Issues and Questions

Research on bilingual and multilingual issues in

mathematics learning is still in a developing

stage. A central issue is grounding research in

mathematics education on theoretical perspec-

tives and findings from relevant fields such as

linguistics and anthropology. Future work should

avoid reinventing wheels or, worse, reifying

myths or misunderstandings about bilingualism/

multilingualism. This is best accomplished

through repeated and extended interactions

between scholars who study mathematics learn-

ing and scholars who study bilingual and multi-

lingual learners. Future studies should avoid

deficit-oriented models of bilingual and multilin-

gual learners and consider any advantages that

bilingualism might provide for learning

mathematics.

Cross-References

▶Cultural Diversity in Mathematics Education

▶Discourse Analytic Approaches in

Mathematics Education

B 60 Bilingual/Multilingual Issues in Learning Mathematics

http://dx.doi.org/10.1007/978-94-007-4978-8_37
http://dx.doi.org/10.1007/978-94-007-4978-8_50
http://dx.doi.org/10.1007/978-94-007-4978-8_50


▶ Immigrant Students in Mathematics Education

▶Language Background in Mathematics

Education

▶Language Disorders, Special Needs and

Mathematics Learning

▶Mathematical Language

▶Mathematical Representations

▶ Semiotics in Mathematics Education

References

Adler J (1998) A language of teaching dilemmas:
unlocking the complex multilingual secondary mathe-
matics classroom. Learn Math 18(1):24–33

Barton B, Fairhall U, Trinick T (1998) Tikanga reo tatai:
issues in the development of a maori mathematics
register. Learn Math 18(1):3–9

Barwell R (2003a) Linguistic discrimination: an issue
for research in mathematics education. Learn Math
23(2):37–43

Barwell R (2003b) Patterns of attention in the interaction of
a primary schoolmathematics studentwith English as an
additional language. Educ Stud Math 53(1):35–59

Barwell R (2008) Discourse, mathematics and mathemat-
ics education. In: Martin-Jones M, de Mejia A-M,
Hornberger N (eds) Encyclopedia of language and
education, (2nd edn., Vol. 3). Discourse and Educa-
tion. Springer, New York, pp 317–328

Barwell R (ed) (2009) Multilingualism in mathematics
classrooms: global perspectives. Multilingual Matters,
Bristol

Barwell R, Barton B, Setati M (2007) Multilingual issues
in mathematics education: introduction. Educ Stud
Math 64(2):113–119

Bialystok E (2001) Bilingualism in development: lan-
guage, literacy and cognition. Cambridge University
Press, Cambridge, UK

Clarkson PC, Galbraith P (1992) Bilingualism and math-
ematics learning: another perspective. J Res Math
Educ 23(1):34–44

Cocking R, Mestre J (eds) (1988) Linguistic and cultural
influences on learning mathematics. Lawrence
Erlbaum, Hillsdale, pp 221–240

Cummins J (2000) Language, power, and pedagogy.
Multilingual Matters, Buffalo

Dawe L (1983) Bilingualism and mathematical reasoning
in English as a second language. Educ Stud Math
14(4):325–353

Grosjean F (1999) Individual bilingualism. In: Spolsky B
(ed) Concise encyclopedia of educational linguistics.
Elsevier, London, pp 284–290

Kazima M (2007) Malawian students’ meanings for prob-
ability vocabulary. Educ Stud in Math 64(2):169–189

Mercado J (2010) Code switching. In: Encyclopedia of
cross-cultural school psychology. Springer US, Berlin,
pp 225–226

Moschkovich J (2002) A situated and sociocultural
perspective on bilingual mathematics learners. Math
Think Learn 4(2–3):189–212

Moschkovich JN (2007) Using two languages while
learning mathematics. Educ Stud Math 64(2):121–144

Moschkovich JN (2010) Language and mathematics
education: multiple perspectives and directions for
research. Information Age Publishing, Charlotte

Peña E, Bedore L (2010) Bilingualism. In: Clauss-Ehlers
C (ed) Encyclopedia of cross-cultural school psychol-
ogy, vol 2. Springer Verlag, Berlin

Roberts T (1998) Mathematical registers in aboriginal
languages. Learn Math 18(1):10–16

Setati M (1998) Code-switching and mathematical mean-
ing in a senior primary class of second language
learners. Learn Math 18(1):34–40

Valdés-Fallis G (1978) Code switching and the classroom
teacher. In: Language in education: theory and practice,
vol 4. Center for Applied Linguistics, Wellington

Blind Students, Special Needs, and
Mathematics Learning

Lulu Healy and Solange Hassan Ahmad

Ali Fernandes

Programa de Pós Graduação em Educação
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Characteristics

Blindness, in itself, does not seem to be an

impediment to learning mathematics. Indeed, his-

tory shows that there have been a number of very

successful blind mathematicians, perhaps the most

well known being Euler (1707–1783), who became

blind in the latter part of his life, and Saunderson

(1682–1739) who lost his sight during his first year.

Jackson (2002), in his consideration of the work of

these and more contemporary blind mathemati-

cians, suggests that the lack of access to the visual

field does not diminish a person’s ability to
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visualize – but modifies it, since spatial imagination

amongst those who do not see with their eyes relies

on tactile and auditory activity. This would suggest

that to understand the learning processes of blind

mathematics learners, it is important to investigate

how the particular ways in which they access and

process information shapes their mathematical

knowledge and the learning trajectories through

which it is attained.

Vygotsky’s work with disabled learners, in gen-

eral, and those with visual impairments, in partic-

ular, during the 1920s and 1930s represented an

early attempt to do just this. Rather than associating

disability with deficit and focusing on quantitative

differences in achievements between those with

and without certain abilities, he proposed that

a qualitative perspective should be adopted to

research how access to different mediating

resources impacts upon development (1997). The

key to understanding and supporting the practices

of blind learners, he argued, lies in investigating

how the substitution of the eyes by other tools both

permits and shapes their participation in social and

cultural activities, such as mathematics learning.

For the study of mathematical topics that

involve working with spatial representations and

information, the hands represent the most obvi-

ous substitute for the eyes, and hence it is not

surprising that research involving blind geometry

learners has focused on how explorations of

tactile representation of geometrical objects con-

tribute to the particular conceptions that emerge.

While vision is synthetic and global, with touch

the whole emerges from relationships between its

parts, a difference which Healy and Fernandes

(2011) suggest might explain the tendency

amongst blind learners to describe geometrical

properties and relations using dynamic rather

than static means, which simultaneously corre-

spond to and generalize their physical actions

upon the objects in question.

Hands also play an important role in blind

students’ access to written materials, with Braille

codes substituting text in documents for blind

readers. There are, however, a number of partic-

ular challenges associated with learning and

doing mathematics using Braille. First, there is

no one universally accepted Braille code for

mathematics, with different notations used in

different countries. The coding systems are com-

plex and can take considerable time to master

(Marcone and Penteado 2013). An additional

complication is that Braille is a strictly linear

notation, whereas conventional mathematical

notations make use of visual features – fractions

provide a case in point. The linear versions of

conventional notations require additional sym-

bols, making expressions in Braille lengthy;

compounded by the fact that Braille readers can

only perceive what is under their fingers at

a particular moment in time, it can be very

difficult for them to obtain a general view of

algebraic expressions. Digital technologies are

facilitating conversions between Braille and text

and offering the blind learner spoken versions of

written mathematics, but research is needed to

investigate how such alternative notation forms

might impact differently on mathematical under-

standings and practices.

Use of spoken rather than written materials

suggests that the ears can also be used as

substitutes for the eyes. But auditory learning

materials need not be limited to speech. Leuders

(2012) argues that auditory perception represents

an important modality for processing mathemat-

ical structures that has been under-explored.

Here, too, digital technologies are bringing new

forms of representing and exploring mathemati-

cal objects; one example is a musical calculator

which enables students to hear as well as see

structures of rational and irrational numbers

(Fernandes et al. 2011).

In short, although the practice of blind

mathematics learners is a topic that has been

relatively under-researched in the field of

mathematics education, the evidence that does

exist suggests that in the absence of the visual

field, information received through other sen-

sory and perceptual apparatuses provides alter-

native forms of experiencing mathematics.

Deepening our understandings of how those

who do not see with their eyes learn and do

mathematics may hence contribute to furthering

our understanding of the relationships between

perception and mathematical cognition more

generally.
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Definition

An approach to classifying reasoning goals with

respect to mathematics education.

Overview

Bloom’s Taxonomy is arguably one of the most

recognized educational references published in

the twentieth century. As noted in a 40-year

retrospective by Benjamin Bloom (1994),

“it has been used by curriculum planners, admin-

istrators, researchers, and classroom teachers at

all levels of education” (p. 1), and it has been

referenced in academic publications representing

virtually every academic discipline. Given the

prevalence of testing in mathematics and the

regular use of mathematics as a context for study-

ing student reasoning and problem solving,

Bloom’s Taxonomy has been applied and

adapted by mathematics educators since its

publication.

Historical Development

Originally designed as a resource to support the

development of examinations, Bloom et al.

(1956) wrote their taxonomy to insure greater

accuracy of communication among educators in

a manner similar to the taxonomies used in

biology to organize species of flora and fauna.

The ubiquitous reference to Bloom’s Taxonomy

is a triangle with six levels of named educational

objectives for the cognitive domain: knowledge,

comprehension, application, analysis, synthesis,

and evaluation (Fig. 1; Office of Community

Engagement and Service 2012).

Because of this reductivist use ofHandbook 1:

Cognitive Domain in which the taxonomy

appeared (Bloom et al. 1956), few will recall

that the knowledge category included multiple

“knowledge of” subcategories such as knowl-

edge of conventions, knowledge of trends and

sequences, and knowledge of methodology. The

writing team recognized that even knowledge

ranges in complexity and is quite nuanced and

detailed in ways that belie its perfunctory

contemporary placement on the base of the
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triangle. It is also worth noting that theHandbook

includes many examples of “illustrative test

items,” suggesting both its intended use as

a resource for evaluation and the importance of

using content-specific examples to communicate

objectives for student learning. Few of these

illustrative test items, however, were in the

domain of mathematics.

The authors of Bloom’s Taxonomy

acknowledged that it was imperfect and subject

to adaptation and critique. Since these criticisms

are relevant to the use and misuse of the

Taxonomy in mathematics education, they are

presented here to frame the section that follows.

Postlethwaite (1994) summarized the major

criticisms as:

1. The distinctions between any two levels of the

Taxonomy may be blurred.

2. The Taxonomy is not hierarchical; rather it is

just a set of categories.

3. The lockstep sequence underlying the

Taxonomy based on one dimension (e.g.,

complexity or difficulty) is naı̈ve (p. 175).

A revision of the Taxonomy, which took into

account recent advances in educational psychol-

ogy and potential applications in curriculum and

instruction, was published by Anderson et al.

(2001); however, since the influence of the

revised Taxonomy is difficult to determine,

it is not discussed here in reference to

mathematics education.

Influence on Mathematics Education

Much of the influence of the Taxonomy on math-

ematics education has been on evaluation and

more specifically in the design and interpretation

achievement tests (e.g., Webb 1996). Since these

aspects of school mathematics often influence the

curricular goals, there has also been some

indirect influence on curriculum development

and classroom assessment in mathematics

(Sosniak 1994).

Many assessment frameworks for mathematics

have utilized theTaxonomy for guidance regarding

the distribution of items on achievement tests.

In Korea in the late 1950s, “teacher-made

Using old concepts to create new ideas;
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Assessing theories; Comparison of ideas;
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achievement tests and . . . entrance examinations,”

including those in mathematics, were analyzed for

the distribution of test items across the six catego-

ries of Taxonomy (Chung 1994, p. 165). Since its

inception in 1958, the International Association for

the Evaluation of Educational Achievement has

used the Taxonomy to support curriculum analysis,

test construction, and data analysis, which precipi-

tated its widespread use internationally (Lewy and

Báthory 1994, p. 147). A familiar international

achievement test to most mathematics educators is

the Trends in Mathematics and Science Study

(TIMSS). The TIMSS framework for mathematics

(Mullis et al. 2003) includes four cognitive domains

along with several subcategories (Table 1):

When taking into account both the TIMSS

domains and subcategories, several similarities

are found with respect to Bloom’s Taxonomy:

(a) the hierarchical representation of knowledge

to more complex forms of mathematical reason-

ing, (b) a large base of knowledge-related

subcategories in the first two TIMSS domains,

(c) application in the Taxonomy is synonymous

with the TIMSS domain solving routine

problems, and (d) the Taxonomy domains of

analysis, synthesis, and evaluation are all named

in the reasoning domain. Even though Bloom’s

Taxonomy is not explicitly named in the

narrative for the TIMSS framework, it is evident

that the Taxonomy influenced the organization

and subcategories of the TIMSS framework.

This serves as one example, although there are

many, of the ways in which the Taxonomy has

permeated the way evaluation in mathematics

education is conceived and communicated.

With respect to Postlethwaite’s summary of

major criticisms, the TIMSS framework does

caution the reader in incorrectly perceiving

these four domains as hierarchical or organized

as a lockstep sequence. Mullis et al. (2003) state,

“cognitive complexity should not be confused

with item difficulty. For nearly all of the cogni-

tive skills listed, it is possible to create relatively

easy items as well as very challenging items”

(p. 25). Likewise, to counter the perception that

reasoning goals are hierarchical, theMathematics

Framework for the Program for International

Student Assessment (OECD 2003) organized the

reasoning goals of reproduction, connections,

and analysis as a horizontal set of mathematical

competencies. Yet, in spite of the various ways in

which cognitive domains or competencies are

represented, results from studies of teachers’

classroom assessment practices suggest that

the general perception of mathematics teachers

is that knowledge of skills and procedures is

a prerequisite for student engagement in any of

the other cognitive domains (Dekker and Feijs

2005; Webb 2012).

One of the more outspoken critics of Bloom’s

Taxonomy was the Dutch mathematician Hans

Freudenthal, who was noteworthy for his

contributions to both mathematics andmathemat-

ics education. By the mid-1970s, Freudenthal had

argued that the simplification of reasoning into

the taxonomic categories had a detrimental effect

on test development. As summarized by Marja

Bloom’s Taxonomy in Mathematics Education,

Table 1 TIMSS 2003 mathematics framework (cogni-
tive domains)

TIMSS math cognitive
domains Subcategories

Knowing facts and
procedures

Recall

Recognize/identify

Compute

Use tools

Using concepts Know

Classify

Represent

Formulate

Distinguish

Solving routine problems Select

Model

Interpret

Apply

Verify/check

Reasoning Hypothesize/conjecture/
predict

Analyze

Evaluate

Generalize

Connect

Synthesize/integrate

Solve nonroutine problems

Justify/prove

Bloom’s Taxonomy in Mathematics Education 65 B

B



van den Heuvel-Panhuizen (1996), “In a nutshell,

Bloom sees the capacity to solve a given problem

as being indicative of a certain level, while,

in Freudenthal’s eyes, it is the way in which

the student works on a problem that determines

the level. The latter illustrates this viewpoint

using the following example:

A child that figures out 8 + 7 by counting 7 further

from 8 on the abacus, acts as it were on a senso-

motoric level. The discovery that 8 + 7 is

simplified by 8 + (2 + 5)¼ (8 + 2) + 5 witnesses

a high comprehension level. Once this is

grasped, it becomes mere knowledge of the

method; as soon as the child has memorized

8 + 7 ¼ 15, it is knowledge of facts. At the

same moment figuring out 38 + 47 may still

require comprehension; later on, knowledge of

method can suffice; for the skilled calculator it

is mere knowledge of facts” (Freudenthal 1978,

p. 91, as cited in van den Heuvel-Panhuizen

1996, p. 21).

At issue in Freudenthal’s remarks are not the

categories themselves, but the way in which

a taxonomy implies levels, orders of sophistica-

tion, and artificially imposed limits on educators’

perceptions of children’s mathematical reasoning

(also see Kreitzer and Madaus 1994).

Contemporary Classroom Applications

A primary motivation in publishing and dissem-

inating Bloom’s Taxonomy was the need to

advance the design of achievement measures to

assess more than recall of skills, facts, and

procedures. A similar argument could be made

for investigating different examples of mathe-

matical reasoning with teachers. In one 3-year

study conducted by Webb (2012) with middle-

school mathematics teachers, analyses of over

10,000 assessment tasks used by 19 teachers

revealed that greater than 85 % of the tasks

assessed knowledge of skills and procedures.

To motivate teachers to use tasks assessing

a broader range of mathematical reasoning

goals, teachers categorized the assessment tasks

they used using the Dutch assessment pyramid

(Fig. 2; Shafer and Foster 1997; adapted from

Verhage and de Lange 1997).

Even though the pyramid hints at the triangular

representation of Bloom’s Taxonomy in Fig. 1, the

additional dimension of Questions Posed (i.e.,

from easy to difficult) illustrates that questions

that elicit student reasoning at different levels are

not necessarily more difficult. This was the identi-

cal argument made in the TIMSS framework. This

work has since been extended into the design of
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professional development activities that support

teacher change in classroom assessment (Her and

Webb 2005; Webb 2009). As Black and Wiliam

(1998) and Hattie and Timperley (2007) meta-

analyses have given greater attention, respectively,

to formative assessment and instructional

feedback, there will be a continued need among

mathematics educators to communicate goals for

student learning. Over 50 years ago, Bloom’s

Taxonomy offered a compelling and influential

example to address this need.
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▶Critical Thinking in Mathematics Education

▶Deductive Reasoning in Mathematics
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▶Mathematical Proof, Argumentation, and
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Definition: What Teaching and Learning
Calculus Is About?

The differential and integral calculus is

considered as one of the greatest inventions in

mathematics. Calculus is taught at secondary

school and at university. Learning calculus

includes the analysis of problems of changes

and motion. Previous related concepts like the

concept of a variable and the concept of function

are necessary for the understanding of calculus

concepts. However, the learning of calculus

includes new notions like the notion of limit and

limiting processes, which intrinsically contain

changing quantities. The differential and integral

calculus is based upon the fundamental concept

of limit. The mathematical concept of limit is

a particularly difficult notion, typical of the kind

of thought required in advanced mathematics.

Characteristics

Calculus Curriculum

There have been efforts in many parts of the world

to reform the teaching of calculus. In France, the

syllabus changed in the 1960s and 1970s due to the

influence of the Bourbaki group. The limit concept

with its rigorous basis has penetrated even into the

school curriculum: in 1972, the classical definition

of the derivative in terms of the limit of a quotient

of differences was introduced. Another change

occurred in the French calculus curriculum in

1982, this time influenced by the findings of math-

ematics education research, and the curriculum

focused on more intuitive approaches. As

a result, the formalization of the limit has been

omitted at secondary school. This is the situation

in most countries today: at high school level, there

is an effort to develop a first approach to calculus

concepts without relying on formal definitions and

proofs. An intuitive and pragmatic approach to

calculus at the high senior level at school

(age 16–18) precedes the formal approach intro-

duced at university.

At university level, calculus is among the more

challenging topics faced by new undergraduates.

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
# Springer Science+Business Media Dordrecht 2014



In the United States, the calculus reform move-

ment took place during the late 1980s. The recom-

mendation was that calculus courses should

address fewer topics in more depth, and students

should learn through active engagement with

the material. The standard course syllabus

was revised, and new projects arose which

incorporated technology into instruction.

In most countries, the transition towards more

formal approach that takes place at university is

accompanied with conceptual difficulties.

Early Research in Learning Calculus: The

Cognitive Difficulties

The cognitive difficulties that accompany the

learning of central notions like functions, limit,

tangent, derivative, and integral at the different

stages of mathematics education are well

reported in the research literature on calculus

learning. These concepts are key concepts that

appear and reappear in different contexts in

calculus. The students meet some of these central

topics at school, then the same topics appear

again, with a different degree of depth at univer-

sity. We might attribute the high school students’

cognitive difficulties to the fact that the notions

were presented to them in an informal way. In

other words, we might expect that the difficulties

will disappear when the students will learn the

formal definition of the concepts. Undergraduate

mathematics education research suggests other-

wise. The cognitive difficulties that accompany

the key concepts in calculus are well described in

Sierpinska (1985); Davis and Vinner (1986);

Cornu (1991); Williams (1991); Tall (1992), as

well as in the book Advanced mathematical think-

ing edited by Tall (1991). The main source of

difficulty resides in the fact that many students’

intuitive ideas are in conflict with the formal

definition of the calculus concepts like the notion

of limit.

In these early researches on learning

calculus, the theoretical dimensions are essen-

tially cognitive and epistemological. The cogni-

tive difficulties that accompany the learning of

the key concepts in calculus like the limit concept

are inherent to the epistemological nature of

the mathematics domain. In the following we

consider some facets of the dynamic interaction

between formal and intuitive representations as

they were discussed in these early studies. We

encounter the first expression of the dynamic

interaction between intuition and formal reason-

ing in the terms concept definition and concept

image. For example, the intuitive thinking,

the visual intuitions, and verbal descriptions of

the limit concept that precede its definition are

necessary for understanding the concept. How-

ever, research on learning calculus demonstrates

that there exists a gap between the mathematical

definition of the limit concept and the way one

perceives it. In this case, we may say that there is

a gap between the concept definition and the

concept image (Tall and Vinner 1981; Vinner

1983). Vinner also found that students’ intuitive

ideas of the tangent to a curve are in conflict

with the formal definition. This observation

might explain students’ conceptual difficulties

to visualize a tangent as the limiting case

of a secant.

Conceptual problems in learning calculus are

also related to infinite processes. Research dem-

onstrates that some of the cognitive difficulties

that accompany the understanding of the concept

of limit might be a consequence of the learners’

intuition of infinity. Fischbein et al. (1979)

observed that the natural concept of infinity is

the concept of potential infinity, for example,

the non-limited possibility to increase an interval

or to divide it. The actual infinity, for example,

the infinity of the number of points in a segment,

the infinity of real numbers as existing, as given

is, according to Fischbein, more difficult to grasp

and leads to contradictions. For example, “If

one has 1/3 it is easy to accept the equality

1/3 ¼ 0.33. . . The number 0.333. . .represents

a potential (or dynamic) infinity. On the other

hand, students questioned whether 0.333. . . is

equal to 1/3 or tends to 1/3 answer usually that

0.333. . .tends to 1/3.”

Among the theoretical constructs that accom-

pany the early strands in research on learning

calculus, we mention the process-object duality.

The lenses offered by this framework highlight

students’ dynamic process view in relation to

concepts such as limit and infinite sums and
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help researchers to understand the cognitive

difficulties that accompany the learning of the

limit concept. Gray and Tall (1994) introduced

the notion of procept, referring to the manner in

which learners cope with symbols representing

both mathematical processes and mathematical

concepts. Function, derivative, integral, and the

fundamental limit notion are all examples of

procepts. The limit concept is a procept: the

same notation represents both the process of

tending to the limit and also the value of the limit.

Research and Alternative Approaches to

Teaching and Learning Calculus

Different directions of research were investigated

in the last decades. The use of technology offered

a new mean in the effort to overcome some of the

conceptual difficulties: the power of technology

is particularly important to facilitate students’

work with epistemological double strands like

discrete/continuous and finite/infinite. Visualiza-

tion and especially dynamic graphics were also

used. Some researchers based their research on

the historical development of the calculus. Other

researchers used additional theoretical lenses

that include the sociocultural approach, the

institutional approach, or the semiotic approach.

In the following we relate to these different

directions of research.

The Role of Technology

A key aspect of nearly all the reform projects has

been the use of graphics calculators, or computers

with graphical software, to help students develop

a better intuitive understanding. Since learning

calculus includes the analysis of changing

quantities, technology has a crucial role in

enabling dynamic graphical representations and

animations. Technology was first incorporated as

support for visualization and coordination

between semiotic registers. The possibility of

computer magnification of graphs allows the

limiting process to be implicit in the computer

magnification, rather than explicit in the limit

concept. In his plenary paper, Dreyfus (1991)

analyzed the powerful role for visual reasoning

in learning several mathematical concepts and

processes. With the new technologies there was

a rapid succession of new ideas for use in

calculus and its teaching. Calculus uses numeri-

cal calculations, symbolic manipulations, and

graphical representations, and the introduction

of technology in calculus allows these different

registers. Researches on the role of technology in

teaching and learning calculus are described, for

example, in Artigue (2006); Robert and Speer

(2001), and in Ferrera et al. in the 2006 handbook

of research on the psychology of mathematics

education (pp. 256–266). In the study by Ferrera

et al., some researches that relate to using a CAS

towards the conceptualization of limit are

described. For example, Kidron and Zehavi use

symbolic computation and dynamic graphics to

enhance students’ ability for passing from visual

interpretation of the limit concept to formal

reasoning. In this research a sort of balance

between the conception of an infinite sum as

a process and as an object was supported by the

software. The research by Kidron as reported in

the study by Ferrera et al. (2006) describes some

situations in which the combination of dynamic

graphics, algorithms, and historical perspective

enabled students to improve their understanding

of concepts such as limit, convergence, and the

quality of approximation. Most researches offer

an analysis of teaching experiments that promote

the conceptual understanding of key notions like

limits, derivatives, and integral. For example,

in a research project by Artigue (2006), the

calculator was used towards conceptualization

of the notion of derivative. One of the aims of

the project was to enable grade 11 students to

enter the interplay between local and global

points of view on functional objects.

Thompson (1994) investigated the concept of

rate of change and infinitesimal change which are

central to understanding the fundamental theo-

rem of calculus. Thompson’s study suggests that

students’ difficulties with the theorem stem from

impoverished concepts of rate of change. In the

last two decades, Thompson published several

studies which demonstrate that a reconstruction

of the ideas of calculus is made possible by its

uses of computing technology. The concept of

accumulation is central to the idea of integration

and therefore is at the core of understandingmany
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ideas and applications in calculus. Thompson

et al. (2013) describe a course that approaches

introductory calculus with the aim that students

build a reflexive relationship between concepts of

accumulation and rate of change, symbolize that

relationship, and then extend it. In a first phase,

students develop accumulation functions from

rate of change functions. In the first phase,

students “restore” the integral to the fundamental

theorem of calculus. In the second phase, students

develop rate of change functions from accumula-

tion functions. The main idea is that accumulation

and rate of change are never treated separately:

the fundamental theorem of calculus is present

all the time. Rate is an important, but difficult,

mathematical concept. Despite more than 20 years

of research, especially with calculus students, diffi-

culties are still reported with this concept.

Tall (2010) reflects on the ongoing develop-

ment of the teaching and learning calculus since

his first thinking about the calculus 35 years ago.

During these years, Tall’s research described

how the computer can be used to show dynamic

visual graphics and to offer a remarkable power

of numeric and symbolic computation. As

a consequence of the cognitive difficulties that

accompany the conceptual understanding of the

key notions in calculus, Tall’s quest is for

a “sensible approach” to the calculus which

builds on the evidence of our human senses and

uses these insights as a meaningful basis for later

development from calculus to analysis and even

to a logical approach in using infinitesimals.

Reflecting on the many years in which reform of

calculus teaching has been considered around the

world and the different approaches and reform

projects using technology, Tall points out that

what has occurred is largely a retention of tradi-

tional calculus ideas now supported by dynamic

graphics for illustration and symbolic manipula-

tion for computation.

The Role of Historical Perspective and Other

Approaches

The idea to use a historical perspective in

approaching calculus was also demonstrated in

other studies not necessarily in a technological

environment. Taking into account the long way in

which the calculus concepts were developed and

then defined, appropriate historically inspired

teaching sequences were elaborated.

Recent approaches in learning and teaching

calculus refer to the social dimension like the

approach to teach calculus called “scientific

debate” which is based on a specific form of

discussion among students regarding the validity

of theorems. The increasing influence taken by

sociocultural and anthropological approaches

towards learning processes is well expressed in

research on learning and teaching calculus. Even

the construct concept image and concept defini-

tion, which was born in an era where the theories

of learning were essentially cognitive theories,

was revisited (Bingolbali and Monaghan 2008)

and used in interpreting data in a sociocultural

study. This was done in a research which inves-

tigated students’ conceptual development of the

derivative with particular reference to rate of

change and tangent aspects.

In more recent studies, the role of different

theoretical approaches in research on learning

calculus is analyzed. Kidron (2008) describes

a research process on the conceptualization of

the notion of limit by means of the discrete

continuous interplay. The paper reflects many

years of research on the conceptualization of the

notion of limit, and the focus on the complemen-

tary role of different theories reflects the

evolution of this research.

The Role of the Teacher

In the previous section, different educational

environments were described. Educational envi-

ronments depend on several factors, including

teaching practices. As mentioned by Artigue

(2001), reconstructions have been proved to play

a crucial role in calculus especially at the

secondary/tertiary transition. Some of these recon-

structions deal with mathematical objects already

familiar to students before the teaching of calculus

at university. In some cases, reconstructions

result from the fact that only some facets of

a mathematical concept can be introduced at the

first contact with it. The reconstruction cannot

result from a mere presentation of the theory and

formal definitions. Research shows that teaching
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practices underestimate the conceptual difficulties

associated with this reconstruction and that teach-

ing cannot leave the responsibility for most of the

corresponding reorganization to students.

Research shows that alternative strategies can

be developed fruitfully especially with the help of

the technology but successful integration of

technology at a large-scale level is still a major

problem (Artigue 2010). Technology cannot be

considered only as a kind of educational assistant.

It was demonstrated how it deeply shapes what

we learn and the way we learn it.

Artigue points out the importance of the

teacher’s dimension. Kendal and Stacey (2001)

describe teachers’ practices in technology-based

mathematics lessons. The integration of technol-

ogy into mathematics teachers’ classroom prac-

tices is a complex undertaking (Monaghan 2004;

Lagrange 2013). Monaghan wrote and cowrote

a number of papers in which teachers’ activities

in using technology in their calculus classrooms

were analyzed but there were still difficulties that

the teachers had experienced in their practices

that were difficult to explain in a satisfactory

manner. Investigating the reasons for the discrep-

ancy between the potentialities of technology in

learning calculus and the actual uses in the class-

room, Lagrange (2013) searches for theoretical

frameworks that could help to focus on the

teacher using technology; the research on the

role of the teacher strengthened the idea of

a difficult integration in contrast with research

centered on epistemological and cognitive aspects.

An activity theory framework seems helpful to

give insight on how teachers’ activity and profes-

sional knowledge evolve during the use of technol-

ogy in teaching calculus.

The Transition Between Secondary and

Tertiary Education

A detailed analysis of the transition from

secondary calculus to university analysis is offered

by Thomas et al. (2012). A number of researchers

have studied the problems of the learning of calcu-

lus in the transition between secondary school and

university. Some of these studies focus on the

specific topics of real numbers, functions, limits,

continuity, and sequences and series. They were

located in several countries (Brazil, Canada,

Denmark, France, Israel, Tunisia) and use different

frameworks. Some have shown that calculus

conflicts that emerged from experiments with

first-year students could have their roots in

a limited understanding of the concept of

function, as well as suggesting the need for

a more intensive exploration of the dynamical

nature of the differential calculus. Results of the

survey suggest that there is some room for

improvement in school preparation for university

study of calculus.

The transition to advanced calculus as taught

at the university level has been extensively inves-

tigated within the Francophone community, with

the research developed displaying a diversity of

approaches and themes but a shared vision of the

importance to be attached to epistemological and

mathematical analyses.

Analyzing the transition between the

secondary school and the university, French

researchers reflect on approaches to teaching

and learning calculus in which the consideration

of sociocultural and institutional practices plays

an essential role. These approaches offer comple-

mentary insights to the understanding of teaching

and learning calculus. The theoretical influence

of the theory of didactic situations which led to

a long-term Francophone tradition of didactical

engineering research has been designed in the last

decade to support this transition from secondary

calculus to university analysis.

New Directions of Research

New directions of research in teaching and learning

calculus were investigated in the last decades. We

observe the need for additional theoretical lenses as

well as a need to link different theoretical frame-

works in the research on learning and teaching

calculus. In particular, we observe the need to add

additional theoretical dimensions, like the social

and cultural dimensions, to the epistemological

analyses that were done in the early research. In

some cases, we notice the evolution of research

during many years with the same researchers

facing the challenging questions concerning the

cognitive difficulties in learning calculus. The

questions are still challenging.
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The theoretical dimension is essential for

research on calculus teaching and learning, but

we should not neglect the practice. As pointed out

by Robert and Speer (2001), there are some

efforts towards a convergence of theory-driven

and practice-driven researches. Further research

on how to consider meaningfully theoretical and

pragmatic issues is indicated.

Asmentioned earlier, reconstructions have been

proved to play a crucial role in calculus, essentially

these reconstructions that deal with mathematical

objects already familiar to students before the

teaching of calculus. Further research should

underline the important role of teaching practices

for such successful reorganization of previous

related concepts towards the learning of calculus.
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Collaborative learning (CL) involves a team of

students who learn through working together

to share ideas, solve a problem, or accomplish

a common goal. In mathematics education, CL’s

popularity surged in the 1980s, but it has since

continued to evolve (Artzt and Newman 1997;

Davidson 1990). The terms collaborative/cooper-

ative learning are often used interchangeably,

although some claim the former requires

giving students considerable autonomy (more

appropriate for older students), while the latter

is more clearly orchestrated by the teacher

(appropriate for all ages) (Panitz 1999).

Three dimensions seem to define collaborative

learning (CL) and help distinguish among its

many different models: the structure of the

CL environment (including assessments and

rewards), the teacher and student roles, and the

types of tasks.

The CL structure defines how student groups

are formed (usually by teacher assignment) and

how group members are expected to interact.

Research generally recommends mixed ability

grouping. Carefully designed assessment and

reward structures document student learning

and provide incentives for students to work

productively together. All models of CL

involve group accountability, but some models

also include some individual rewards, while

others may pit groups against each other in

a competitive reward structure.

The teacher’s role is to determine the CL

structure and task, then serve as facilitator. In

some CL models, students are assigned specific

group roles (e.g., recorder, calculator); other

models require students to tackle portions of the

task independently, then pool their efforts toward

a common solution. Individual accountability

requires that each student be responsible not

only for his/her own learning but also for sharing

the burden for all group members’ learning.

CL tasks must be carefully chosen: amenable

to group work and designed so that success

depends on contributions from all group

members. Particular attention to task difficulty

ensures all students can engage at an appropriate

level.

CL is grounded in a social constructivist

model of learning (Yackel et al. 2011). Some

CL models involve peer tutoring (e.g., Student

Team Learning: Slavin 1994). In the more

common investigative CL models (e.g., Learning

Together: Johnson and Johnson 1998), the

emphasis is on learning through problem solving,

but higher-order skills such as interpretation,

synthesis, or investigation are also required.

Project-based learning (PBL) – a twenty-first-

century group-investigation CL model – involves

cross-disciplinary, multifaceted, open-ended

tasks, usually set in a real-world context, with

results presented via oral or written presentation.
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PBL tasks often take several weeks because

students must grapple with defining, delimiting,

and planning the project; conducting research;

and determining both the solution and how best

to present it (Buck Institute 2012). A stated

PBL goal is to help students develop “twenty-

first-century skills” relating to collaboration,

time management, self-assessment, leadership,

and presentation concurrently with engaging

in critical thinking and mastering traditional

academic concepts and skills (e.g.,

mathematics).

Research has found student learning is

accelerated when students work collaboratively

on tasks that are well structured, carefully

implemented, and have individual accountability.

There is also evidence that affective outcomes,

such as interest in school, respect for others,

and self-esteem, are also positively impacted

(Slavin 1992).
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Definition

Mathematics teacher education (MTE) consists of

processes and practices through which teachers or

student teachers learn to teach mathematics. It

involves as participants, primarily, student teachers,

teachers, and teacher educators; other stakeholders

such as school principals or policy officials with

regulatory responsibilities can be involved to dif-

fering degrees. Thus a community in MTE consists

of people who engage in these processes and prac-

tices and who have perspectives and knowledge in

what it means to learn and to educate in mathemat-

ics and an interest in the outcomes of engagement.

An inquiry community, or community of inquiry, in

MTE is a community which brings inquiry into

practices of teacher education in mathematics –

where inquiry implies questioning and seeking

answers to questions, problem solving, exploring,

and investigating – and in which inquiry is the basis

of an epistemological stance on practice, leading to

“metaknowing” (Wells 1999; Jaworski 2006). The

very nature of a “community” of inquiry rooted in

communities of practice (Wenger 1998) implies

a sociohistorical frame in which knowledge grows

and learning takes place through participation and

dialogue in social settings (Wells 1999).

Characteristics

Rather than seeing knowledge as objective,

pre-given and immutable (an absolutist stance:
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Ernest 1991) with learning as a gaining of such

knowledge and teaching as a conveyance of

knowledge from one who knows to one who

learns, an inquiry stance sees knowledge as

fluid, flexible and fallible (Ernest 1991). These

positions apply to mathematical knowledge and

to knowledge in teaching: teachers of mathemat-

ics need both kinds of knowledge. Knowledge is

seen variously as formal and external, consisting

of general theories and research-based findings

to be gained and put into practice; or as craft

knowledge, intrinsic to the knower, often tacit,

and growing through action, engagement, and

experience in practice; or yet again as growing

through inquiry in practice so that the knower and

the knowledge are inseparable. Cochran-Smith

and Lytle (1999) call these three ways of concep-

tualizing knowledge as knowledge for teaching,

in teaching, and of teaching. With regard

to knowledge-of-teaching, they use the term

“inquiry as stance” to describe the positions

teachers take towards knowledge and its relation-

ships towards practice. This parallels the notion

of “inquiry as a way of being” in which teachers

take on the mantle of inquiry as central to how

they think, act, and develop in practice and

encourage their students to do so as well

(Jaworski 2006).

An inquiry community in mathematics teacher

education therefore involves teachers (including

student teachers who are considered as less expe-

rienced teachers) engaging together in inquiry into

teaching processes to promote students’ learning

of mathematics and, moreover, involving students

in inquiry in mathematics. The main purpose of

inquiry is to call into question aspects of a source

(such as mathematics) which encourages a deeper

engagement as critical questioning takes place and

knowledge grows within the community. When

the source is mathematics, inquiry in mathematics

allows students to address mathematical questions

in ways that seek out answers and lead to new

knowledge. Thus mathematics itself becomes

accessible, no longer perceived as only right or

wrong, and its revealed fallibility is an encourage-

ment to the learner to explore further and under-

stand more deeply. Similarly as teachers explore

into aspects of mathematics teaching – for

example, the design of inquiry-based mathemati-

cal tasks for students – their critical attitude to their

practice generates new knowledge in practice

and new practice-based understandings (Jaworski

2006).

In a community of practice, Wenger (1998)

suggests that “belonging” to the community

involves “engagement,” “imagination,” and “align-

ment.” Participants engage with the practice, use

imagination in weaving a personal trajectory in the

practice and align with norms and expectations

within the practice. The transformation of

a community of practice to a community of

inquiry requires participant to look critically at

their practices as they engage with them, to ques-

tion what they do as they do it, and to explore new

elements of practice. Such inquiry-based forms of

engagement have been called “critical alignment”

(Jaworski 2006). Critical alignment is a necessity

for developing an inquiry way of being within

a community of inquiry.

Like teachers, teacher educators in mathe-

matics (sometimes called didacticians, due to

their practices in relation to the didactics of

mathematics) are participants in communities

of inquiry in which they too need to develop

knowledge in practice through inquiry. Their

practices are different from those of teachers,

but there are common layers of engagement in

which teachers and teacher educators side by

side explore practices in learning and teaching

of mathematics in order to develop practice and

generate new knowledge. Teacher educators

also have responsibilities in linking theoretical

perspectives to development of practice and to

engaging in research formally for generation of

academic knowledge. Thus it is possible to see

three (nested) layers of inquiry community in

generating new understandings of teaching to

develop the learning of mathematics: inquiry

by students into mathematics in the classroom,

inquiry by teachers into the processes and prac-

tices of creating mathematical learning in class-

rooms, and inquiry by teacher educators into the

processes by which teachers learn through

inquiry and promote the mathematical learning

of their students (Jaworski and Wood 2008)

(Fig. 1).
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Definition and Originators

Communities of practice (CoP) are an important

component of an emerging social theory of

learning. Lave and Wenger (1991) originally

envisioned this social learning theory as a way

to deepen and extend the notion of situated

learning that occurs in traditional craft appren-

ticeships, contexts in which education occurs

outside of formal schools. Drawing upon

evidence from ethnographic investigations of

apprenticeships in a range of settings (e.g., tailor-

ing), they have frequently argued that it is

Didacticians inquiring with teachers

to promote professional development...

Teachers engaging

in professional inquiry ...

Students engaging in

inquiry in mathematics

in the classroom

to learn more about creating mathematical

opportunities for students

and learn more about practical implications

and issues for mathematical

development

Communities of Inquiry

in Mathematics Teacher
Education, Fig. 1 Three
layers of inquiry in
mathematics teaching
development
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important to separate learning from formal school

contexts to understand that most human activities

involve some form of teaching and learning.

Wenger (1998) argued that CoP’s two compo-

nents (community and practice) are inherently

connected by three dimensions: “(1) mutual

engagement; (2) a joint enterprise; (3) a shared

repertoire” (p. 73). One important aim of a CoP is

the negotiation of meaning among participants.

This is one way to differentiate groups of people

who live or work in the same location from other

groups who are actively involved in communi-

cating with each other about important issues and

working together towards common goals.

Another important aspect of CoP is that learning

may be demonstrated by changes in the personal

identities of the community members. Changes in

identity are accompanied by increasing participa-

tion in the valued practices of this particular

CoP as newcomers become old-timers in the

community.

Characteristics

How the Problem Was Identified and Why

Social theories of learning have a long history in

psychology (Cole 1996). Nevertheless, more

experimental and reductionist theories were the

predominant form of psychology until the late

twentieth century. The reemergence of social

theories of learning has occurred in numerous

places, such as discursive psychology (Harré

and Gillett 1994), as well as in mathematics

education (Lerman 2001; van Oers 2001). The

reasons why we need a social learning theory in

mathematics education have been outlined by

Sfard (1998). She contrasted two key metaphors:

learning as acquisition versus learning as partic-

ipation. Most research conducted during the last

century in mathematics education used the acqui-

sition metaphor. In contrast, the participation

metaphor shifts the focus from individual owner-

ship of skills or ideas to the notion that learners

are fundamentally social beings who live and

work as members of communities. Teaching

and learning within CoP depend upon social

processes (collaboration or expert guidance)

as well as social products (e.g., tools, language,

laws) in order to help newcomers master the

important practices of their community. In

addition, social theories of learning are needed

to address some of the fundamental quandaries of

educational research and practice (Sfard 2008).

These enduring dilemmas include the unwilling-

ness of some students to expend enough energy

to master difficult mathematical concepts and

the puzzling discrepancy in performance on in-

school and out-of-school mathematical problems.

History of Use

Lave’s (1988, 2011) own empirical research

began with a focus on mathematical proficiency

in out-of-school settings (tailoring garments).

She initially chose situated cognition tasks that

required mathematical computations so that she

could more easily compare them with school-like

tasks. Similar work in ethnomathematics was

conducted by other colleagues for a range of

cultural activities (e.g., selling candy on the

street) (Nunes et al. 1993). One recurrent finding

of this research has been that children, adoles-

cents, and adults can demonstrate higher levels of

mathematical proficiency in their out-of-school

activities than in school, even when the

actual mathematical computations are the same

(Forman 2003). Another finding was that social

processes (e.g., guided participation) and cultural

tools (e.g., currency) were important resources

for people as they solved mathematical problems

outside of school (Saxe 1991). This research

forces one to question the validity of formal

assessments of mathematical proficiency and

to wonder how mathematical concepts and

procedures are developed in everyday contexts

of work and play. Many of these investigators

began to question the basic assumptions of our

individual learning theories and turn their

attention to developing new social theories of

learning, like those proposed by Lave, Wenger,

Saxe, and Sfard. It also led them to rely, to an

increasing degree on ethnographic studies of

everyday life (Lave 2011).

When Lave and others began their research in

the early 1970s, it had limited impact on research

in schools. This has changed as mathematics
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educators have begun to use this research to

improve school instruction, curriculum develop-

ment, and teacher education (e.g., Nasir and

Cobb 2007). For example, Cobb and Hodge

(2002) use the notion of CoP to propose that we

investigate at least two types of mathematical

communities in our work: local (home, school,

neighborhood) and broader (district, state,

national, international). In the classroom, all of

these types of communities affect students’

access to high levels of mathematical reasoning

and problem solving as well as their own sense of

identity as capable mathematical learners. Cobb

and Hodge suggest that we try to understand and

acknowledge these discontinuities in students’

communities that can impact their motivation,

self-image, and school achievement. Building,

in part, on the work of Luis Moll and his

colleagues (Gonzalez et al. 2004), Cobb and

Hodge recommend that teachers view their

students’ families and neighborhood communi-

ties as sources of important funds of knowledge

that can be accessed in school. By viewing home

proficiencies in a positive light (as funds of

knowledge) instead of deficits (limited formal

education), these educators propose that the

discontinuities between classroom and home

CoP be minimized and destigmatized, making it

easier for students to engage more fully in learn-

ing about mathematics and other subjects.

Unfortunately,many students from impoverished

neighborhoods experience discontinuities between

their home and peer communities and those of

schools. As a result, researchers such as Nasir

(2007) have tried to forge new connections

between students’ out-of-school lives (e.g., when

they use mathematics to win at basketball) and the

mathematics they are taught in school. One key

component of these connections is the need to

engage students in the process of viewing them-

selves as capable learners of mathematics and

establishing a new identity as successful mathe-

matics problem solvers (Martin 2007). Finally,

Cobb and Hodge (2002) remind us that resolving

the tensions between local communities of practice

for students may also involve acts of imagination

when young people work towards a revised and

expanded identity for themselves in the future.

Perspectives on Issue in Different

Cultures/Places

The origin of CoP in ethnomathematics means

that the earliest research was conducted in

cultural settings very different from those of

European or North American classrooms such

as Brazil, Liberia, Mexico, and Papua New

Guinea. In addition to a broad range of national

settings, this ethnographic work focused on the

mathematical reasoning that occurred in the daily

lives of poor and middle-class people who may or

may not be enrolled in formal educational

institutions. After it began to be applied to school

classrooms, many of its research sites were

located in Europe or North America (e.g., Seeger

et al. 1998). Thus, unlike many educational inno-

vations, the study of CoP began in impoverished

locations and later spread to wealthy settings. In

addition, the methods of ethnography previously

used to study the work and play lives of people in

impoverished communities were then applied to

classrooms where experimental methods are

more often used (Lave 2011).

Gaps that Need to Be Filled

In Wenger’s (1998) expanded formulation of

CoP, he clarified its dynamic properties. Forms

of mutual engagement change over time within

any community. Collective goals evolve as dif-

ferent interpretations clash and new understand-

ings are negotiated. As this occurs, new tools are

created and modified, new vocabulary developed,

and new routines and narratives invented. Only

recently have ethnographers like Lave and Saxe

been able to take a long view of the CoP they

originally studied in the 1970s and 1980s. As

a result they have been able to deepen their

theoretical positions and reconceptualize their

methods. Clearly this is one area where the

theoretical formulations of CoP are ahead of the

empirical results in mathematics classrooms.

Another area that has been growing in mathe-

matics education is the study of identity in math-

ematics classrooms (e.g., Martin 2007). Although

this work is also hampered by the limited time

span studied, early work suggests that repeated

experiences with different classroom CoP may

result in negative or positive reactions to their
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instructional experiences in mathematics by

students (Boaler and Greeno 2000). The develop-

ment of a person’s mathematical identity may

build slowly over time in homes, communities,

and schools through recurrent processes such as

social positioning by parents, teachers, and peers

(Yamakawa et al. 2009).

Finally, an area of rich growth in mathematics

education is the attempt to align classroom com-

munities with those of professional mathemati-

cians (Lampert 1990). For example, studies of

argumentation and proof in K-12 classrooms

indicate that even young children are capable of

articulating their reasons for their mathematical

decisions and defending those positions when

carefully guided by an experienced teacher

(O’Connor 2001). In addition, current research

in other content areas such as history or science

shows that argumentation can be productively

fostered across the curriculum as well as in

different grades.
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Definition

Communities of practice in mathematics

teacher education are informed by a theory of

learning as social participation, in which teacher

learning and development are conceptualized as

increasing participation in social practices that

develop an identity as a teacher.

Background

The idea of learning in a community of practice

grew from Jean Lave’s and Etienne Wenger’s

research on learning in apprenticeship contexts

(Lave 1988; Lave and Wenger 1991). Drawing

on their ethnographic observations of apprentices

learning different trades, Lave and Wenger

developed a theory of learning as social practice

to describe how novices come to participate in

the practices of a community. These researchers

introduced the term “legitimate peripheral

participation” to explain how apprentices, as

newcomers, are gradually included in the com-

munity through modified forms of participation

that are accessible to potential members working

alongside master practitioners. Although social

practice theory aimed to offer a perspective on

learning in out-of-school settings, Lave (1996)

afterwards argued that apprenticeship research

also has implications for both learning and teach-

ing in schools and for students and teachers as

participants in social practices that shape

identities.

To further analyze the concepts of identity and

community of practice, Wenger (1998) proposed

a more elaborated social theory of learning that

integrates four components – meaning (learning

as experience), practice (learning as doing), com-

munity (learning as belonging), and identity

(learning as becoming). Wenger explained that

communities of practice are everywhere – in

people’s workplaces, families, and leisure pur-

suits, as well as in educational institutions. Most

people belong to multiple communities of prac-

tice at any one time and will be members of

different communities throughout their lives.

His theory has been applied to organizational

learning as well as learning in schools and other

formal educational settings.

Communities of Practice as a
Framework for Understanding
Mathematics Teacher Learning
and Development

Social theories of learning are now well

established in research on mathematics educa-

tion. Lerman (2000) discussed the development

of “the social turn” in mathematics education

research and proposed that social theories

drawing on community of practice models

provide insights into the complexities of teacher

learning and development. From this perspective,

learning to teach involves developing an identity

as a teacher through increasing participation in

the practices of a professional community

(Lerman 2001). At the time of publication of

Lerman’s (2001) review chapter on research

perspectives on mathematics teacher education,

there were few studies drawing on Lave’s and

Wenger’s ideas. Reviewing the same field

5 years later, Llinares and Krainer (2006)

noted increasing interest in using the idea of

a community of practice to conceptualize

learning to teach mathematics. Such studies can

be classified along several dimensions, according

to their focus on:
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1. Preservice teacher education or the

professional learning and development of

practicing teachers

2. Face-to-face or online interaction (or a

combination of both)

3. Questions about how a community of

practice is formed and sustained compared

with questions about the effectiveness of

communities of practice in promoting teacher

learning

Research has been informed by the two key

conceptual strands of Wenger’s (1998) social

practice theory. One of these strands is related

to the idea of learning as increasing participation

in socially situated practices and the other to

learning as developing an identity in the context

of a community of practice.

Learning as Participation in Practices

With regard to participation in practices, Wenger

describes three dimensions that give coherence to

communities of practice: mutual engagement of

participants, negotiation of a joint enterprise, and

development of a shared repertoire of resources

for creating meaning. Mutuality of engagement

need not require homogeneity, since productive

relationships arise from diversity and these may

involve tensions, disagreements, and conflicts.

Participants negotiate a joint enterprise, finding

ways to do things together that coordinate

their complementary expertise. This negotiation

gives rise to regimes of mutual accountability

that regulate participation, whereby members

work out who is responsible for what and to

whom, what is important and what can safely

be ignored, and how to act and speak appro-

priately. The joint enterprise is linked to the

larger social system in which the community

is nested. Such communities have a common

cultural and historical heritage, and it is

through the sharing and reconstruction of this

repertoire of resources that individuals come

to define their relationships with each other in

the context of the community.

This aspect of Wenger’s theory has been used

to investigate discontinuities that may be experi-

enced in learning to teach mathematics in the

different contexts in which prospective and

beginning teachers’ learning occurs – the univer-

sity teacher education program, the practicum,

and the early years of professional experience

(Llinares and Krainer 2006). One of the more

common discontinuities is evident in the diffi-

culty many beginning teachers experience in sus-

taining the innovative practices they learn about

in their university courses. This observation can

be explained by acknowledging that prospective

and beginning teachers participate in separate

communities – one based in the university and

the other in school – which often have different

regimes of accountability that regulate what

counts as “good teaching.”

Researchers have also investigated how partici-

pation in online communities of practice supports

the learning of prospective and practicing teachers

of mathematics, and insights into principles

informing the design of such communities are

beginning to emerge (Goos and Geiger 2012).

Some caution is needed in interpreting the findings

of these studies, since few present evidence that a

community of practice has actually been formed:

for example, by analyzing the extent of mutual

engagement, how a joint enterprise is negotiated,

andwhether a shared repertoire ofmeaning-making

resources is developed by participants (Goos and

Bennison 2008). Nevertheless, studies of online

communities of practice demonstrate that technol-

ogy-mediated collaboration does more than simply

increase the amount of knowledge produced by

teachers; it also leads to qualitatively different

forms of knowledge and different relationships

between participants.

Learning as Developing an Identity

With regard to identity development, Wenger

wrote of different modes of belonging to

a community of practice through engagement,

imagination, and alignment. Beyond actually

engaging in practice, people can extrapolate

from their experience to imagine new possibili-

ties for the self and the social world. Alignment,

the third mode of belonging, refers to coordinat-

ing one’s practices to contribute to the larger

enterprise or social system. Alignment can
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amplify the effects of a practice and increase the

scale of belonging experienced by community

members, but it can also reinforce normative

expectations of practice that leave people

powerless to negotiate identities.

Research into teacher identity development in

communities of practice is perhaps less advanced

than studies that analyze evidence of changing

participation in the practices of a community.

This may be due to a lack of well-developed

theories of identity that can inform research

designs and provide convincing evidence

that identities have changed. Jaworski’s (2006)

work on identity formation in mathematics

teacher education proposes a conceptual shift

from learning within a community of practice

to forming a community of inquiry. The

distinguishing characteristic of a community of

inquiry is reflexivity, in that participants critically

reflect on the activities of the community in

developing and reconstructing their practice.

This requires a mode of belonging that Jaworski

calls “critical alignment” – adopting a critically

questioning stance in order to avoid perpetuating

undesirable normative states of activity.

Issues for Future Research

Elements of Wenger’s social practice theory

resonate with current ways of understanding

teachers’ learning, and this may explain why

his ideas have been taken up so readily by

researchers in mathematics teacher education.

Nevertheless, the notion of situated learning in

a community of practice composed of experts and

novices was not originally focused on school

classrooms, nor on pedagogy, and so caution is

needed in applying this perspective on learning as

an informal and tacit process to learning in formal

education settings, including preservice and

in-service teacher education (Graven and Lerman

2003). Wenger’s model was developed from

studying learning in apprenticeship contexts,

where teaching is incidental rather than

deliberate and planned, as in university-based

teacher education. It remains to be seen whether

community of practice approaches can be applied

to understand the role of teacher educators in

shaping teachers’ learning.
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Definition

A structural plan for organizing the cognitive

skills and abilities used in learning and doing

mathematics.

Characteristics

The concept of competence is one of the most

elusive in the educational literature.Writers often

use the term competence or competency and

assume they and their readers know what it

means. But arriving at a simple definition is

a challenging matter. Dictionaries give such

definitions as “the state or quality of being

adequately or well qualified”; “the ability

to do something successfully or efficiently”;

“possession of required skill, knowledge,

qualification, or capacity”; “a specific range

of skill, knowledge, or ability”; and “the

scope of a person’s or group’s knowledge or

ability.” Competence seems to possess a host of

near synonyms: ability, capability, cognizance,

effectuality, efficacy, efficiency, knowledge,

mastery, proficiency, skill, and talent – the list

goes on.

Arriving at a common denotation across

different usages in social science is even more

difficult. “There are many different theoretical

approaches, but no single conceptual framework”

(Weinert 2001, p. 46). Weinert identifies seven

different ways that “competence has been defined,

described, or interpreted theoretically” (p. 46).

They are as follows: general cognitive competen-

cies, specialized cognitive competencies, the

competence-performance model, modifications of

the competence-performance model, cognitive

competencies and motivational action tendencies,

objective and subjective competence concepts,

and action competence. Competency frameworks

in mathematics education fall primarily into

Weinert’s specialized-cognitive-competencies

category, but they also overlap some of the

other categories.

The progenitor of competency frameworks in

mathematics education is Bloom’s (1956)

Taxonomy of Educational Objectives, which

attempted to lay out, in a neutral way, the

cognitive goals of any school subject. The main

categories were knowledge, comprehension,

application, analysis, synthesis, and evaluation.

These categories were criticized by mathematics

educators such as Hans Freudenthal and Chris

Ormell as being especially ill suited to the subject

of mathematics (see Kilpatrick 1993 on the

critiques as well as some antecedents of Bloom’s

work). Various alternative taxonomies have

subsequently been proposed for school mathe-

matics (see Tristán and Molgado 2006,

pp. 163–169, for examples). Further, Bloom’s

taxonomy has been revised (Anderson and

Krathwohl 2001) to separate the knowledge

dimension (factual, conceptual, procedural, and

metacognitive) from the cognitive process

dimension (remember, understand, apply, ana-

lyze, evaluate, and create), which does address

one of the complaints of mathematics educators

that the original taxonomy neglected content in

favor of process. But the revision nonetheless

fails to address such criticisms as the isolation

of objectives from any context, the low

placement of understanding in the hierarchy of

processes, and the failure to address important

mathematical processes such as representing,

conjecturing, and proving.

Whether organized as a taxonomy, with an

explicit ordering of categories, or simply as an

arbitrary listing of topics, a competency frame-

work for mathematics may include a breakdown

of the subject along with the mental processes

used to address the subject, or it may simply
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treat those processes alone, leaving the mathe-

matical content unanalyzed. An example of the

former is the model of outcomes for secondary

school mathematics proposed by James Wilson

(cited by Tristán and Molgado 2006, p. 165). In

that model, mathematical content is divided

into number systems, algebra, and geometry;

cognitive behaviors are divided into computa-

tion, comprehension, application, and analysis;

and affective behaviors are either interests and

attitudes or appreciation. Another example is

provided by the framework proposed for

the Third International Mathematics and Science

Study (TIMSS; Robitaille et al., 1933,

Appendix A). The main content categories are

numbers; measurement; geometry (position,

visualization, and shape; symmetry, congruence,

and similarity); proportionality; functions, rela-

tions, and equations; data representation, prob-

ability, and statistics; elementary analysis;

validation and structure; and other content

(informatics). The performance expectations are

knowing, using routine procedures, investigating

and problem solving, mathematical reasoning,

and communicating.

Other competency frameworks, like that of

Bloom’s (1956) taxonomy, do not treat different

aspects of mathematical content separately but

instead attend primarily to the mental processes

used to do mathematics, whether the results

of those processes are termed abilities,

achievements, activities, behaviors, performances,

practices, proficiencies, or skills. Examples include

the five strands of mathematical proficiency iden-

tified by the Mathematics Learning Study of the

US National Research Council – conceptual

understanding, procedural fluency, strategic com-

petence, adaptive reasoning, and productive dispo-

sition – and the five components of mathematical

problem-solving ability identified in the Singapore

mathematics framework: concepts, skills, pro-

cesses, attitudes, andmetacognition (see Kilpatrick

2009, for details of these frameworks).

A final example of a competency framework

in mathematics is provided by the KOM

project (Niss 2003), which was charged with

spearheading the reform of mathematics in the

Danish education system. The KOM project

committee addressed the following question:

What does it mean to master mathematics?

They identified eight competencies, which fell

into two groups. The first four address the ability

to ask and answer questions in and with

mathematics:

1. Thinking mathematically

2. Posing and solving mathematical problems

3. Modeling mathematically

4. Reasoning mathematically

The second four address the ability to deal

with and manage mathematical language and

tools:

5. Representing mathematical entities

6. Handling mathematical symbols and

formalisms

7. Communicating in, with, and about mathematics

8. Making use of aids and tools

Niss (2003) observes that each of these com-

petencies has both an analytic and a productive

side. The analytic side involves understanding

and examining the mathematics, whereas the

productive side involves carrying it out. Each

competency can be developed and used only by

dealing with specific subject matter, but the

choice of curriculum topics is not thereby deter-

mined. The competencies, though specific to

mathematics, cut across the subject and can be

addressed in multiple ways.

The KOM project also found it necessary to

focus on mathematics as a discipline. The project

committee identified three kinds of “overview

and judgment” that students should develop

through their study of mathematics: its actual

application, its historical development, and its

special nature. Like the competencies, these qual-

ities are both specific to mathematics and general

in scope.

Niss (2003) observes that the competencies

and the three kinds of overview and judgment

can be used: (a) normatively, to set outcomes

for school mathematics; (b) descriptively, to

characterize mathematics teaching and learning;

and (c) metacognitively, to help teachers and

students monitor and control what they are teach-

ing or learning. These three usages apply as well

to the other competency frameworks developed

for mathematics.
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Regardless of whether a competency frame-

work is hierarchical and regardless of whether it

addresses topic areas in mathematics, its primary

use will be normative. Competency frameworks

are designed to demonstrate to the user that learn-

ing mathematics is more than acquiring an array

of facts and that doing mathematics is more than

carrying out well-rehearsed procedures. School

mathematics is sometimes portrayed as a simple

contest between knowledge and skill. Compe-

tency frameworks attempt to shift that portrayal

to a more nuanced portrait of a field in which

a variety of competences need to be developed.
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Definition

Over the past half century, “complex systems”

perspectives have risen to prominence across

many academic domains in both the sciences and

the humanities. Mathematics was among the orig-

inating domains of complexity research. Education

has been a relative latecomer, and so perhaps not

surprisingly, mathematics education researchers

have been leading the way in the field.

There is no unified definition of complexity,

principally because formulations emerge from the

study of specific phenomena. One thus finds quite

focused definitions in such fields as mathematics

and software engineering, more indistinct mean-

ings in chemistry and biology, and quite flexible

interpretations in the social sciences (cf. Mitchell

2009). Because mathematics education reaches

across several domains, conceptions of complexity

within the field vary from the precise to the vague,

depending on how andwhere the notion is taken up.

Diverse interpretations do collect around

a few key qualities, however. In particular,
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complex systems adapt and are thus distinguish-

able from complicated, mechanical systems.

A complicated system is one that comprises

many interacting components and whose global

character can be adequately described and

predicted by applying laws of physics.

A complex system comprises many interacting

agents – and those agents, in turn, may comprise

many interacting subagents – presenting the pos-

sibility of global behaviors that are rooted in but

that cannot be reduced to the actions or qualities

of the constituting agents. In other words,

a complex system is better described by using

Darwinian principles than Newtonian ones. It is

thus that each complex phenomenon must be

studied in its own right. For each complex unity,

new laws emerge that cannot be anticipated

or explained strictly by reference to prior,

subsequent, or similar systems. Popularly cited

examples include anthills, economies, and brains,

which are more than the collected activities of

ants, consumers, and neurons. In brief, whereas

the opposite of complicated is simple, opposites

of complex include reducible and decomposable.

Hence, prominent efforts toward a coherent,

unified description of complexity revolve around

such terms as emergent, noncompressible,

self-organizing, context-sensitive, and adaptive.

The balance of this discussion is organized

around four categories of usage within mathemat-

ics education – namely, complexity as a theoretical

discourse, a historical discourse, a disciplinary dis-

course, and a pragmatic discourse.

Characteristics

Complexity as a Theoretical Discourse

Among educationists interested in complexity,

there is frequent resonance with the notions that

a complex system is one that knows (i.e., per-

ceives, acts, engages, and develops) and/or learns

(adapts, evolves, maintains self-coherence, etc.).

This interpretation reaches across many systems

that are of interest among educators, including

physiological, personal, social, institutional,

epistemological, cultural, and ecological sys-

tems. Unfolding from and enfolding in one

another, it is impossible to study one of these

phenomena without studying all of the others.

This is a sensibility that has been well

represented in the mathematics education research

literature for decades in the form of varied theories

of learning. Among others, radical constructivism,

sociocultural theories of learning, embodied, and

critical theories can all be read as instances of

complexity theories. That is, they all invoke

bodily metaphors, systemic concerns, evolutionary

dynamics, emergent possibility, and self-

maintaining properties.

This is not to assert some manner of hidden

uniformity to the theories just mentioned. On the

contrary, much of their value is to be found in their

diversity. As illustrated in Fig. 1, when learning

phenomena of interest to mathematics educators

are understood as nested systems, a range of theo-

ries become necessary to grapple with the many

issues the field must address. Sophisticated and

effective mathematics pedagogies demand simi-

larly sophisticated insights into the complex

dynamics of knowing and learning. More signifi-

cantly, perhaps, by introducing the time frames of

meaningful systemic transformation into discus-

sions of individual knowing and collective knowl-

edge, complexity not only enables but compels

a consideration of the manners in which knowers

and systems of knowledge are co-implicated

(Davis and Simmt 2006).

Complexity as a Historical Discourse

School mathematics curricula are commonly

presented as a-historical and a-cultural. Contra

this perception, complexity research offers an

instance of emergent mathematics that has arisen

and that is evolving in a readily perceptible

time frame. As an example of what it describes –

a self-organizing, emergent coherence –

complexity offers a site to study and interrogate

the nature of mathematics, interrupting assump-

tions of fixed and received knowledge.

To elaborate, the study of complexity in math-

ematics reaches back the late nineteenth century

when Poincaré conjectured about the three-body

problem in mechanics. Working qualitatively,

from intuition Poincaré recognized the problem

of thinking about complex systems with the
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assumptions and mathematics of linearity

(Bell 1937). The computational power of mathe-

matics was limited to the calculus of the time;

however, enabled by digital technologies of the

second half of the twentieth century, such

problems became tractable and the investigation

of dynamical systems began to flourish.

With computers, experimental mathematics

was born, and the study of dynamical systems led

to new areas in mathematics. For the first time, it

was easy and quick to consider the behavior of

a function over time by computing thousands and

hundreds of thousands of iterations of the function.

Numerical results were readily converted into

graphical representations (the Lorenz attractor,

Julia sets, bifurcation diagrams) which in turn

inspired a new generation of mathematicians,

scientists, and human scientists to think differently

about complex dynamical systems.

The mid-twentieth century brought about

great insights into features of dynamical systems

that had been overlooked. As mathematicians and

physical and computer scientists were exploring

dynamical systems (e.g., Smale, Prigogine,

Lorenz, Holland), their work and the work of

biologists began to intersect. Emerging out of

that activity were interdisciplinary workshops,

conferences, and think tanks such as the Santa

Fe Institute, a research center dedicated to all

matters of complexity science.

In brief, the emergence of complexity as a field

of study foregrounds that mathematics might be

productively viewed as a humanity. More provoc-

atively, the emergence of a mathematics of

implicatedness and entanglement alongside the

rise of a more sophisticated understanding of

humanity’s relationship to the more-than-human

world might be taken as an indication of the

ecological character of mathematics knowledge.

Complexity as a Disciplinary Discourse

Acommon criticism of contemporary grade school

mathematics curriculum is that little of its content

is reflective of mathematics developed after the

sixteenth or seventeenth centuries, when publicly

funded and mandatory education spread across

Europe. A deeper criticism is that the mathematics

included in most preuniversity curricula is fitted

to a particular worldview of cause-effect and

linear relationships. Both these concerns might be

addressed by incorporating complexity-based

content into programs of study.

Linear mathematics held sway at the time of the

emergence of the modern school – that is, during

Complexity in Mathematics Education, Fig. 1 Some of the nested complex systems of interest to mathematics
educators
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the Scientific and Industrial Revolutions – because

it lent itself to calculations that could be done by

hand. Put differently, linear mathematics was first

championed and taught for pragmatic reasons, not

because it was seen to offer accurate depictions of

reality. Descartes, Newton, and their contempo-

raries were well aware of nonlinear phenomena.

However, because of the intractability of many

nonlinear calculations, when they arose they were

routinely replaced by linear approximations. As

textbooks omitted nonlinear accounts, generations

of students were exposed to over-simplified, line-

arized versions of natural phenomena. Ultimately

that exposure contributed to a resilient worldview

of a clockwork reality. However, the advent of

powerful computing technologies over the past

half century has helped to restore an appreciation

of the relentless nonlinearity of the universe. That

is, the power of digital technologies have not just

opened up new vistas of calculation, they have

triggered epistemic shifts as they contribute to

redefinitions of what counts as possible and what

is expressible (Hoyles and Ness 2008, p. 89).

With the ready access to similar technologies in

most school classrooms within a culture of ubiqui-

tous computation, some (e.g., Jacobson and

Wilensky 2006) have advocated for the inclusion

of such topics as computer-based modeling and

simulation languages, including networked collab-

orative simulations (see Kaput Center for Research

and Innovation in STEM Education). In this vein,

complexity is understood as a digitally enabled,

modeling-based branch of mathematics, creating

space in secondary and tertiary education for new

themes such as recursive functions, fractal geome-

try, and modeling of complex phenomena with

mathematical tools such as iteration, cobwebbing,

and phase diagrams. Others (e.g., English 2006;

Lesh and Doerr 2003) have advocated for similarly

themed content, but in a less calculation-dependent

format, arguing that the shift in sensibility from

linearity to complexity is more important than the

development of the computational competencies

necessary for sophisticated modeling. In either

case, the imperative is to provide learners with

access to the tools of complexity, along with

its affiliated domains of fractal geometry, chaos

theory, and dynamic modeling.

New curriculum in mathematics is emerging.

More profoundly, when, how, who, and where

we teach are also being impacted by the pres-

ence of complexity sensibilities in education

because they are a means to nurture emergent

possibility.

Complexity as a Pragmatic Discourse

To recap, complexity has emerged in education as

a set of mathematical tools for analyzing

phenomena, as a theoretical frame for interpreting

activity of adaptive and emergent systems, as

a new sensibility for orienting oneself to the

world, and for considering the conditions for emer-

gent possibilities leading to more productive,

“intelligent” classrooms.

In the last of these roles, complexity might be

regarded as the pragmatic discourse – and of the

applications of complexity discussed here, this one

may have the most potential for affecting school

mathematics by offering guidance for structuring

learning contexts. In particular, complexity offers

direct advice for organizing classrooms to

support the individual-and-collective generation

of insight – by, for example, nurturing the common

experiences and other redundancies of learners

while making space for specialist roles, varied

interpretations, and other diversities. Another strat-

egy is to utilize digital technologies that offer

environments for (and systemic memories of)

assembling interpretations, strategies, solutions,

evaluations, and judgments.

Mobile digital technologies have occasioned

other kinds of learning opportunities that lend

themselves to both the sorts of analysis and the

sorts of advice afforded by complexity research.

For example, within platforms such as wikis,

Twitter, and Facebook, students can organize

along language and interest lines while they con-

nect with and elaborate the contributions of their

peers. In a more extreme frame, the emergence of

massive online open-learning courses (MOOCs)

represents an interesting new example of the

impact a complexity sensibility can have in the

educational context as they invite large numbers

of participants to engage with the thinking of

experts. It is not without irony that, within

a complexity frame, even the most denigrated of
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teaching strategies – the large lecture – can serve

as a critical part of a vibrant, knowledge-

producing system when coupled to connectivity,

playback, feedback, and other aspects of a digital

environment.

As complexity becomes more prominent in

educational discourses and entrenches in the

infrastructure of “classrooms,” mathematics edu-

cation can move from a culture of cooperation to

one of collaboration, and that has entailments for

the outcomes of schooling – articulated in, e.g.,

movements from generalist preparation to spe-

cialist expertise, from independent workers to

team-based workplaces, and from individual

knowing to social action.
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Characteristics

Concept formation and development in general is

an extremely complicated topic in cognitive psy-

chology. There exists a huge literature about it,

classical and current. Among the classical works

on it, one can mention for instance, Piaget and

Inhelder (1958) and Vygotsky (1986). However,

this issue is restricted to concept formation and

Concept Development in Mathematics Education 91 C

C

http://dx.doi.org/10.1007/978-94-007-4978-8_4
http://dx.doi.org/10.1007/978-94-007-4978-8_18
http://dx.doi.org/10.1007/978-94-007-4978-8_23
http://dx.doi.org/10.1007/978-94-007-4978-8_23
http://dx.doi.org/10.1007/978-94-007-4978-8_34
http://dx.doi.org/10.1007/978-94-007-4978-8_35
http://dx.doi.org/10.1007/978-94-007-4978-8_173
http://dx.doi.org/10.1007/978-94-007-4978-8_96
http://dx.doi.org/10.1007/978-94-007-4978-8_64
http://dx.doi.org/10.1007/978-94-007-4978-8_78
http://dx.doi.org/10.1007/978-94-007-4978-8_78
http://dx.doi.org/10.1007/978-94-007-4978-8_113
http://dx.doi.org/10.1007/978-94-007-4978-8_101
http://dx.doi.org/10.1007/978-94-007-4978-8_101
http://dx.doi.org/10.1007/978-94-007-4978-8_107
http://dx.doi.org/10.1007/978-94-007-4978-8_107
http://dx.doi.org/10.1007/978-94-007-4978-8_140
http://dx.doi.org/10.1007/978-94-007-4978-8_157
http://dx.doi.org/10.1007/978-94-007-4978-8_158
http://dx.doi.org/10.1007/978-94-007-4978-8_158
http://dx.doi.org/10.1007/978-94-007-4978-8_156
http://dx.doi.org/10.1007/978-94-007-4978-8_156


development in mathematics. Nevertheless, it is

suggested not to isolate mathematical concept

formation and development from concept forma-

tion and development in general.

One terminological clarification should be

made before the main discussion. When dealing

with concepts, very often, also the term “notion”

is involved. A notion is a lingual entity – a word,

a word combination (written or pronounced); it

can also be a symbol. A concept is the meaning

associated in our mind with a notion. It is an idea

in our mind. Thus, a notion is a concept name.

There might be concepts without names and for

sure there are meaningless notions, but discussing

them requires subtleties which are absolutely

irrelevant to this context. In many discussions

people do not bother to distinguish between

notions and concepts, and thus the word “notion”

becomes ambiguous. The ambiguity is easily

resolved by the context.

As recommended above, it will be more useful

not to disconnect mathematical concept forma-

tion from concept formation in general, and

therefore, let us start our discussion with an

example of concept formation in babies. How

do we teach them, for instance, the concept of

chair? The common practice is to point at various

chairs in various contexts and to say “chair.”

Amazingly enough, after some repetitions, the

babies understand that the word “chair” is

supposed to be related to chairs, which occur to

them in their daily experience, and when being

asked “what is this?” they understand that they

are supposed to say “chair.” Later on, they will

imitate the entire ritual on their own initiative.

They will point at chairs and say “chair.” I would

like to make a theoretical claim here by saying

that, seemingly, they have constructed in their

mind the class of all possible chairs. Namely,

a concept is formed in their mind, and whenever

a concrete object is presented to them, they will

be able to decide whether it is a chair or not. Of

course, some mistakes can occur in that concept

formation process. It is because in this process,

two cognitive mechanisms are involved. The first

mechanism is the one that identifies similarities.

The mind distinguishes that one particular chair

presented to the baby is similar to some particular

chairs presented to her or him in the past. The

second mechanism is the one which distinguishes

differences. The mind distinguishes that a certain

object is not similar to the chairs which were

presented to the baby in the past, and therefore,

the baby is not supposed to say “chair” when an

object that is not a chair is presented to him or her

by the adult. Mistakes about the acquired concept

might occur because of two reasons. An object,

which is not a chair (say a small table), appears to

the baby (or even to an adult) like a chair. In this

case, the object will be considered as an element

of the class of all chairs while, in fact, it is not an

element of this class. The second reason for mis-

takes is that an object that is really a chair will not

be identified as a chair because of its weird shape.

Thus, an object which was supposed to be an

element of the class is excluded from it. More

examples of this type are the following:

sometimes, babies consider dogs as cats and

vice versa. These are intelligent mistakes because

there are some similarities between dogs and cats.

They are both animals; sometimes they even have

similar size (in the case of small dogs) and so on.

The above process which leads, in our mind, to

the construction of the set of all possible objects

to which the concept name can be applied is

a kind of generalization. Thus, generalizations

are involved in the formation of any given

concept. Therefore, concepts can be considered

as generalizations.

The actions by means of which we try to teach

children concepts of chair are called ostensive

definitions. Of course, only narrow class of con-

cepts can be acquired by means of ostensive

definitions. Other concepts are acquired by

means of explanations which can be considered

at this stage as definitions. Among these concepts

I can point, for instance, at a forest, a school,

work, hunger and so on. When I say definitions

at this stage, I do not mean definitions which are

similar, or even seemingly similar to rigorous

mathematical definitions. The only restriction

on these definitions is that familiar concepts will

be used in order to explain a non-familiar

concept. Otherwise, the explanation is useless.

(This restriction, by the way, holds also for

mathematical definitions, where new concepts
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are defined by means of previously defined

concepts or by primary concepts.) In definitions

which we use in non-technical context in order to

teach concepts, we can use examples. For

instance, in order to define furniture, we can

say: A chair is furniture, a bed is furniture, and

tables, desks, and couches are furniture.

The description which was just given deals

with the primary stage of concept formation.

However, concept formation in ordinary lan-

guage is by far more complicated and very

often, contrary to the mathematical language,

ends up in a vague notion. Take, for instance,

again, the notion of furniture. The child, when

facing an object which was not previously

introduced to him or to her as furniture, should

decide whether this object is furniture or not. He

or she may face difficulties doing it. Also adults

might have similar difficulties. This is only one

example out of many which demonstrates the

complexity of concept formation in the child’s

mind as well as in the adult’s mind. There are

even greater complexities when concept

formation of abstract nouns, adjectives, verbs,

and adverbs is involved. Nevertheless, despite

that complexity, the majority of children acquire

language at an impressive level by the age of six

(an elementary level is acquired already at the age

of three). The cognitive processes associated with

the child’s acquisition of language are discussed

in details in cognitive psychology, linguistics, and

philosophy of language. One illuminating source

which is relevant to this issue is Quine’s (1964)

“Word and object.” However, a detailed

discussion of these processes is not within the

scope of this issue.

In addition to the language acquisition, the

child acquires also broad knowledge about the

world. He or she knows that when it rains, it is

cloudy, they know that dogs bark and so on and

so forth. In short, they know infinitely many

other facts about their environment. And again,

it is obtained in a miraculous way, smoothly

without any apparent difficulties. Things, how-

ever, become awkward when it gets to mathemat-

ics. One possible reason for things becoming

awkward in mathematics is that, in many cases,

mathematical thinking is essentially different

from the natural intuitive mode of thinking

according to which the child’s intellectual

development takes place. The major problem is

that mathematical thinking is shaped by rigorous

rules, and in order to think mathematically, chil-

dren, as well as adults, should be aware of these

rules while thinking in mathematical contexts.

One crucial difficulty in mathematical thinking

is that mathematical concepts are strictly deter-

mined by their definitions. In the course of their

mathematical studies, children, quite often, are

presented to mathematical notions with which

they were familiar from their past experience.

For instance, in Kindergarten they are shown

some geometrical figures such as squares and

rectangles. The adjacent sides of the rectangle

which are shown to the children in Kindergarten

have always different length. Thus, the set of

all possible rectangles which is constructed in

the child’s mind includes only rectangles, the

adjacent sides of which have different length. In

the third grade, in many countries, a definition

of a rectangle is presented to the child. It is

a quadrangle which has 4 right angles. According

to this definition, a square is also a rectangle.

Thus, a conflict may be formed in the child’s

mind between the suggested definition and the

concept he or she already has about rectangles.

The concept the child has in mind was formed by

the set of examples and the properties of these

examples which were presented to the child. It

was suggested (Vinner 1983) to call it the concept

image of that notion. Thus, in the above case of

the rectangle, there is a conflict between the

concept image and the concept definition. On

the other hand, quite often some concepts are

introduced to the learner by means of formal

definitions. For instance, an altitude in a triangle.

However, a formal definition, generally, remains

meaningless unless it is associated with some

examples. The examples can be given by

a teacher or by a textbook, or they can be formed

by the learners themselves. The first examples

which are associated with the concept have

a crucial impact on the concept image. Unfortu-

nately, quite often, in mathematical thinking,

when a task is given to students, in order to

carry it out, they consult their concept image
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and forget to consult the concept definition. It

turns out that, in many cases, there are critical

examples which shape the concept image. In

some cases, these are the first examples which

are introduced to the learner. For instance, in the

case of the altitude (a segment which is drawn

from one vertex or the triangle and it is perpen-

dicular to the opposite side of this vertex or to

its continuation), it is pedagogically reasonable

to give examples of altitudes in acute angle

triangles. Later on, in order to form the appropri-

ate concept image of an altitude, the teacher, as

well as the textbook, should give examples of

altitudes from vertices of acute angles in an

obtuse angle triangle. However, before this

stage of the teaching takes place, the concept

image of the altitude was shaped by the stereo-

typical examples of altitudes in an acute angle

triangle (sometimes, even by the stereotypical

examples of altitudes which are perpendicular to

a horizontal side of a triangle). Thus, when the

learners face a geometrical problem about

altitudes which do not meet the stereotypes in

their concept image, they are stuck. It does not

occur to them to consult the concept definition of

the altitude, and if it does occur, they usually

recall the first part of the definition (“a segment

which is drawn from one vertex or the triangle

and it is perpendicular to the opposite side of

this vertex”) and forget the additional phrase in

the definition (“or to its continuation”). Two

additional examples of this kind are the follow-

ing: (1) At the junior high level, in geometry,

when a quadrangle is defined as a particular

case of a polygon (a quadrangle is a polygon

which has 4 sides), the learners have difficulties

to accept a concave quadrangle or a quadrangle

that intersects itself as quadrangles. (2) At the

high school level, when a formal definition of a

function is given to the students, eventually, the

stereotypical concept image of a function is that

of an algebraic formula. A common formal def-

inition of a function can be the following one:

a correspondence between two non-empty sets

which assigns to every element in the first set

(the domain) exactly one element in the second

set (the range). Even if some non-mathematical

examples are given to the students (for instance,

the correspondence which assigns to every living

creature its mother), even then, the stereotypical

concept image of a function is that of an algebraic

formula, as claimed above.

A plausible explanation to these phenomena

can be given in terms of the psychological theory

about system 1 and system 2. Psychologists,

nowadays, speak about two cognitive systems

which they call system 1 and system 2. It sounds

as if there are different parts in our brain which

produce different kinds of thinking. However,

this interpretation is wrong. The correct way to

look at system 1 and system 2 is to consider them

as thinking modes. This is summarized very

clearly in Stanovich (1999, p. 145). System 1 is

characterized there by the following adjectives:

associative, tacit, implicit, inflexible, relatively

fast, holistic, and automatic. System 2 is

characterized by: analytical, explicit, rational,

controlled, and relatively slow. Thus, notions

that were used by mathematics educators in the

past can be related now to system 1 or system 2,

and therefore this terminology is richer than the

previously suggested notions. Fischbein (1987)

spoke about intuition and this can be considered

as system 1. Skemp (1979) spoke about two

systems which he called delta one and delta two.

They can be considered as intuitive and reflective

or using the new terminology, system 1 and

system 2, respectively. Vinner (1997) used the

notions pseudo-analytical and pseudo-conceptual

which can be considered as system 1.

In mathematical contexts the required think-

ing mode is that of system 2. This requirement

presents some serious difficulties to many peo-

ple (children and adults) since, most of the

time, thought processes are carried out within

system 1. Also, in many people, because of

various reasons, system 2 has not been devel-

oped to the extent which is required for math-

ematical thinking in particular and for rational

thinking in general. Nevertheless, in many

contexts, learners succeed in carrying out

mathematical tasks which are presented to

them by using system 1. This fact does not

encourage them to become aware of the

need to use system 2 while carrying out

mathematical tasks.
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When discussing concept development in

mathematical thinking, it is worthwhile to

mention also some concepts which can be

classified as metacognitive concepts. Such

concepts are algorithm, heuristics, and proof.

While studying mathematics, the learners face

many situations in which they or their teachers

use algorithms, heuristics, and proof. However,

usually, the notions “algorithm” and “heuristics”

are not introduced to the learners in their school

mathematics. Some of them will be exposed to

them in college, in case they choose to take

certain advanced mathematics courses. As to the

notion of proof, in spite of the fact that this notion

is mentioned a lot in school mathematics (espe-

cially in geometry), the majority of students do not

fully understand it. Many of them try to identify

mathematical proof by its superficial characteris-

tics. They do it without understanding the logical

reasoning associated with these characteristics. A

meaningless use of symbols and verbal expres-

sions as “therefore,” “it follows,” and “if. . . then”

is considered by many students as a mathematical

proof (See for instance Healy and Hoyles 1998). It

turns out that it takes a lot of mathematical expe-

rience until meaningless verbal rituals (as in the

case of the baby acquiring the concept of chair)

become meaningful thought processes. And how

do we know that the learners use the above verbal

expressions meaningfully? We assume so because

their use of these expressions is in absolute

agreement with the way we, mathematicians and

mathematics educators, use them.

Another important aspect of mathematical

concept development is the understanding that

certain mathematical concepts are related to

each other. Here comes the idea of structure.

For instance, from triangles, quadrangles,

pentagons, and hexagons, we reach the concept

of a polygon. From the general concept of quad-

rangles, we approach to trapezoids, parallelo-

grams, rhombus, rectangles, and squares, and

we realize there all kinds of class inclusions.

Thus, we distinguish partial order in the set of

mathematical concepts. Finally, and this is

perhaps the ultimate stage of mathematical con-

cept development, we conceive mathematics as

a collection of various deductive structures

(Peano’s Arithmetic, Euclidean Geometry,

Set Theory, Group Theory, etc.). Also, in

more advanced mathematical thinking, we con-

ceive mathematical objects (numbers, functions,

geometrical figures in Euclidean geometry, etc.)

as abstract objects. All these require thought

processes within system 2. However, it should

be emphasized that all the above concept devel-

opments do not occur simultaneously. They

also do not occur in all students who study

mathematics. One should take manymathematics

courses and solve a lot of mathematical problems

in order to achieve that level. Those who do it

should have special interest in mathematics or

what can be called mathematical curiosity. It

requires, what some people call, a mathematical

mind. Is it genetic (Devlin 2000) or

acquired? At this point we have reached

a huge domain of psychological research

which is far beyond the scope of this particular

encyclopedic issue.
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Background

Constructivism is an epistemological stance

regarding the nature of human knowledge,

having roots in the writings of Epicurus,

Lucretius, Vico, Berkeley, Hume, and Kant.

Modern constructivism also contains traces of

pragmatism (Peirce, Baldwin, and Dewey). In

mathematics education the greatest influences

are due to Piaget, Vygotsky, and von Glasersfeld.

See Confrey and Kazak (2006) and Steffe and

Kieren (1994) for related historical accounts of

constructivism in mathematics education.

There are two principle schools of thought

within constructivism: radical constructivism

(some people say individual or psychological)

and social constructivism. Within each there is

also a range of positions. While radical and social

constructivism will be discussed in a later sec-

tion, it should be noted that both schools are

grounded in a strong skeptical stance regarding

reality and truth:Knowledge cannot be thought of

as a copy of an external reality, and claims of

truth cannot be grounded in claims about reality.

The justification of this stance toward

knowledge, truth, and reality, first voiced by the

skeptics of ancient Greece, is that to verify that

one’s knowledge is correct, or that what one

knows is true, one would need access to reality

by means other than one’s knowledge of it. The

importance of this skeptical stance for mathemat-

ics educators is to remind them that students have

their own mathematical realities that teachers and

researchers can understand only via models of

them (Steffe et al. 1983, 1988).

Constructivism did not begin within

mathematics education. Its allure to mathematics

educators is rooted in their long evolving rejection

of Thorndike’s associationism (Thorndike 1922;

Thorndike et al. 1923) and Skinner’s behaviorism

(Skinner 1972). Thorndike’s stance was that learn-

ing happens by forming associations between stim-

uli and appropriate responses. To design instruction

from Thorndike’s perspective meant to arrange

proper stimuli in a proper order and have students

respond appropriately to those stimuli repeatedly.

The behaviorist stance that mathematics educators

found most objectionable evolved from Skinner’s

claim that all human behavior is due to environ-

mental forces. From a behaviorist perspective, to

say that children participate in their own learning,

aside from being the recipient of instructional

actions, is nonsense. Skinner stated his position

clearly:

Science . . . has simply discovered and used subtle
forces which, acting upon a mechanism, give it the
direction and apparent spontaneity which make it
seem alive. (Skinner 1972, p. 3)

Behaviorism’s influence on psychology, and

thereby its indirect influence on mathematics

education, was also reflected in two stances that

were counter to mathematics educators’ growing

awareness of learning in classrooms. The first
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stance was that children’s learning could be

studied in laboratory settings that have no resem-

blance to environments in which learning

actually happens. The second stance was that

researchers could adopt the perspective of

a universal knower. This second stance was evi-

dent in Simon and Newell’s highly influential

information processing psychology, in which

they separated a problem’s “task environment”

from the problem solver’s “problem space.”

We must distinguish, therefore, between the task
environment—the omniscient observer’s way of
describing the actual problem “out there”— and
the problem space—the way a particular subject
represents the task in order to work on it. (Simon
and Newell 1971, p. 151)

Objections to this distinction were twofold:

Psychologists considered themselves to be

Simon and Newell’s omniscient observers

(having access to problems “out there”), and

students’ understandings of the problem were

reduced to a subset of an observer’s understand-

ing. This stance among psychologists had the

effect, in the eyes of mathematics educators, of

blinding them to students’ ways of thinking that

did not conform to psychologists’ preconceptions

(Thompson 1982; Cobb 1987). Erlwanger (1973)

revealed vividly the negative consequences of

behaviorist approaches to mathematics education

in his case study of a successful student in

a behaviorist individualized program who

succeeded by inventing mathematically invalid

rules to overcome inconsistencies between his

answers and an answer key.

The gradual release of mathematics education

from the clutches of behaviorism, and infusions of

insights from Polya’s writings on problem solving

(Polya 1945, 1954, 1962), opened mathematics

education to new ways of thinking about student

learning and the importance of student thinking.

Confrey and Kazak (2006) described the influence

of research on problem solving, misconceptions,

and conceptual development ofmathematical ideas

as precursors to the emergence of constructivism in

mathematics education.

Piaget’s writings had a growing influence in

mathematics education once English translations

became available. In England, Skemp (1961, 1962)

championed Piaget’s notions of schema, assimila-

tion, accommodation, equilibration, and reflection

as ways to conceptualize students’ mathematical

thinking as having an internal coherence. Piaget’s

method of clinical interviews also was attractive to

researchers of students’ learning. However, until

1974 mathematics educators were interested in

Piaget’s writings largely because they thought of

his work as “developmental psychology” or “child

psychology,” with implications for children’s

learning. It was in 1974, at a conference at the

University of Georgia, that Piaget’s work was rec-

ognized in mathematics education as a new field,

one that leveraged children’s cognitive development

to study the growth of knowledge. Smock (1974)

wrote of constructivism’s implications for instruc-

tion, not psychology’s implications for instruction.

Glasersfeld (1974) wrote of Piaget’s genetic epis-

temology as a theory of knowledge, not as a theory

of cognitive development. The 1974 Georgia

conference is the first occasion this writer could

find where “constructivism” was used to describe

the epistemological stance toward mathematical

knowing that characterizes constructivism in

mathematics education today.

Acceptance of constructivism in mathematics

education was not without controversy. Disputes

sometimes emerged from competing visions

of desired student learning, such as students’

performance on accepted measures of compe-

tency (Gagné 1977, 1983) versus attendance to

the quality of students’ mathematics (Steffe and

Blake 1983), and others emerged from different

conceptions of teaching effectiveness (Brophy

1986; Confrey 1986). Additional objections

to constructivism were in reaction to its funda-

mental aversion to the idea of truth as

a correspondence between knowledge and reality

(Kilpatrick 1987).

Radical and Social Constructivism in
Mathematics Education

Radical constructivism is based on two tenets:

“(1) Knowledge is not passively received but

actively built up by the cognizing subject;

(2) the function of cognition is adaptive and
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serves the organization of the experiential

world, not the discovery of ontological reality”

(Glasersfeld 1989, p. 114). Glasersfeld’s use of

“radical” is in the sense of fundamental – that

cognition is “a constitutive activity which,

alone, is responsible for every type or kind

of structure an organism comes to know”

(Glasersfeld 1974, p. 10).

Social constructivism is the stance that history

and culture precede and preform individual

knowledge. As Vygotsky famously stated,

“Every function in the child’s cultural develop-

ment appears twice: first, on the social level, and

later, on the individual level; first between people

. . ., then inside the child” (Vygotsky 1978, p. 57).

The difference between radical and social

constructivism can be seen through contrasting

interpretations of the following event. Vygotsky

(1978) illustrated his meaning of internalization –

“the internal reconstruction of an external

operation” – by describing the development of

pointing:

The child attempts to grasp an object placed
beyond his reach; his hands, stretched toward that
object, remain poised in the air. His fingers make
grasping movements. At this initial state pointing is
represented by the child’s movement, which seems
to be pointing to an object—that and nothing more.
When the mother comes to the child’s aid
and realizes his movement indicates something,
the situation changes fundamentally. Pointing
becomes a gesture for others. The child’s unsuc-
cessful attempt engenders a reaction not from the
object he seeks but from another person [sic].
Consequently, the primary meaning of that unsuc-
cessful grasping movement is established by others
[italics added]. (Vygotsky 1978, p. 56)

Vygotsky clearly meant that meanings

originate in society and are transmitted via social

interaction to children. Glasersfeld and Piaget

would have listened agreeably to Vygotsky’s

tale – until the last sentence. They instead

would have described the child as making

a connection between his attempted grasping

action and someone fetching what he wanted.

Had it been the pet dog bringing the desired

item, it would have made little difference to the

child in regard to the practical consequences of

his action. Rather, the child realized, in a sense,

“Look at what I can make others do with this

action.” This interpretation would fit nicely

with the finding that adults mimic infants’

speech abundantly (Fernald 1992; Schachner

and Hannon 2011). Glasersfeld and Piaget

might have thought that adults’ imitative speech

acts, once children recognize them as imitations,

provide occasions for children to have a sense

that they can influence actions of others through

verbal behavior. This interpretation also would

fit well with Bauersfeld’s (1980, 1988, 1995)

understanding of communication as a reflexive

interchange among mutually oriented individ-

uals: “The [conversation] is constituted at every

moment through the interaction of reflective sub-

jects” (Bauersfeld 1980, p. 30 italics in original).

Paul Ernest (1991, 1994, 1998) introduced the

term social constructivism to mathematics edu-

cation, distinguishing between two forms of it.

One form begins with a radical constructivist

perspective and then accounts for human interac-

tion in terms of mutual interpretation and adap-

tation (Bauersfeld 1980, 1988, 1992). Glasersfeld

(1995) considered this as just radical constructiv-

ism. The other, building from Vygotsky’s notion

of cultural regeneration, introduced the idea of

mathematical objectivity as a social construct.

Social constructivism links subjective and objec-
tive knowledge in a cycle in which each contributes
to the renewal of the other. In this cycle, the path
followed by new mathematical knowledge is from
subjective knowledge (the personal creation of an
individual), via publication to objective knowledge
(by intersubjective scrutiny, reformulation, and
acceptance). Objective knowledge is internalized
and reconstructed by individuals, during the learn-
ing of mathematics, to become the individuals’
subjective knowledge. Using this knowledge, indi-
viduals create and publish new mathematical
knowledge, thereby completing the cycle.
(Ernest 1991, p. 43)

Ernest focused on objectivity of adult mathe-

matics. He did not address the matter of how

children’s mathematics comes into being or how

it might grow into something like an adult’s

mathematics.

Radical and social constructivists differ some-

what in the theoretical work they ask of construc-

tivism. Radical constructivists concentrate on

understanding learners’ mathematical realities and

the internal mechanisms by which they change.
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They conceive, to varying degrees, of learners in

social settings, concentrating on the sense that

learners make of them. They try to put themselves

in the learner’s placewhen analyzing an interaction.

Social constructivists focus on social and cultural

mathematical and pedagogical practices and attend

to individuals’ internalization of them. They

conceive of learners in social settings, concentrat-

ing, to various degrees, on learners’ participation

in them. They take the stances, however, of an

observer of social interactions and that social

practices predate individuals’ participation.

Conflicts between radical and social construc-

tivism tend to come from two sources: (1) differ-

ences in meanings of truth and objectivity and

their sources and (2) misunderstandings and

miscommunications between people holding

contrasting positions. The matter of (1) will be

addressed below. Regarding (2), Lerman (1996)

claimed that radical constructivism was internally

incoherent: How could radical constructivism

explain agreement when persons evidently agree-

ing create their own realities? Steffe and Thomp-

son (2000a) replied that interaction was at the core

of Piaget’s genetic epistemology and thus the idea

of intersubjectivity was entirely coherent with rad-

ical constructivism. The core of the misunderstand-

ing was that Lerman on the one hand and Steffe and

Thompson on the other had different meanings for

“intersubjectivity.” Lerman meant “agreement of

meanings” – same or similar meanings. Steffe and

Thompson meant “nonconflicting mutual interpre-

tations,” which might actually entail nonagreement

of meanings of which the interacting individuals

are unaware. Thus, Lerman’s objection was valid

relative to the meaning of intersubjectivity he pre-

sumed. Lerman on one side and Steffe and Thomp-

son on the other were in a state of intersubjectivity

(in the radical constructivist sense) even though

they publicly disagreed. They each presumed they

understood what the other meant when in fact each

understanding of the other’s position was faulty.

Other tensions arose because of interlocutors’

different objectives. Some mathematics educa-

tors focused on understanding individual’s math-

ematical realities. Others focused on the social

context of learning. Cobb, Yackel, and Wood

(1992) diffused these tensions by refocusing

discussions on the work that theories in mathe-

matics education must do – they must contribute

to our ability to improve the learning and teach-

ing of mathematics. Cobb et al. first reminded

the field that, from any perspective, what

happens in mathematics classrooms is important

for students’ mathematical learning. Thus,

a theoretical perspective that can capture more,

and more salient, aspects for mathematics learn-

ing (including participating in practices) is the

more powerful theory. With a focus on the need

to understand, explain, and design events within

classrooms, they recognized that there are indeed

social dimensions to mathematics learning and

there are psychological aspects to participating

in practices and that researchers must be able to

view classrooms from either perspective while

holding the other as an active background:

“[W]e have proposed the metaphor of mathemat-

ics as an evolving social practice that is consti-

tuted by, and does not exist apart from, the

constructive activities of individuals” (Cobb

et al. 1992, p. 28, italics added).

Cobb et al.’s perspective is entirely consistent

with theories of emergence in complex systems

(Schelling 1978; Eppstein and Axtell 1996;

Resnick 1997; Davis and Simmt 2003) when

taken with Maturana’s statement that “anything

said is said by an observer” (Maturana 1987).

Practices, as stable patterns of social interaction,

exist in the eyes of an observer who sees them.

The theoretician who understands the behavior

of a complex system as entailing simultaneously

both microprocesses and macrobehavior is

better positioned to affect macrobehavior

(by influencing microprocesses) than one who

sees just one or the other. It is important to note

that this notion of emergence is not the same as

Ernest’s notion of objectivity as described

above.

Truth and Objectivity

Radical constructivists take the strong position

that children have mathematical realities

that do not overlap an adult’s mathematics

(Steffe et al. 1983; Steffe and Thompson 2000).
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Social constructivists (of Ernest’s second type)

take this as pedagogical solipsism.

The implications of [radical constructivism] are
that individual knowers can construct truth that
needs no corroboration from outside of the knower,
making possible any number of “truths.” Consider
the pedagogical puzzles this creates. What is the
teacher trying to teach students if they are all busy
constructing their own private worlds? What are
the grounds for getting the world right? Why even
care whether these worlds agree? (Howe and Berv
2000, pp. 32–33)

Howe and Berv made explicit the social con-

structivist stance that there is a “right” world to be

got – the world of socially constructed meanings.

They also revealed their unawareness that, from its

very beginning, radical constructivism addressed

what “negotiation” could mean in its framework

and how stable patterns of meaning could emerge

socially (Glasersfeld 1972, 1975, 1977). Howe and

Berv were also unaware of the notion of epistemic

subject in radical constructivism – the mental con-

struction of a nonspecific person who has particular

ways of thinking (Beth and Piaget 1966; Glasersfeld

1995). A teacher need not attend to 30mathematical

realities with regard to teaching the meaning of

fractions in a class of 30 children. Rather, she need

only attend to perhaps 5 or 6 epistemic children and

listen for which fits the ways particular children

express themselves (Thompson 2000).

A Short List: Impact of Constructivism in
Mathematics Education

• Mathematics education has a new stance

toward learners at all ages. One must attend to

learner’s mathematical realities, not just their

performance.

• Current research on students’ and teachers’

thinking and learning is largely consistent

with constructivism – to the point that articles

rarely declare their basis in constructivism.

Constructivism is now taken for granted.

• Teaching experiments (Cobb and Steffe 1983;

Cobb 2000; Steffe and Thompson 2000) and

design experiments (Cobb et al. 2003) are vital

and vibrant methodologies in mathematics

education theory development.

• Conceptual analysis of mathematical thinking

and mathematical ideas is a prominent and

widely used analytic tool (Smith et al. 1993;

Glasersfeld 1995; Behr et al. 1997; Thompson

2000; Lobato et al. 2012).

• What used to be thought of as practice is now

conceived as repeated experience. Practice

focuses on repeated behavior. Repeated

experience focuses on repeated reasoning,

which can vary in principled ways from

setting to setting (Cooper 1991; Harel 2008a, b).

• Constructivism has clear and operationalized

implications for the design of instruction

(Confrey 1990; Simon 1995; Steffe and

D’Ambrosio 1995; Forman 1996; Thompson

2002) and assessment (Carlson et al. 2010;

Kersting et al. 2012).

Cross-References

▶Constructivist Teaching Experiment
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▶ Sociomathematical Norms in Mathematics

Education
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Introduction

The constructivist is fully aware of the fact that an
organism’s conceptual constructions are not
fancy-free. On the contrary, the process of
constructing is constantly curbed and held in
check by the constraints it runs into. (Ernst von
Glasersfeld 1990, p. 33)

The constructivist teaching experiment emerged in

the United States circa 1975 (Steffe et al. 1976) in
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an attempt to understand children’s numerical

thinking and how that thinkingmight change rather

than to rely on models that were developed outside

of mathematics education for purposes other than

educating children (e.g., Piaget and Szeminska

1952; McLellan and Dewey 1895; Brownell

1928). The use of the constructivist teaching exper-

iment in the United State was buttressed by ver-

sions of the teaching experiment methodology that

were being used already by researchers in the

Academy of Pedagogical Sciences in the then

Union of Soviet Socialist Republics (Wirszup and

Kilpatrick 1975–1978). The work at the Academy

of Pedagogical Sciences provided academic

respectability for what was then a major departure

in the practice of research in mathematics educa-

tion in the United States, not only in terms of

research methods but more crucially in terms of

the research orientation of the methodology.

In El’konin’s (1967) assessment of Vygotsky’s

(1978) research, the essential function of

a teaching experiment is the production of models

of student thinking and changes in it:

Unfortunately, it is still rare to meet with the
interpretation of Vygotsky’s research as modeling,
rather than empirically studying, developmental
processes. (El’konin 1967, p. 36)

Similarly, the primary purpose of constructivist

teaching experiments is to construct explanations

of students’ mathematical concepts and operations

and changes in them. Without experiences of stu-

dents’ mathematics afforded by teaching, there

would be no basis for coming to understand the

mathematical concepts and operations students

construct or even for suspecting that these concepts

and operations may be distinctly different from

those of teacher/researchers. The necessity to attri-

bute mathematical concepts and operations to stu-

dents that are independent of those of teacher/

researchers has been captured by Ackermann

(1995) in speaking of human relations:

In human relations, it is vital to attribute autonomy
to others and to things—to celebrate their existence
independently from our current interaction with
them. This is true even if an attribution (of exis-
tence) is a mental construct. We can literally rob
others of their identity if we deny them an existence
beyond our current interests (p. 343).

Students’ mathematical concepts and opera-

tions constitute first-order models, which are

models that students construct to organize, com-

prehend, and control their own experience

(Steffe et al. 1983, p. xvi). Through a process of

conceptual analysis (Glasersfeld 1995), teacher/

researchers construct models of students’

mathematical concepts and operations to explain

what students say and do. These second-order

models (Steffe et al. 1983, p. xvi) are called

mathematics of students and students’ first-order

models are called simply students’ mathematics.

While teacher/researchers may write about the

schemes and operations that constitute these

second-order models as if they are identical to

students’ mathematics, these constructs, in fact,

are a construction of the researcher that only

references students’ mathematics. Conceptual

analysis is based on the belief that mathematics

is a product of the functioning of human

intelligence (Piaget 1980), so the mathematics

of students is a legitimate mathematics to the

extent that teacher/researchers can find rational

grounds to explain what students say and do.

The overarching goal of the teacher/

researchers who use the methodology is to

establish the mathematics of students as a con-

ceptual foundation of students’ mathematics edu-

cation (Steffe and Wiegel 1992; Steffe 2012).

The mathematics of students opens the way to

ground school mathematics in the history of

how it is generated by students in the context

of teaching. This way of regarding school

mathematics casts it as a living subject rather

than as a subject of being (Steffe 2007).

Characteristics: The Elements of
Constructivist Teaching Experiments

Teaching Episodes

A constructivist teaching experiment involves

a sequence of teaching episodes (Hunting

1983; Steffe 1983). A teaching episode includes a

teacher/researcher, one or more students, a witness

of the teaching episodes, and a method of record-

ing what transpires during the episodes. These

records can be used in preparing subsequent
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episodes as well as in conducting conceptual

analyses of teaching episodes either during or

after the experiment.

Exploratory Teaching

Any teacher/researcher who hasn’t conducted

a teaching experiment but who wishes to do so

should first engage in exploratory teaching

(Steffe and Thompson 2000). It is important that

the teacher/researcher becomes acquainted, at an

experiential level, with students’ ways and means

of operating in whatever domain of mathematical

concepts and operations are of interest. In explor-

atory teaching, the teacher/researcher attempts to

put aside his or her own concepts and operations

and not insist that the students learn what he or

she knows (Norton and D’Ambrosio 2008).

Otherwise, the teacher/researcher might become

caught in what Stolzenberg (1984) called

a “trap” – focusing on the mathematics the

teacher/researcher takes as given instead of

focusing on exploring students’ ways and means

of operating. The teacher/researcher’s mathemat-

ical concepts and operations can be orienting, but

they should not be regarded, initially at least,

as constituting what students should learn until

they are modified to include at least aspects of

a mathematics of students (Steffe 1991a).

Meanings of “Experiment”

Testing Initial Research Hypotheses. One goal

of exploratory teaching is to identify essential

differences in students’ ways and means of oper-

ating within the chosen context in order to estab-

lish initial research hypotheses for the teaching

experiment (Steffe et al. 1983). These differences

are essential in establishing the constructivist

teaching experiment as involving an “experi-

ment” in a scientific sense. The established

differences can be used to place students in

experimental groups and the research hypothesis

is that the differences between the students in the

different experimental groups would become

quite large over the period of time the students

participate in the experiment and that the students

within the groups would remain essentially alike

(Steffe and Cobb 1988). Considerable hypothesis

building and testing must happen during the

course of a teaching experiment as well.

However, one does not embark on the intensive

work of a constructivist teaching experiment

without having initial research hypotheses to test.

The research hypotheses one formulates prior

to a teaching experiment guide the initial selec-

tion of the students and the teacher/researcher’s

overall general intentions. The teacher/researcher

does his or her best to set these initial hypotheses

aside during the course of the teaching episodes

and focus on promoting the greatest progress

possible in all participating students. The

intention of teacher/researcher is for the students

to test the research hypotheses by means of how

they differentiate themselves in the trajectory of

teaching interactions (Steffe 1992; Steffe and

Tzur 1994). A teacher/researcher returns to the

initial research hypotheses retrospectively after

completing the teaching episodes. This method –

setting research hypotheses aside and focusing on

what actually happens in teaching episodes – is

basic in the ontogenetic justification of school

mathematics.

Generating and Testing Working Hypotheses.

In addition to formulating and testing initial

research hypotheses, another modus operandi in

a teaching experiment is for a teacher/researcher

to generate and test hypotheses during the teach-

ing episodes. Often, these hypotheses are con-

ceived “on the fly,” a phrase Ackermann (1995)

used to describe how hypotheses are formulated

in clinical interviews. Frequently, they are for-

mulated between teaching episodes as well.

A teacher/researcher, through reviewing the

records of one or more earlier teaching episodes,

may formulate hypotheses to be tested in the

next episode (Hackenberg 2010). In a teaching

episode, the students’ language and actions are

a source of perturbation for the teacher/researcher.

It is the job of the teacher/researcher to continually

postulate possible meanings that lie behind stu-

dents’ language and actions. It is in this way that

students guide the teacher/researcher. The teacher/

researcher may have a set of hypotheses to test

before a teaching episode and a sequence of situa-

tions planned to test the hypotheses. But because of

students’ unanticipated ways and means of operat-

ing as well as their unexpected mistakes, a teacher/
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researcher may be forced to abandon these hypoth-

eses while interacting with the students and to

create new hypotheses and situations on the

spot (Norton 2008). The teacher/researchers also

might interpret the anticipated language and

actions of the students in ways that were unex-

pected prior to teaching. These impromptu inter-

pretations are insights that would be unlikely to

happen in the absence of direct, longitudinal

interaction with the students in the context

of teaching interactions. Here, again, the

teacher/researcher is obliged to formulate new

hypotheses and to formulate situations of learn-

ing to test them (Tzur 1999).

Living, Experiential Models of Students’
Mathematics

Through generating and testing hypotheses,

boundaries of the students’ ways and means of

operating – where the students make what to

a teacher/researcher are essential mistakes – can

be formulated (Steffe and Thompson 2000).

These essential mistakes are of the same nature

as those Piaget found in his studies of children,

and a teacher/researcher uses them for essentially

the same purpose he did. They are observable

when students fail to make viable adaptations

when interacting in a medium. Operations and

meanings a teacher/researcher imputes to stu-

dents constitute what are called living, experien-

tial models of students’ mathematics. Essential

mistakes can be thought of as illuminating

the boundaries of what kinds of adaptations

a living, experiential model can currently make

in these operations and meanings. These bound-

aries are usually fuzzy, and what might be placed

just inside or just outside them is always a source

of tension and often leads to creative efforts on

the part of a teacher/researcher. What students

can do is understood better if what they cannot

do is also understood. It also helps to understand

what a student can do if it is understand what

other students, whose knowledge is judged to be

at a higher or lower level, can do (Steffe and

Olive 2010). In this, we are in accordance

with Ackermann (1995) that:

The focus of the clinician [teacher] is to understand
the originality of [the child’s] reasoning, to
describe its coherence, and to probe its robustness
or fragility in a variety of contexts. (p. 346)

Meanings of Teaching in a Teaching
Experiment

Learning how to interact with students through

effective teaching actions is a central issue in any

teaching experiment (Steffe and Tzur 1994). If

teacher/researchers knew ahead of time how to

interact with the selected students and what the

outcomes of those interactions might be, there

would be little reason for conducting a teaching

experiment (Steffe and Cobb 1983). There are

essentially two types of interaction engaged in by

teacher/researchers in a teaching experiment:

responsive and intuitive interactions and analytical

interactions.

Responsive and Intuitive Interaction

In responsive and intuitive interactions, teacher/

researchers are usually not explicitly aware of how

or why they interact as they do. In this role, teacher/

researchers are agents of interaction and they strive

to harmonize themselves with the students with

whom they are working to the extent that they

“lose” themselves in their interactions. They make

no intentional distinctions between their knowledge

and the students’ knowledge, and, experientially,

everything is the students’ knowledge as they strive

to feel at onewith them. In essence, they become the

students and attempt to think as they do (Thompson

1982, 1991; van Manen 1991). Teacher/researchers

do not adopt this stance at the beginning of

a teaching experiment only. Rather, they maintain

it throughout the experiment whenever appropriate.

By interacting with students in a responsive and an

intuitive way, the goal of teacher/researchers is to

engage the students in supportive, nonevaluative

mathematical interactivity.

Analytical Interaction

When teacher/researchers turn to analytical inter-

action, they “step out” of their role in responsive/

intuitive interaction and become observers as well.

As first-order observers, teacher/researchers focus
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on analyzing students’ thinking in ongoing inter-

action (Steffe andWiegel 1996). All of the teacher/

researchers’ attention and energy is absorbed in

trying to think like the students and produce and

then experience mathematical realities that are

intersubjectivewith theirs. The teacher/researchers

probes and teaching actions are not to foment

adaptation in the students but in themselves.

When investigating student learning, teacher/

researchers become second-order observers,

which Maturana (1978) explained as “the

observer’s ability . . . to operate as external to

the situation in which he or she is, and thus be

an observer of his or her circumstance as an

observer” (p. 61). As second-order observers,

teacher/researchers focus on the accommoda-

tions they might engender in the students’ ways

and means of operating (Steffe 1991b). They

become aware of how they interact and of the

consequences of interacting in a particular way.

Assuming the role of a second-order observer is

essential in investigating student learning in

a way that explicitly as well as implicitly takes

into account the mathematical knowledge of the

teacher/researchers as well as the knowledge of

the students (Steffe and Wiegel 1996).

The Role of a Witness of the Teaching

Episodes

A teacher/researcher should expect to encounter

students operating in unanticipated and apparently

novel ways as well as their making unexpected

mistakes and becoming unable to operate. In

these cases, it is often helpful to be able to appeal

to an observer of a teaching episode for an alterna-

tive interpretation of events. Being immersed in

interaction, a teacher/researcher may not be able

to act as a second-order observer and step out of the

interaction, reflect on it, and take further action on

that basis. In order to do so, a teacher/researcher

would have to “be” in the interaction and outside of

it, which can be difficult. It is quite impossible to

achieve this if there are no conceptual elements

available to the teacher/researcher from past teach-

ing experiments that can be used in interpreting

the current situation. The result is that teacher/

researchers usually react to surprising behavior by

switching to a more intuitive mode of interaction.

When this happens, the observer may help

a teacher/researcher both to understand the student

and to posit further interaction. There are also

occasions when the observer might make an inter-

pretation of a student’s actions that is different

from that of a teacher/researcher for any one of

several reasons. For example, the observer might

catch important elements of a student’s actions that

apparently are missed by a teacher/researcher. In

any case, the witness should suggest but not

demand specific teaching interventions.

Retrospective Conceptual Analysis

Conceptual analysis is intensified during the

period of retrospective analysis of the public

records of the teaching episodes, which is

a critical part of the methodology. Through

analyzing the corpus of video records, the

teacher/researchers conduct a historical analysis

of the living, experiential models of students’

mathematics throughout the period of time the

teaching episodes were conducted. The activity

of model building that was present throughout the

teaching episodes is foregrounded, and concepts

in the core of a constructivist research program

like assimilation, accommodation, scheme (von

Glasersfeld 1981), cognitive and mathematical

play, communication, spontaneous development

(Piaget 1964), interaction (von Foerster 1984),

mental operation (von Glasersfeld 1987), and

self-regulation emerge in the form of specific

and concrete explanations of students’ mathemat-

ical activity. In this regard, the modeling process

in which we engage is compatible with how

Maturana (1978) regards scientific explanation:

As scientists, we want to provide explanations for
the phenomena we observe. That is, we want to
propose conceptual or concrete systems that can be
deemed intentionally isomorphic to the systems
that generate the observed phenomena. (p. 29)

However, in the case of a teaching experiment,

we seek models that fit within our living, experien-

tial models of students’ mathematics without

claiming isomorphism because we have no access

to students’ mathematical realities outside of our

own ways and means of operating when bringing
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the students’ mathematics forth. So, we cannot

get outside our observations to check if our

conceptual constructs are isomorphic to stu-

dents’ mathematics. But we can and do establish

viable ways and means of thinking that fit within

the experiential constraints that we established

when interacting with the students in teaching

episodes (Steffe 1988, 1994; Norton and

Wilkins 2010).

Since the time of its emergence, the construc-

tivist teaching experiment has been widely used

in investigations of students’ mathematics as well

as in investigations of mathematics teaching

(cf. Appendix for sample studies). It has also

been adapted to fit within related research pro-

grams (e.g., Cobb 2000; Confrey and Lachance

2000; Simon et al. 2010).
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Definition

In the field of professional mathematics, the

creative mathematician is a rarity. At this level
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mathematical creativity implies mathematical

giftedness, but the reverse is not necessarily true

(Sriraman 2005). Usiskin’s (2000) eight tiered

hierarchy of creativity and giftedness in mathe-

matics further shed some light of this view of the

relationship between creativity and giftedness in

professional mathematics. In his model, mathe-

matically gifted individuals such as professional,

working mathematicians are at level five, while

creative mathematicians are at level six and

seven. However, the relationship between gifted-

ness and creativity has been the subject of much

controversy (Leikin 2008; Sternberg and O’Hara

1999) as some see creativity as part of an overall

concept of giftedness (Renzulli 1986). In this

entry the relationship between mathematical

creativity and giftedness and ability will be

looked at through a synthesis of some recent

articles published in ZDM. First, the concepts of

giftedness, ability, and creativity will be

discussed. Second, common themes from the

three articles will be synthesized that capture

the main ideas in the studies. Lastly, the synthesis

will be situated into the more generally framed

research in psychology.

Theory

Creativity

One of the main challenges in investigatingmath-

ematical creativity is the lack of a clear and

accepted definition of the term mathematical

creativity and creativity itself. Previous examina-

tions of the literature have concluded that there is

no universally accepted definition of either crea-

tivity or mathematical creativity (Sriraman 2005;

Mann 2005). Treffinger et al. (2002) write, for

instance, that there are more than 100 contempo-

rary definitions of mathematical creativity.

Nevertheless, there are certain parameters agreed

upon in the literature that helps narrow down

the concept of creativity. Most investigations of

creativity take one of two directions: extraordi-

nary creativity, known as big C, or everyday

creativity, known as little c (Kaufman and

Beghetto 2009). Extraordinary creativity refers

to exceptional knowledge or products that change

our perception of the world. Feldman,

Cziksentmihalyi, and Gardner (1994) writes:

“the achievement of something remarkable and

new, something which transforms and changes

a field of endeavor in a significant way . . . the

kinds of things that people do that change the

world.” Ordinary, or everyday, creativity is

more relevant in a regular school setting.

Feldhusen (2006) describes little c as: “Wherever

there is a need to make, create, imagine, produce,

or design anew what did not exist before – to

innovate – there is adaptive or creative behavior,

sometimes called ‘small c.” Investigation into the

concept of creativity also distinguishes between

creativity as either domain specific or domain

general (Kaufman and Beghetto 2009).

Whether or not creativity is domain specific or

domain general, or if you look at ordinary or

extraordinary creativity, most definitions of

creativity include some aspect of usefulness and

novelty (Sternberg 1999; Plucker and Beghetto

2004; Mayer 1999). What is useful and novel

depends on the context of the creative process

of an individual. The criteria for useful and

novel in professional arts would differ signifi-

cantly from what is deemed useful and novel in

a mathematics class in lower secondary school.

There is therefore a factor of relativeness to cre-

ativity. For a professional artist, some new,

groundbreaking technique, product, or process

that changes his or her field in some significant

way would be creative, but for a mathematics

student in lower secondary school, an unusual

solution to a problem could be creative. Mathe-

matical creativity in a K-12 setting can as such be

defined as the process that results in a novel solu-

tion or idea to a mathematical problem or the

formulation of new questions (Sriraman 2005).

Giftedness

For decades giftedness was equated with concept

of intelligence or IQ (Renzulli 2005; Brown et al.

2005; Coleman and Cross 2005). Terman (1925)

claimed that gifted individuals are those who

score at the top 1 % of the population on the

Stanford-Binet test. This understanding of

giftedness has survived to this day in some

conceptions. However, most researchers now
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view giftedness as a more multifaceted concept in

which intelligence is but one of several aspects

(Renzulli 2005). One example is Renzulli’s

(1986) three-ring model of giftedness. In an

attempt to capture the many facets of giftedness,

Renzulli presented giftedness as an interaction

between above-average ability, creativity, and

task commitment. He went on to separate

giftedness into two categories: schoolhouse gift-

edness and creative productive giftedness. The

former refers to the ease of acquiring knowledge

and taking standardized tests. The latter involves

creating new products and processes, which

Renzulli thought was often overlooked in school

settings. Many researchers support this notion

that creativity should be included in the concep-

tion of giftedness in any area (Miller 2012).

For this entry, giftedness will be looked at in

the domain of mathematics, as Csikszentmihalyi

(2000) pointed out the field-dependent character

of the concept of giftedness. Due to the lack of

a conceptual clarity regarding giftedness and the

heterogeneity of the gifted population, both in

general and in mathematics, identification of

gifted students has varied (Kontoyianni et al.

2011). Instead, prominent characteristics of

giftedness in mathematics are found in the

research literature. Krutetskii (1976) noted in

his investigation of gifted students in mathemat-

ics a number of characteristic features: ability for

logical thought with respect to quantitative and

spatial relationships, number and letter symbols;

the ability for rapid and broad generalization of

mathematical relations and operations, flexibility

of mental processes and mathematical memory.

Similar features of mathematical giftedness have

been proposed by other researchers (see for

instance Sriraman 2005).

Ability

Often, mathematical ability has been seen as

equivalent to mathematical attainment and to

some degree, there is some truth to that notion.

There is a statistical relationship between

academic attainment in mathematics and high

mathematical ability (Benbow and Arjmand

1990). However, Ching (1997) discovered that

hidden talent go largely unnoticed in typical

classrooms, and Kim et al. (2003) state that

traditional tests rarely identify mathematical

creativity. Hong and Aqui (2004) compared

cognitive and motivational characteristics of

high school students who were academically

gifted in math, creatively talented in math, and

non-gifted. The authors found that the creatively

talented students used more cognitive strategies

than the academically gifted students. These

findings indicate that mathematical ability and

mathematical attainment in a K-12 setting are

not necessarily synonymous.

In the online thefreedictionary.com, ability is

defined as “the quality of being able to do some-

thing, especially the physical, mental, financial,

or legal power to accomplish something.”Attain-

ment is defined as “Something, such as an accom-

plishment or achievement, that is attained.” The

key difference is that ability points to a potential

to do something, while attainment refers to some-

thing that has been accomplished. In the field of

mathematics, mathematical ability then refers to

the ability to do mathematics and not the ability

to do well on mathematics attainment tests in

school. In order to de facto define mathematical

ability, mathematics itself has to be defined. It is

beyond the scope of this entry to discuss what

mathematics itself is (for a K-12 setting, see,

for instance, NCTM 2000 or Niss 1999), so

mathematical ability will simply be defined as

the ability to do mathematics.

Conceptual Relationships

In some recent ZDM articles the concept of math-

ematical creativity is linked to other concepts

through statistical and qualitative investigation.

In Kattou et al. (2013), the relationship

between mathematical ability and mathematical

creativity was investigated quantitatively with

the use of a mathematical ability test and

a mathematical creativity test. Data were col-

lected by administering the two tests to 359 ele-

mentary school students. The authors concluded,

using confirmatory factor analysis, that mathe-

matical creativity is a subcomponent of mathe-

matical ability. Mathematical ability was

measured by 29 items in the following categories:

quantitative ability, causal ability, spatial ability,
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qualitative ability, and inductive/deductive

ability. The operationalization of mathematical

ability was based on the assumption that mathe-

matical ability is a multidimensional construct

and Krutetskii’s (1976) classification of gifted-

ness in mathematics. Mathematical creativity

was measured with five open-ended multiple

solution tasks that were assessed on the basis of

fluency, flexibility, and originality (Leikin 2007).

Pitta et al. (2013) investigated the relationship

between mathematical creativity and cognitive

styles. Mathematical creativity was measured sim-

ilarly to Kattou et al. (2013). A mathematical

creativity test consisting of five tasks was given

to 96 prospective primary school teachers and was

assessed on the basis of fluency, flexibility, and

originality. Cognitive style was measured with the

Object-Spatial Imagery and Verbal Questionnaire

(OSIVQ) with respect to three styles: spatial,

object, and verbal. Using multiple regression, the

authors conclude that spatial and object styles

were significant predictors of mathematical

creativity, while verbal style was not significant.

Spatial cognitive style was positively related to

mathematical creativity, while object cognitive

style was negatively related to mathematical crea-

tivity. Furthermore, spatial cognitive style was

positively related to fluency, flexibility, and orig-

inality, while object cognitive style was negatively

related to originality and verbal cognitive style

was negatively related to flexibility.

Using an entirely different methodology,

Lev-Zamir and Leikin (2013) analyzed two

teachers’ declarative conceptions about mathe-

matical creativity in teaching and conceptions-

in-action seen in their lessons. The authors write

that while declarative statements about mathe-

matical creativity in teaching may seem similar,

their conceptions-in-action could differ vastly. In

the study, the two teachers used much of the same

terminology when relating to originality and flex-

ibility in teaching. However, there was a large

gap between the teachers’ declarations and

actions. One of the teachers displayed a lack of

flexibility in the classroom, while the interaction

between the other teacher and her students

displayed flexibility. The authors point out the

distinction between deep beliefs and surface

beliefs as a possible explanation for the observed

inconsistencies. Teacher-directed conceptions of

creativity are associated with surface beliefs and

student-directed conceptions of creativity are

associated with deep beliefs. The authors go on

to state that student-oriented conceptions of

creativity are more of a mathematical nature and

this attention enables teachers to be more flexible

during their lessons.

These three articles all focus on different char-

acteristics of mathematical creativity. They do

not explicitly investigate the relationship

between giftedness, ability, and creativity. Nev-

ertheless, there are certain similarities that might

be inferred on a more structural level, and the

studies add to our overall understanding of gift-

edness, creativity, and ability in mathematics.

Certain cognitive styles, mathematical ability,

and types of beliefs are all found to predict and

have a relationship with mathematical creativity.

Student-directed conception of mathematical

creativity as a deep belief, spatial cognitive

style, and general mathematical ability are all

linked to mathematical creativity. As a concept,

mathematical creativity does not exist in

a vacuum. The literature synthesized in this

entry suggests that certain features and factors

are required for mathematical creativity to arise.

Although no explicit relationships between

mathematical ability, cognitive styles, and beliefs

are explored in the three studies, an underlying

link may be inferred from them. Pitta et al. (2013)

point out that previous research has found that

spatial cognitive style can be beneficial for phys-

ics, mechanical engineering, and mathematics

tasks (see, for instance, Kozhevnikov et al.

2005). In Lev-Zamir and Leikin’s study (2013),

the teacher with the deep student-directed con-

ceptions of mathematical creativity had a much

stronger mathematical background than the other

teacher. Both spatial cognitive style and deep

student-directed conceptions of mathematical

creativity are therefore conceivably connected

to mathematical ability and knowledge. Kattou

et al. (2013) found a strong correlational relation-

ship between mathematical ability and mathe-

matical creativity. If certain cognitive styles and

types of beliefs are connected to mathematical
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ability, and mathematical ability is linked to

mathematical creativity, it stands to reason that

mathematical ability, mathematical creativity,

certain cognitive styles, and types of beliefs are

all linked.

Who Are Creative?

Closely related to conceptual relationships

between mathematical creativity and other con-

cepts is the question of “who are mathematically

creative?” Can individuals be distinguished into

separate groups according to their mathematical

creativity, and what characterizes these groups?

Kattou et al. (2013) clustered students into three

subgroups: low, average, and high mathematical

ability. The high-ability students were also

highly creative students, the average-ability stu-

dents had an average performance on the math-

ematical creativity test, while low-ability

students have a low creative potential in

mathematics. Pitta et al. (2013) classified the

prospective teachers as spatial visualizers,

object visualizers, or verbalizers. The spatial

visualizers scored higher on the mathematical

creativity test than both other groups. In the

third article examined here, the conceptions of

creativity of only two teachers were investigated

(Lev-Zamir and Leikin 2013). As such, it is

difficult to generalize any finding. Nevertheless,

the authors point out the different mathematical

backgrounds of the two teachers and how the

teacher with the stronger mathematical back-

ground has deeper beliefs regarding mathemati-

cal creativity.

All three studies, through different methodol-

ogies, can be said to cluster individuals according

to their level of mathematical creativity. As with

conceptual relationships, the findings of the

three studies synthesized in this entry cannot be

unified explicitly. The three studies investigated

different aspects of mathematical creativity,

using different methodologies. Instead, the

findings have to be looked at from a more general

and systemic perspective. That means instead of

looking at what the specific characteristics of

mathematically creative individuals are, the

focus is that there are characteristics of mathe-

matically creative individuals. All three studies

distinguish individuals into different levels of

mathematical creativity according to some other

quality or ability.

Implications for Teaching

Although only one of the articles (Kattou et al.

2013) makes explicit recommendations for math-

ematics teaching, the implications of the three

articles are on some levels related. Kattou et al.

conclude that the encouragement of mathemati-

cal creativity is important for further develop-

ment of students’ mathematical ability. More

importantly, they write, teachers should not

limit their teaching to spatial conception, arith-

metic, and proper use of methods and operations.

Teachers should recognize the importance of

creative thinking in the classroom. This is closely

related to what Lev-Zamir and Leikin (2013)

conclude. Teachers who hold a mathematically

student-oriented conception of mathematical

creativity were found to be more flexible during

lessons and stimulate students’ mathematical

creativity. In other words, with a student-oriented

conception of mathematical creativity, teachers

will to a greater degree be able to recognize and

encourage creative mathematical thinking during

their lessons.

The third article (Pitta et al. 2013) did not

make any explicit recommendations or implica-

tions for teaching mathematics. However, as they

investigated prospective teachers’ mathematical

creativity, the results and conclusions may be

relevant for teaching when seen in a broader per-

spective. Pitta et al. found that spatial visualizers

had a statistical significant higher creative

performance than other teachers. The observed

differences were related to the different strategies

employed by the spatial visualizers, object

visualizers, and verbal visualizers. The spatial

visualizers employed more flexible and analytic

strategies to tasks. This allowed them to be more

creative and provide more, different, and unique

solutions. In light of Lev-Zamir and Leikin

(2013) and Kattou et al. (2013) conclusions, the

question becomes whether a flexible and analytic

approach to mathematics tasks translates into an

analytic and flexible approach to mathematics

teaching. If that is the case, then flexible and
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creative teaching is also related to spatial cogni-

tive style. However, as Pitta et al. (2013) ask, it is

unknown whether having a spatial cognitive style

is a result of experience or inborn abilities. They

go on to recommend further investigation to see if

prospective teachers can be trained to use their

spatial visualization. It may lead to enhanced

spatial imagery and consequently facilitate math-

ematical creativity, possibly also in their mathe-

matics teaching.

Giftedness and Creativity in Psychology

The research into the field of general creativity

focuses on four different variables: person, pro-

cess, product, and press. The person category

highlights the internal cognitive characteristics

of individuals. The process category looks at the

internal process that takes place during a creative

activity. Product focuses on the characteristics of

products thought to be creative. Last, the press

category explores the ways environmental factors

can influence creativity (Taylor 1988). The arti-

cles recently published in ZDM focused their

research primarily into the person and press com-

ponent of mathematical creativity. In other

words: what characterizes the mathematically

creative individual and how can mathematical

creativity be developed in the classroom.

Mathematical creativity is linked to and

influenced by ability, beliefs, cognitive style,

and the classroom environment (Lev-Zamir and

Leikin 2013; Pitta et al. 2013; Kattou et al. 2013).

These findings are analogous to much of the

research into general creativity and giftedness.

The star model of Abraham Tannenbaum (2003)

conceptualizes giftedness into five elements,

some of which are seen in the studies synthesized

in this entry: (a) superior general intellect, (b)

distinctive special aptitudes, (c) nonintellective

requisites, (d) environmental supports, and (e)

chance. Creativity is here included in the

nonintellective requisites. Mathematical ability

would be placed in the distinctive special apti-

tudes, as it portrays to domain specific abilities,

while both beliefs and cognitive styles would be

classified as nonintellective requisites. Flexible

teaching that stimulates mathematical creativity

falls under the category of environmental sup-

port. As such, the observations in the studies

synthesized here are in many ways analogous

to research into general creativity and

giftedness.

Similarly, the dynamic theory of giftedness

(Babaeva 1999), which emphasizes the social

aspects of the development in giftedness, can

also provide a theoretical perspective on the

observations synthesized in this entry. This theory

consists of three principles that explain the devel-

opment of giftedness: (a) an obstacle for positive

growth is introduced, (b) a process to overcome

the obstacle, and (c) alteration and incorporation

of the experience (Miller 2012). Kattou et al.

(2013) point out how mathematical creativity

is essential for the growth of overall mathematical

ability (or giftedness), while Lev-Zamir and

Leikin (2013) show how challenging mathemati-

cal problems and flexible teaching can help the

development of mathematical creativity. Both

studies show the dynamic aspect of mathematical

creativity, in the sense that it evolves and is

influenced by other external factors.
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Definition

Critical mathematics education can be character-

ized in terms of concerns: to address social

exclusion and suppression, to work for social

justice in whatever form possible, to try open

new possibilities for students, and to address

critically mathematics in all its forms and

application.

Characteristics

Critical Education

Inspired by the students’ movement, a New Left,

peace movements, feminism, antiracism, and

critical education proliferated. A huge amount

of literature became published, not least in

Germany, and certainly the work of Paulo Freire

was recognized as crucial for formulating radical

educational approaches.

However, critical education was far from

expressing any interest in mathematics. In fact,

with reference to the Frankfurt School, mathe-

matics was considered almost an obstruction to

critical education. Thus, Habermas, Marcuse, and

many others associated instrumental reason with,

on the one hand, domination, and, on the other

hand, the rationality cultivated by natural science

and mathematics. Mathematics appeared as the

grammar of instrumental reason. How could one

imagine any form of emancipatory interests being

associated to this subject?

Steps into Critical Mathematics Education

Although there were no well-defined theoretical

frameworks to draw on, there were from

the beginning of the 1970s many attempts in

formulating a critical mathematics education.

Let me mention some publications.

The book Elementarmathematik: Lernen f€ur

die Praxis (Elementary mathematics: Learning

for the praxis) by Peter Damerow, Ulla Elwitz,

Christine Keitel, and J€urgen Zimmer from 1974

was crucial for the development of critical

mathematics education in a German context.

In the article “Pl€adoyer f€ur einen problemor-

ientierten Mathematikunterrich in emanzipa-

torisher Absicht” (“Plea for a problem-oriented

mathematics education with an emancipatory

aim”) from 1975, Dieter Volk emphasized that

it is possible to establish mathematics education

as a critical education. The book Indlæring som

social proces (Learning as a social process) by

Stieg Mellin-Olsen was published in 1977. It

provided an opening of the political dimension

of mathematics education, a dimension that

was further explored in Mellin-Olsen (1987).

Indlæring som social proces was crucial for the

development of critical mathematics education in

the Scandinavian context. An important

overview of Mellin-Olsen’s work is found in

Kirfel and Lindén (2010). Dieter Volk’sKritische

Stichwörter zum Mathematikunterricht (Critical

notions for mathematics education) from 1979

provided a broad overview of what could be

called the first wave in critical mathematics

education. Soon after followed, in Danish,

Skovsmose (1980, 1981a, b).

Marilyn Frankenstein (1983) provided

an important connection between critical

approaches in mathematics education and the

outlook of Freire, and in doing so she was the

first in English to formulate a critical mathemat-

ics education (see also Frankenstein 1989).

Around 1990, together with Arthur Powell

and several others, she formed the critical
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mathematics education group, emphasizing the

importance of establishing a united concept of

critique and mathematics (see Frankenstein

2012; Powell 2012). Skovsmose (1994) provided

an interpretation of critical mathematics

education and Skovsmose (2012) a historical

perspective.

Critical mathematics education developed

rapidly in different directions. As a consequence,

the very notion of critical mathematics education

came to refer to a broad range of approaches, such

as mathematics education for social justice

(see, for instance, Sriraman 2008; Penteado and

Skovsmose 2009; Gutstein 2012), pedagogy of

dialogue and conflict (Vithal 2003), responsive

mathematics education (Greer et al. 2009), and,

naturally, critical mathematics education. Many

ethnomathematical studies also link closely with

critical mathematics education (see, for instance,

D’Ambrosio 2006; Knijnik 1996; Powell and

Frankenstein 1997).

Some Issues in Critical Mathematics

Education

Critical mathematics education can be character-

ized in terms of concerns, and let me mention

some related to mathematics, students, teachers,

and society:

• Mathematics can be brought in action in

technology, production, automatization, deci-

sion making, management, economic transac-

tion, daily routines, information procession,

communication, security procedures, etc. In

fact, mathematics in action plays a part in all

spheres of life. It is a concern of a critical math-

ematics education to address mathematics in its

very many different forms of applications and

practices. There are no qualities, like objectivity

and neutrality, that automatically can be associ-

ated tomathematics.Mathematics-based actions

can have all kind of qualities, being risky,

reliable, dangerous, suspicious, misleading,

expensive, brutal, profit generating, etc. Mathe-

matics-based action can serve any kind of

interest. As with any form of action, so

also mathematics in action is in need of

being carefully criticized. This applies to any

form of mathematics: everyday mathematics,

engineering mathematics, academic mathemat-

ics, and ethnomathematics.

• Students. To a critical mathematics education,

it is important to consider students’ interests,

expectations, hopes, aspirations, and motives.

Thus, Frankenstein (2012) emphasizes the

importance of respecting student knowledge.

The notion of students’ foregrounds has been

suggested in order to conceptualize students’

perspectives and interests (see, for instance,

Skovsmose 2011). A foreground is defined

through very many parameters having to do

with economic conditions, social-economic

processes of inclusion and exclusion, cultural

values and traditions, public discourses, and

racism. However, a foreground is, as well,

defined through the person’s experiences

of possibilities and obstructions. It is a preoc-

cupation of critical mathematics education to

acknowledge the variety of students’ fore-

grounds and to develop a mathematics educa-

tion that might provide new possibilities for

the students. The importance of recognizing

students’ interest has always been a concern of

critical mathematics education.

• Teachers. As it is important to consider the

students’ interests, it is important to consider

the teachers’ interests and working conditions

as well. Taken more generally, educational sys-

tems are structured by the most complex sets of

regulations, traditions, and restrictions, which

one can refer to as the “logic of schooling.”

This “logic” reflects (if not represents) the eco-

nomic order of today, and to a certain degree it

determineswhat can take place in the classroom.

It forms the teachers’ working conditions. It

becomes important to consider the space of pos-

sibilities that might be left open by this

logic. These considerations have to do with the

micro–macro (classroom-society) analyses as in

particular addressed by Paola Valero (see, for

instance, Valero 2009). Naturally, these com-

ments apply not only to the teachers’ working

conditions but also to the students’ conditions

for learning. While the concern about the stu-

dents’ interests has been part of critical
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mathematics education right from the beginning,

a direct influence from the students’movements,

the explicit concern about teaching conditions is

amore recent development of criticalmathemat-

ics education.

• Society can be changed. This is the most

general claimmade in politics. It is the explicit

claim of any activism. And it is as well

a concern of critical mathematics education.

Following Freire’s formulations, Gutstein

(2006) emphasizes that one can develop

a mathematics education which makes it

possible for students to come to read and

write the world: “read it,” in the sense that it

becomes possible to interpret the world filled

with numbers, diagrams, figures, and mathe-

matics, and “write it,” in the sense that is

becomes possible to make changes. However,

a warning has been formulated: one cannot

talk about making sociopolitical changes

without acknowledge the conditions for

making changes (see, for instance, Pais

2012). Thus, the logic of schooling could

obstruct many aspirations of critical mathe-

matics education. Anyway, I find that it

makes good sense to articulate a mathematics

education for social justice, not least in a most

unjust society.

Some Notions in Critical Mathematics

Education

Notions such as social justice, mathemacy,

dialogue, and uncertainty together with many

others are important for formulating concerns of

critical mathematics education. In fact we have to

concern ourselves with clusters of notions of

which I highlight only a few:

• Social justice. Critical mathematics education

includes a concern for addressing any form of

suppression and exploitation. As already

indicated, there is no guarantee that an educa-

tional approach might in fact be successful in

bringing about any justice. Still, working for

social justice is a principal concern of critical

mathematics education. Naturally, it needs to

be recognized that “social justice” is a most

open concept, the meaning of which can be

explored in many different directions.

Addressing equity also represents concerns of

critical mathematics education, and the

discussion of social justice and equity bring

us to address processes of inclusion and

exclusion. Social exclusion can take the most

brutal forms being based on violent discourses

integrating racism, sexism, and hostility

towards “foreigners” or “immigrants.” Such

discourses might label groups of people as

being “disposable,” “a burden,” or “nonpro-

ductive,” given the economic order of today. It

is a concern of critical mathematics education

to address any form of social exclusion. As

an example I can refer to Martin (2009).

However, social inclusion might also

represent a questionable process: it could

mean an inclusion into the capitalist mode

of production and consumption. So critical

mathematics education needs to address

inclusion–exclusion as contested processes.

However, many forms of inclusion–exclusion

have until now not been discussed profoundly

in mathematics education: the conditions of

blind students, deaf students, and students

with different handicaps – in other words,

students with particular rights. However,

such issues are now being addressed in the

research environment created by the Lulu

Healy and Miriam Goody Penteado in Brazil.

Such initiatives bring new dimensions to

critical mathematics education.

• Mathemacy is closely related to literacy,

as formulated by Freire, being a competence

in reading and writing the world. Thus,

D’Ambrosio (1998) has presented a

“New Trivium for the Era of Technology” in

terms of literacy, matheracy, and technoracy.

Anna Chronaki (2010) provided a multifaceted

interpretation ofmathemacy, and in this way it is

emphasized that this concept needs to be

reworked, reinterpreted, and redeveloped in

a never ending process. Different other notions

have, however, been used as well for these

complex competences, including mathematical

literacy andmathematical agency. Eva Jablonka

(2003) provides a clarifying presentation of
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mathematical literacy, showing how this very

notion plays a part in different discourses,

including some which hardly represent critical

mathematics education. The notion of mathe-

matical agency helps to emphasize the impor-

tance of developing a capacity not only with

respect to understanding and reflection but also

with respect to acting.

• Dialogue. Not least due to the inspiration from

Freire, the notion of dialogue has played an

important role in the formulation of critical

mathematics education. Dialogic teaching and

learning has been presented as one way of

developing broader critical competences related

to mathematics. Dialogic teaching and learning

concerns forms of interaction in the classroom.

It can be seen as an attempt to break at least

some features of the logic of schooling. Dia-

logic teaching and learning can be seen as a way

of establishing conditions for establishing

mathemacy (or mathematical literacy, or math-

ematical agency). Problem-based learning and

project work can also be seen as way of framing

a dialogic teaching and learning.

• Uncertainty. Critique cannot be any dogmatic

exercise, in the sense that it can be based on

any well-defined foundation. One cannot take

as given any particular theoretical basis for

critical mathematics education; it is always

in need of critique (see, for instance, Ernest

2010). In particular one cannot assume

any specific interpretation of social justice,

mathemacy, inclusion–exclusion, dialogue,

critique, etc. They are all contested concepts.

There is no particular definition of, say, social

justice that one can take as a given. We have to

do with concepts under construction.

Critical Mathematics Education for the Future

The open nature of critical mathematics educa-

tion is further emphasized by the fact that forms

of exploitations, suppressions, environmental

problems, and critical situations in general are

continuously changing. Critique cannot develop

according to any preset program.

For recent developments of critical mathemat-

ics education, see, for instance, Alrø, Ravn, and

Valero, (Eds.) (2010), Wager, A. A. and Stinson,

D. W. (Eds.) (2012); and Skovsmose and Greer

(Eds.) (2012). Looking a bit into the future much

more is on its way. Let me just refer to some

doctoral studies in progress that I am familiar

with. Denival Biotto Filho is addressing students

in precarious situations and in particular their

foregrounds. Raquel Milani explores further the

notion of dialogue, while Renato Marcone

addresses the notion of inclusion–exclusion,

emphasizing that we do not have to do with

a straightforward good-bad duality. Inclusion

could also mean an inclusion into the most

questionable social practices.

Critical mathematics education is an ongoing

endeavor. And naturally we have to remember

that as well the very notion of critical mathemat-

ics education is contested. There are very many

different educational endeavors that address

critical issues in mathematics education that do

not explicitly refer to critical mathematics

education. And this is exactly as it should be as

the concerns of critical mathematics cannot

be limited by choice of terminology.

Cross-References

▶Critical Thinking in Mathematics Education

▶Dialogic Teaching and Learning in
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▶Mathematization as Social Process
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Characteristics

Educational psychologists frame critical thinking

(CT) as a set of generic thinking and reasoning

skills, including a disposition for using them, as

well as a commitment to using the outcomes of CT

as a basis for decision-making and problem solv-

ing. In such descriptions, CT is established as a

general standard for making judgments and deci-

sions. Some descriptions of CT activities and

skills include a sense for fairness and the assess-

ment of practical consequences of decisions as

characteristics of CT (e.g., Paul and Elder 2001).

This assumes autonomous subjects who share

a common frame of reference for representation

of facts and ideas, for their communication, as

well as for appropriate (morally “good”) action.

Important is also the difference as to what extent

a critical examination of the criteria for CT is

included in the definition: If education for CT is

conceptualized as instilling a belief in a more or

less fixed and shared system of skills and criteria

for judgment, including associated values, then it

seems to contradict its very goal. If, on the other

hand, education for CT aims at overcoming poten-

tially limiting frames of reference, then it needs to

allow for transcending the very criteria assumed

for legitimate “critical” judgment. The dimension

of not following rules and developing a fantasy for

alternatives connects CT with creativity and

change. In Asian traditions derived from

the Mãdhyamika Buddhist philosophy, critical

deconstruction is a method of examining possible

alternative standpoints on an issue, which might

amount to finding self-contradictions in all of

them (Fenner 1994). When combined with medi-

tation, the deconstruction provides for the student

a path towards spiritual insight as it amounts to

a freeing from any form of dogmatism. The posi-

tion coincides with some postmodern critiques of

purely intellectual perspectives that lack contact

with experience and is echoed in some European

traditions of skepticism (Garfield 1990). Hence,

paradoxical deconstruction appears more radical

than CT as it includes overcoming the methods

and frames of reference of previous thinking and

of purely intellectual plausibility.

The role assigned to CT in mathematics

education includes CT as a by-product of

mathematics learning, as an explicit goal of

mathematics education, as a condition for math-

ematical problem solving, as well as critical

engagement with issues of social, political, and

environmental relevance by means of mathemati-

cal modeling and statistics. Such engagement can

include a critique of the very role mathematics

plays in these contexts. In the mathematics educa-

tion literature, explicit reference to CT as defined

in educational psychology is not very widespread,

but general mathematical problem-solving skills

are commonly associated with critical thinking,

even though such association remains under-the-

orized. On the other hand, the notion of critique,

rather than CT, is employed in the mathematics

education literature in various programs related to

critical mathematics education.

Critical Thinking and Mathematical

Reasoning

Mathematical argumentation features prominently

as an example of disciplined reasoning based on

clear and concise language, questioning of assump-

tions, and appreciation of logical inference for

deriving conclusions. These features of mathemat-

ical reasoning have been contrasted with intuition,

associative reasoning, justification by example, or

induction from observation. While the latter are
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also important aspects of mathematical inquiry,

a focus on logic is directed towards extinguishing

subjective elements from judgments and it is the

essence of deductive reasoning. Underpinned by

the values of rationalism and objectivity, reasoning

with an emphasis on logical inference is opposed to

intuition and epiphany as a source of knowledge

and viewed as the counterinsurance against dog-

matism and opportunism.

The enhancement of students’ general reason-

ing capacity has for quite some time been seen as

a by-product of engagement with mathematics.

Francis Bacon (1605), for example, wrote that it

would “remedy and cure many defects in the wit

and faculties intellectual. For if the wit be too

dull, they [the mathematics] sharpen it; if too

wandering, they fix it; if too inherent in the

sense, they abstract it” (VIII (2)). Even though

this promotion of mathematics education is based

on its alleged value for developing generic

thinking or reasoning skills, these skills are not

called “critical thinking.”

Historically, the notion of critique was tied to

the tradition of rhetoric and critical evaluation of

texts. Only through the expansion of the function

of critique towards general enlightenment,

critique became a generic figure of thinking, argu-

ing, and reasoning. This more general notion tran-

scends what is usually associated with accuracy

and rigor in mathematical reasoning. Accord-

ingly, CT in mathematics education not only is

conceptualized as evaluating rigor in definitions

and logical consistency of arguments but also

includes attention to informal logic and heuristics,

to the point of identifying problem-solving skills

with CT (e.g., O’Daffer and Thomquist 1993).

Applebaum and Leikin (2007), for example, see

the faculty of recognizing contradictory informa-

tion and inconsistent data in mathematics tasks as

a demonstration of CT.

However, as most notions of CT include an

awareness of the subject doing it, neither a mere

application of logical inference nor successful

application of mathematical problem-solving

skills would reasonably be labeled as CT. But

as a consequence of often identifying CT

with general mathematical reasoning processes

embedded in mathematical problem solving,

there is a large overlap of literature on mathemat-

ical reasoning, problem solving, and CT.

There is agreement that CT does not automat-

ically emerge as a by-product of any mathematics

curriculum, but only with a pedagogy that draws

on students’ contributions and affords processes

of reasoning and questioning when students col-

lectively engage in intellectually challenging

tasks. Fawcett (1938), for example, suggested

that teachers (in geometry instruction) should

make use of students’ disposition for critical

thinking and that this capacity can be harnessed

and cultivated by an appropriate choice of

pedagogy. Reflective thinking practices could

be enacted when drawing the students’ attention

to the need for clear definition of key terms in

statements, for examination of alleged evidence,

for exposition of assumptions behind their

beliefs, and for evaluation of arguments and

conclusions. Fawcett’s teaching experiments

included the critical examination of everyday

notions. A more recent example of a pedagogical

approach with a focus on argumentation is the

organization of a “scientific debate” in the math-

ematics classroom (Legrand 2001), where stu-

dents in an open discussion defend their own

ideas about a conjecture, which may be prepared

by the teacher or emerge spontaneously during

class work.

While cultivating some form of discipline-

transcending CT has long been promoted by

mathematics educators, explicit reference to CT

is not very common in official mathematics

curriculum documents internationally. For

example, “critical thinking” is not mentioned in

the US Common Core Standards forMathematics

(Common Core State Standards Initiative 2010).

However, in older recommendations from the US

National Council of Teachers of Mathematics,

mention of “critical thinking” is made in relation

to creating a classroom atmosphere that fosters it

(NCTM 1989). A comparative analysis of asso-

ciations made between mathematics education

and CT in international curriculum documents

remains a research desideratum.

Notions of CT in mathematics education with

a focus on argumentation and reasoning skills

have in common that the critical competence
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they promote is directed towards claims, state-

ments, hypotheses, or theories (“texts”), but do

include neither a critique of the social realities, in

which these texts are produced, nor a critique of

the categories, in which these texts describe real-

ities. As it is about learning how to think, but not

what to think about, this notion of CT can be

taken to implicate a form of thinking without

emotional or moral commitment. However, the

perspective includes the idea that the same prin-

ciples that guide critical scientific inquiry could

also guide successful problem solving in social

and moral matters and this would lead to

improvement of society, an idea that was, for

example, shared by Dewey (Stallman 2003).

Education for CT is then by its nature

emancipatory.

Critical Thinking and Applications of

Mathematics

For those who see scientific standards of reason-

ing as limited, the enculturation of students into

a form of CT derived from these standards alone

cannot be emancipatory. Such a view is based on

a critique of Enlightenment’s scientific image of

the world. The critique provided by the philoso-

phers of the Frankfurt School is taken up in var-

ious projects of critical mathematics education

and critical mathematical literacy. This critique

is based on the argument that useful things are

conflated with calculable things and thus formal

reasoning based on quantification, which is made

possible through the use of mathematics, is

purely instrumental reasoning. Mathematics edu-

cators have pointed out that reliance onmathemat-

ical models implicates a particular worldview and

mathematics education should widen its perspec-

tive and take critically into account ethical and

social dimensions (e.g., Steiner 1988). In order to

cultivate CT in the mathematics classroom, reflec-

tion not only ofmethodological standards ofmath-

ematical models but also of the nature of these

standards themselves, aswell as of the larger social

contexts within which mathematical models are

used, has been suggested (e.g., Skovsmose 1989;

Keitel et al. 1993; Jablonka 1997; Appelbaum and

Davila 2009; Fish and Persaud 2012). Such a view

is based on acknowledging the interested nature of

any application of mathematics. This is not to

dismiss rational inquiry, but aims at expanding

rationality beyond instrumentality through inclu-

sion ofmoral and political thought. Such an expan-

sion is seen as necessary by those who see purely

formally defined CT as ultimately self-destructive

and hence not emancipatory.

Limitations of Developing CT Through

Mathematics Education

The take-up of poststructuralist and psychoana-

lytic theories by mathematics educators has

afforded contributions that hold CT up for

scrutiny. Based on the postmodern acknowledg-

ment that all forms of reasoning are only

legitimized through the power of some groups in

society, and in line with critics who see applied

mathematics as the essence of instrumental reason,

an enculturation of students into a form of

CT embedded in mathematical reasoning must

be seen as disempowering. As it excludes

imagination, fantasy, emotion, and the particular

and metaphoric content of problems, this form of

CT is seen as antithetical to political thinking or

social commitment (Walkerdine 1988; Pimm

1990; Walshaw 2003; Ernest 2010). Hence,

the point has been made that mathematics

education, if conceptualized as enculturation into

dispassionate reason and analysis, limits critique

rather than affording it and it might lead to political

apathy.

Further Unresolved Issues

Engaging students in collaborative CT and

reasoning in mathematics classrooms assumes

some kind of an ideal democratic classroom envi-

ronment, in which students are communicating

freely. However, classrooms can hardly be seen

as ideal speech communities. Depending on their

backgrounds and educational biographies, students

will not be equally able to express their thoughts

and not all will be guaranteed an audience. Further,

the teacher usually has the authority to phrase the

questions for discussion and, as a representative of

the institution, has the obligation to assess students’

contributions. Thus, even if a will to cultivate some

form of critical reasoning in themathematics class-

room might be shared amongst mathematics
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educators, more attention to the social, cultural,

and institutional conditions under which this is

supposed to take place needs to be provided by

those who frame CT as an offshoot of mathemati-

cal reasoning. Further, taxonomies of CT skills,

phrased as metacognitive activities, run the risk of

suggesting to treat these explicitly as learning

objectives, including the assessment of the extent

to which individual students use them. Such a

didactical reification of CT into measurable learn-

ing outcomes implicates a form of dogmatism and

contradicts the very notion of CT.

The antithetical character of the views of what

it means to be critical held by those who see CT as

a mere habit of thought that can be cultivated

through mathematical problem solving, on the

one hand, and mathematics educators inspired

by critical theory and critical pedagogy, on the

other hand, needs further exploration.

Attempts to describe universal elements of

critical reasoning, which are neither domain nor

context specific, reflect the idea of rationality itself,

the standards of which are viewed by many as best

modeled by mathematical and scientific inquiry.

The extent to which this conception of rationality

is culturally biased and implicitly devalues other

“rationalities” has been discussed by mathematics

educators, but the implications for mathematics

education remain under-theorized.
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Introduction

Cultural diversity in mathematics education is a

widely used expression to discuss questions

around why students from different cultural, eth-

nic, social, economic, and linguistic groups per-

form differently in their school mathematics.

These questions are not new in cultural

perspectives to mathematics education developed

since the late 1980s (Bishop 1988) and in cultural

approaches to mathematical cognition (Cole

1996). However, until recently issues of cultural

diversity were considered to be out there in other

non-Western cultures or to be issues of marginal-

ized and poor groups in society. Globalization

changed this perspective. With changes in

communication, technologies, and unprecedented

levels ofmigration, cultures have become increas-

ingly complex, connected, and heterogeneous.

One of the major impacts on education has been

a substantial change in the cultural and ethnic

composition of the school population.

Schools and classrooms become places where

teachers, students, and parents are exposed to

and have to respond to many types of cultural

differences. For many these differences are

resources enriching the learning opportunities

and environments. For many others, diversity is

experienced as a problem, which is reflected in

school achievement (Secada 1995). The issues

cultural diversity poses to education have many

facets and have been approached from different

perspectives in social sciences (De Haan and

Elbers 2008). Conceptions of culture and the

role of culture in psychological development

inform these perspectives. Examining culture

as a way of life of specific cultural groups has

contributed to the understanding of cultural

discontinuities between schools and the home

background of the students. In this perspective,

the emphasis has been on the shared cultural

practices of the group. A more recent perspective

focuses on more dynamic aspects of culture, i.e.,

on the way a person experiences participation

in multiple practices, and the production of

new cultural knowledge, meaning, and identities.

Mathematics education research draws on these

perspectives but also considers issues that are

specific to mathematics learning (Cobb and

Hodge 2002; Nasir and Cobb 2007; Abreu

2008; Gorgorió and Abreu 2009).

Here the focus is on the development of ideas

that examine mathematics as a form of cultural

knowledge (Bishop 1988; Asher 2008) and learn-

ing as a socioculturally mediated process

(Vygotsky 1978). These ideas offer a critique to
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approaches that locate the sources of diversity

in the autonomous individual mind. More

importantly, sociocultural approaches have con-

tributed to rethinking cultural diversity as “rela-

tional” and “multilayered” phenomena, which

can be studied from different angles (Cobb and

Hodge 2002; De Haan and Elbers 2008). Empir-

ical research following these approaches has

evolved from an examination of diversity

between cultural groups, i.e., the nature of math-

ematical knowledge specific to cultural prac-

tices, to an examination of the person as

a participant in specific sociocultural practices.

Diversity and Uses of Cultural

Mathematical Tools

A driving force for researching the impact of

cultural diversity in mathematics education has

been to understand why certain cultural groups

experience difficulties in school mathematics. In

the culture-free view of mathematics, poor perfor-

mance in school mathematics was explained in

terms of deficits, namely, cognitive deficits that

could be the result of cultural deficits. However,

since the 1980s, this view has become untenable.

Researchers exploring the difficulties non-

Western children, such as the Kpelle children in

Liberia, experienced with Western-like mathe-

matics introduced with schooling (Cole 1996)

realized that their difficulties could not be

explained by cognitive deficits or cultural deficits.

They discovered that differences in mathematical

thinking could be linked to the tools used as medi-

ators. Thus, for instance, the performance in a

mathematical task, such as estimating length,

was linked to the use of a specific cultural measur-

ing system. With the advance of cultural research

and the view of mathematics and cognition as

cultural phenomena, alternative explanations of

poor performance in school mathematics have

been put forward in terms of cultural differences.

Drawing on the insights from examining

the mathematics of particular cultural groups

research moved to explore cultural differences

within societies, which is still the major focus of

current research on cultural diversity in mathe-

matics education. A classic example of this

research is the “street mathematics”

investigations in Brazil by Nunes, Schliemann,

and Carraher (1993). In a series of studies that

started with street children, Nunes and her col-

leagues examined differences between school

mathematics and out-of-school mathematics.

Their findings added support to the notion that

mathematical thinking was mediated by cultural

tools, such as oral and written arithmetic. The

within society studies also highlighted the situ-

ated nature of mathematical cognition.

Depending on the context of the practice, the

same person may draw on different cultural

tools; they can call on an oral method to solve

a shopping problem and a written method to solve

a school problem.

How cultural tools mediate mathematical

thinking and learning continues to be a key aspect

in investigations in culturally diverse classrooms.

Research with minority and immigrant students

in different countries shows that the students

learned often to use different forms of mathemat-

ics at home and at school (Bishop 2002; Gorgorió

et al. 2002; Abreu 2008). Similarly, research with

parents shows that they refer often to differences

in their methods and the ones their children are

being taught in school. To sum up, research

shows that students from culturally diverse back-

grounds are exposed often to different cultural

tools in different contexts of mathematical

practices. It also suggests that many students

experience cultural discontinuities in their

transitions between contexts of mathematical

practices. A cultural discontinuity perspective

offers only a partial account of the impact of

diversity, however. The fact that students from

similar home cultural groups perform differently

at school requires research to consider other

aspects of diversity. A fruitful way of continuing

to explore the different impacts of diversity in

school mathematical learning focuses on how

the person as a participant in mathematical prac-

tices makes sense of their experiences. The per-

son here can be, for example, an immigrant

student in a mathematics classroom, a parent

that supports their children with their school

homework, and a teacher that is confronted with

students from cultural backgrounds they are not

familiar with. Here the focus turns to culture as
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being reconstructed in contexts of practices, and

issues of identity and social representations are

foregrounded.

Diversity and Cultural and Mathematical

Identities

Many studies with immigrant and minority

students have now illustrated that they become

aware of the differences between their home

culture and their school practices (Bishop 2002;

see also ▶ Immigrant Students in Mathematics

Education). Accounts from parents of their

experiences of supporting their children’s school

mathematics at home (e.g., homework) also

illustrate the salience of differences between home

and school mathematics. These could be experi-

enced in terms of (a) the content of school mathe-

matics and in the strategies used for calculations, (b)

the methods of teaching and the tools used in teach-

ing (e.g., methods for learning times tables, use of

calculators), (c) the language in which they learned

and felt confident doing mathematics, and (d) the

parents’ and the children’s school mathematical

identities. Though all the dimensions are important,

this research shows that identities take a priority

in the way the parents organize their practices

to support their children. The societal and

institutional valorization of mathematical practices

plays a role on this process (Abreu 2008).

Recent studies also show that students talk

about differences in relation to how they perceive

their home cultural identities as intersecting with

their school mathematical learning. Studies with

students from minority ethnic backgrounds in

England whose parents had been schooled in

other countries show that differences between

school mathematical practices at home and at

school have implications on their mathematical

identities. For example, some students report try-

ing to separate home and school, i.e., to use the

“home way” at home and the “school way” at

school. The reason provided for the separation is

that they do not feel that the home ways are

valued at school. Other students simply claim

that their parents do not know or that their knowl-

edge is old fashioned. In both cases, the construc-

tion of a positive school mathematical identity

involves suppressing the home mathematical

identity (Crafter and Abreu 2010). Identities, as

socially constructed, can then be conceptualized

as powerful mediators in the way diversities are

being constructed in the context of school prac-

tices. Indeed, studies examining other types of

diversity, such as gender, have also implied sim-

ilar processes (Boaler 2007).

Studies with immigrant students with a history

of success in their school mathematical learning

in their home country are also particularly inter-

esting to illustrate the intersection of identities.

Firstly, the difficulties of these students cannot be

easily attributed to the individual mathematical

ability as they have a personal history of being

“good mathematics students.” Secondly, in this

case the cultural diversity is already internalized

as part of the student’s previous schooling. These

students’ positive school mathematical identities

get disrupted when they receive low grades in the

host country school mathematics. Suddenly, the

students’ common representation that mathemat-

ics is just about numbers and formulae and that

these are the same everywhere is challenged. It is

revealing that young people from different

immigrant backgrounds and going to school in

different countries report similar experiences

(e.g., Portuguese students in England; Ecuador-

ian students in Catalonia, Spain). This can be

interpreted as evidence that when a student joins

a mathematical classroom in a new cultural

context, their participation is mediated by repre-

sentations of what counts as mathematical knowl-

edge. These examples illustrate a culture-free

view of mathematics that is still predominant in

many educational systems but that could be det-

rimental to immigrant students’ academic math-

ematical careers. Having shown that issues of

diversity are very salient in the experiences of

students and their parents, the next section briefly

examines teachers’ representations.

Diversity and Teachers’ Social

Representations of Cultural Differences

In many schools, teachers, who have trained to

teach monolingual and monocultural students

from their own culture, teach students who may

speak a different language and come from cul-

tures they are not familiar with. However, in
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communities with a stronger tradition of receiv-

ing immigrants, some teachers themselves have

already had to negotiate the practices of the home

and school culture. This complex situation may

add insight into the ways that cultural differences

and identities come to be constructed as signifi-

cant for the school mathematical learning. An

examination of studies carried out in culturally

diverse schools in Europe reveals two views in

the way teachers make sense of the cultural and

ethnic background on their students’ mathemati-

cal learning (Abreu and Cline 2007; Gorgorió and

Abreu 2009). One view stresses “playing down

differences” and the other “accepting differ-

ences.” The view of playing down cultural differ-

ences draws upon representations of mathematics

as a culture-free subject (that it is the same around

the world). This view can also draw on a repre-

sentation of the child’s ability as the key determi-

nant factor in their mathematical learning. The

universal construction of children takes priority

over their ethnic and cultural backgrounds.

Treating everyone as equal based on their merits

is also used as a justification for not taking into

account cultural differences. The lack of recogni-

tion of the cultural nature of mathematical prac-

tices may restrict opportunities for students to

openly negotiate the differences at school. This

way, diversity may become a problem instead of a

resource. The alternative positioning of accepting

cultural differences represents a minority voice

outside the consensus that mathematics is

a culture-free subject and that ability is the main

factor in the mathematical learning.

Conclusion

Diversity in mathematics education includes com-

plex and multilayered phenomena that can be

explored from different perspectives. Drawing on

sociocultural psychology, empirical research on

uses and learning of mathematics in different

cultural practices offered key insights on under-

standings of cultural diversity considering (i)

mathematical tools (the specific forms of mathe-

matical knowledge associated with cultural groups

and sociocultural practices), (ii) identities (the

ways differences are experienced by the students

and the impact on how they construct themselves

as participants in these practices), and (iii) social

representations (the images and understandings

that enable people to make sense of mathematical

practices, such as images of learners and the

learning process and views of mathematical

knowledge). These understandings emerged from

looking at diversity from complementary perspec-

tives. One perspective focuses on the discontinu-

ities between the cultural practices, and the other

on how discontinuity is experienced by the person

as a participant in school mathematical practices.

This second perspective is more recent and is key

for the development of approacheswhere diversity

becomes a resource. The extent to which

approaches that stress the importance of cultural

identities can be used as resources for change from

culture-free to culturally sensitive practices in

mathematics education is a question for further

research. The fact that the views of cultural iden-

tities asmediators of schoolmathematical learning

are still marginalized can be seen as a consequence

of the dominant cultural practices and representa-

tions. For example, this can include practices in

teacher training, where little attention is given to

preparing teachers to understand the cultural

nature of (mathematical) learning and human

development (see also, ▶ Immigrant Students in

Mathematics Education). Secondly, implicit con-

ceptions of the social and emotional development

of the child at school draw on representations of

childhood which often do not take into account the

cultural diversity of current societies.
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Definition

For many students, mathematics is a barrier,

often having a profound effect on their further edu-

cational and career opportunities. Some authors

have looked beyond features of students, curricu-

lum, and pedagogy to argue that the political, eco-

nomic, and social contexts of schooling also need to

be considered in this pedagogical equation (Apple

1992; Tate 1997). Similarly, some scholars have

studied cultural issues affecting the study of math-

ematics, including features of the societal culture in

which education is situated and how those cultures

affect who succeeds in them (Else-Quest et al.

2010). In this essay,we examine cultural influences,

both within and surroundingmathematics, and their

effects on who succeeds in mathematics.

A Review of the Literature

A substantial body of research has been devoted to

understanding the relatively small proportion of

women and students of color who participate in

advanced mathematics and careers. Researchers

have explored the reasons for the differences in

the achievement, attitudes, learning styles, strategy

use, and persistence between girls and boys and

among students of different races, ethnicities,

social classes, and language proficiencies.

Although these differences have generally

Cultural Influences in Mathematics Education 129 C

C



decreased, differences among groups remain, as do

important differences among countries (Else-Quest

et al. 2010; Palsdottir and Sriraman 2010). Unfor-

tunately, the work of many researchers has had the

paradoxical effect of creating a discourse that

females and students of color “can’t do math”

(Fennema 2000). As a result, the identification of

“who” succeeds in mathematics is too often per-

ceived through the lens of a deficit model: When

groups of students do not succeed or persist in

mathematics, the reason, or so it is sometimes

framed in the literature, is a problem with the

students in groups themselves, rather than as the

result of a broader social or cultural issue.

Building students’ sense of belongingness in

mathematics has been proposed as a critical fea-

ture of an equitable K-12 education (Allexsaht-

Snider and Hart 2001; Ladson-Billings 1997).

Martha Allexsaht-Snider and Laurie Hart (2001)

defined belonging as “the extent to which each

student senses that she or he belongs as an impor-

tant and active participant” in mathematics

(p. 97) and have argued that an important purpose

of schooling is to facilitate students’ sense of

belongingness and engagement with mathemat-

ics. A similar construct has been proposed at the

doctoral level, with several authors arguing

belonging to or integrating into the departmental

communities is important for student persistence

(e.g., Herzig 2002, 2004a, 2010).

There are (at least) two cultural aspects to stu-

dents’ development of a sense that they belong in

mathematics: (1) features of mathematics itself, as

mathematics is presented in classrooms, and (2) the

way the broader society perceives mathematics

ability and the students who succeed in math.

First, mathematics is often taught in highly

abstracted ways, with little or no explicit connec-

tion to other mathematical ideas, ideas outside of

mathematics, or the mathematical “big picture”

(Herzig 2002; Stage and Maple 1996). Some

feminist scholars have challenged the predomi-

nance of abstraction inmathematics. Betty Johnston

(1995) argued that abstraction in mathematics is

a consequence of modern industrial society, which

itself is based on the idea of separating things into

manageable pieces, distinct from their context. This

abstraction of mathematics denies the social

nature of mathematics. In an abstract context

like the one that is common in Western mathe-

matics, a quest for certain types of understanding

can actually interfere with success, as when stu-

dents look to understand, for example, What does

this have to do with the world? With my world?

With my life? (Johnston 1995). Mathematics is

often taught as a set of manipulations that lead to

predetermined results or, at a more advanced level,

as sequence of deductive proofs of clearly stated

theorems, with little (if any) representation of the

roles of intuition, creativity, insight, or trial and

error, which give rise to those results and which

give them meaning (Herzig 2002, 2010; Sriraman

and Steinthorsdottir 2007). Mathematics as it is

commonly presented in classrooms in education is

isolated from its social and personal contexts and

applications, devoid of aesthetic considerations.

Aside from the way mathematics is presented

in the classroom, the way that mathematics stu-

dents are perceived outside the mathematics

classroom also affects students’ involvement

and dedication to mathematics (Campbell 1995;

Damarin 2000).

As Noddings (1996) argued, mathematics

educators need to find ways to make the social

world of mathematics – its culture – more acces-

sible to a broader range of people, and the world

outside of mathematics needs to change its per-

ception of those who succeed within it. Only then

can more students, including females and people

of color, find a way come to feel that they truly

belong in some part of the mathematics world.

Suzanne Damarin (2000) compared people

with mathematical ability to “marked categories”

such as women, people of color, criminals, peo-

ple of disability, and homosexuals and identified

these characteristics:

1. Members of marked categories are ridiculed

and maligned, and descriptions of marked cat-

egories are used to harass, tease, and discipline

members of the larger society.

2. Members of marked categories are portrayed

as incompetent in dealing with daily life.

3. In institutions designed to meet the needs of

all, the needs of members of marked catego-

ries are deferred to the needs of the members

of unmarked categories.
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4. Members of marked categories are feared as

powerful even as they are marked as powerless.

5. Explicit or social marking serves to define

communities of the marked.

6. Membership in multiple marked categories

places individuals in the margins of each

marked community.

7. The study of a marked category leads to the

construction and study of the complementary

class of people.

8. The unmarked category is generally larger than

the marked category; even when this is not the

case, the marked category is not recognized as

the majority (Damarin 2000, pp. 72–74).

Given the common perceptions of mathemat-

ics students as being white, male, childless, and

socially inept, having few interests outside of

mathematics, students who explicitly do not fit

with this described group might conclude that

they do not wish to fit in. Thus belonging in

mathematics might not be an entirely good

thing, as it “marks” a student as deviant and as

socially inept. Herzig (2004b) found that some

female graduate students described ways that

they worked to distance themselves from some

of these common constructions of ineptness and

social deviance, which, paradoxically, led them

to resist belonging in mathematics.

Damarin (2000) argued that membership in

the deviant category provides the “deviant” with

a community with which to affiliate: Being iden-

tified and marked as mathematically able encour-

ages mathematics students to form a community

among themselves – if there are enough of them

and if they have the social facility needed. Unfor-

tunately, females are members of (at least) two

marked categories, and the double marking is not

merely additive: That is, females are constructed

as deviant as females separately within each

marked category in which they are placed. First,

they are marked as girls and women, but among

girls and women, their mathematical ability

defines them as deviant. Second, given common

stereotypes of mathematics as a male domain,

mathematical women are marked among mathe-

maticians as not actually being mathematicians.

For women of color, the marking is threefold and

even more complex, making women of color

“deviant” within each of the communities to

which they belong.

In summary, researchers havemade great strides

in understanding why mathematics has generally

attracted to certain types of students. Rather than

studying what is different about women and minor-

ities – groups that have been viewed as unsuccessful

in mathematics – studies now strive to ascertain

cultural and societal obstacles for these groups. In

addition, the literature has shown that students are

most engaged when in an educational environment

that fosters belonging, which can be difficult in the

mathematics field. The stereotypical views ofmath-

ematics students can make it particularly challeng-

ing for women and minorities to enter the field. In

addition, the mathematically capable may not wish

to be socially or culturallymarked as such due to the

preconceived notions many have of mathematics

students. However, by understanding the cultural

and societal issues in the mathematics field,

researchers and educators can begin to implement

policies and strategies to create more equitable

learning environments and atmospheres.
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Definition of Curriculum Resources

We define mathematics curriculum resources as

all the resources that are developed and used by

teachers and pupils in their interaction with math-

ematics in/for teaching and learning, inside and

outside the classroom. Curriculum resources

would thus include the following:

• Text resources, such as textbooks, teacher cur-

ricular guidelines, websites, student sheets, and

syllabi

• Other material resources, such as manipula-

tives and calculators

• ICT-based resources, such as computer software

Mathematics curriculum resources, and in par-

ticular textbooks, are an important part of the envi-

ronment in which teachers and students work

(Haggarty and Pepin 2002). Students spend much

of their time in classrooms working with and

exposed to prepared resources, such as textbooks,

worksheets, and computer software. Teachers often

rely on curriculum materials and textbooks in their

day-to-day teaching, when they decide what to

teach, how to teach it, and when they choose the

kinds of tasks, exercises, and activities to assign to

their students. In short, curriculum resources consid-

ered as educational artifacts are vital tools which are

of central importance for both teachers and students.

The concept of curriculum resource can also be

viewed in a wider sense, to include “a range of

human and material resources, as well as mathe-

matical, cultural and social resources” (Adler 2000,

p. 210). This view would include resources such as

discussions between teachers (e.g., oral, on

a forum), knowledge and qualifications, and con-

textual/environmental factors (e.g., class size, time,

professional leadership, family support). Seen this

way, it makes the study of curriculum resources and

the interactionwith resources a crucial ingredient of

teacher education and professional development.

Curriculum Resources and Teachers’
Interaction with Resources

In this text, we particularly focus on curriculum

resources and teachers’ interactions with such

resources. We present a synthesis of the
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state-of-the-art research, organized under two

headings: research about the resources themselves,

about their design, and their quality (see section -

Conception, Quality, and Design of Resources)

and research about the use of resources including

the adaptation and transformation by users, in

particular teachers (see section The “Use” of

Resources). In section Evolutions and Issues for

Research, we present current perspectives for

research concerning curriculum resources.

Conception, Quality, and Design of Resources

In terms of analyzing resources (andwe include here

digital as well as “hard copy” resources), different

authors have pursued different lines of inquiry:

1. Analyses of mathematical intentions relate to

what mathematics is represented, the presenta-

tion of mathematical knowledge (such as the

content and structure of mathematics curricu-

lum materials, e.g., Valverde et al. 2002, or

“complexity,” e.g., Schmidt et al. 1997), and

also to values and beliefs implicit in curricu-

lummaterials (e.g., Haggarty and Pepin 2002).

2. Analyses of pedagogical intentions of text mate-

rials address the ways in which students are

helped (or not) by the text. We can identify at

least three themes here:ways inwhich the learner

is helped (or not) within the content of the text to

learn the materials (e.g., Van Dormolen 1986),

within the methods included in the text, or by the

rhetorical voice of the text.

3. Sociological analyses of texts investigate

mathematics texts, often school texts, with

respect to sociocultural factors, such as pat-

terns of social class (e.g., Dowling 1998: dif-

ferentiation in texts between texts/exercises

for “high ability” and “low ability” students).

4. Analyses of curriculum materials with respect

to differentmathematical concepts are numer-

ous (algebra, functions, geometry, etc.). These

examine the presentation of the concept itself,

for example, the use of different representa-

tions in curriculum texts. Equally, there are

analyses of curriculum materials with respect

to different mathematical competences, such

as “reasoning” or problem-solving.

All these analyses,more or less explicitly, raise

the issue of the quality of curriculum resources

and in turn can be reinterpreted as contributions to

quality studies. This issue is nevertheless particu-

larly developed in studies concerning digital

resources, as the profusion of online resources

has created a need for quality criteria. These

criteria have to take into account the mathemati-

cal content, the didactical aspects, and ergonomic

dimension (Trouche et al. 2013).

The quality issue is also relevant in research

about resource design (Ruthven et al. 2009),

which includes mathematical task design.

Research shows that it is crucially important to

provide frequent opportunities for students to

engage in dynamic mathematical activity that is

grounded in rich, worthwhile mathematical tasks.

Design-based research (Cobb et al. 2003) is par-

ticularly concerned about task design and quality

in order to improve educational practices and

achievement. This kind of research has clearly

identified the involvement of research teams,

where researchers and teachers work together,

as an essential ingredient for the quality of the

tasks designed.

It has become evident that quality and design

issues are interrelated. Digital means lead to the

development of new design modes and to new

possibilities of collaborative work around the

design of resources. Research on curriculum

resources needs to address questions, such as

who are the designers and in which ways does

the designer/group of designers impact on the

quality of resources? In some countries, national

“expert communities/centers” (e.g., NCTEM in

the UK, DZLM in Germany, Enciclomedia in

Mexico, Enlaces in Chile) “produce” and broad-

cast resources. In addition, particular communi-

ties and associations (e.g., GeoGebra community,

Sesamath in France – see Gueudet et al. 2012)

make resources available.

In the next section, we address issues involved

with the “use” of resources.

The “Use” of Resources

In this section, we address issues related to the

“use” of resources which include the interactions

between teachers and students with resources.

In terms of textbooks, large-scale studies, such

as TIMSS, recognize the importance of textbooks
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in teaching and learning and assert that textbooks

reflect, to a large extent, official curricular inten-

tions and they are said to play an essential role in

the didactical transposition of mathematical

knowledge. In many countries, school textbooks

need approval from the country’sministry; in other

countries, there is a free market for textbooks –

textbooks are generally seen as the “translation of

policy into practice” (Valverde et al. 2002). In

some countries (e.g., USA), textbooks have been

published with an explicit intention of influencing

teacher practices, and the same holds for digital

resources. Nevertheless, the research has also

proven that the impact of such attempts, in terms

of change of practice, remains limited.

We consider here the interactions between

students or teachers and resources from the per-

spective of mediated activity. This leads to con-

sider a twofold process: on the one hand (1), the

resource’s features influence the subject’s activ-

ity and learning (for teachers, this can lead to

policy choices, drawing on resources as a means

for teacher education); on the other hand (2), the

subject shapes his/her resources, according to his/

her knowledge and beliefs.

The features of the resources influence students’

learning, as well as teachers’ practices and profes-

sional learning. This has been evidenced by many

studies investigating the use of curriculum mate-

rials (e.g., Remillard et al. 2009) and of ICT

resources (Hoyles and Lagrange 2010) in teachers’

and students’ work.

Considering the shaping of resources by

teachers or pupils, the ways teachers, or students,

use, adapt, or transform the resources depend to

a large extent on their knowledge and beliefs. The

ways students “use,” for example, a calculator is

said to depend on their knowledge about the calcu-

lator and its affordances but also on their knowl-

edge of the mathematics (Hoyles and Lagrange

2010). The same holds for textbooks (Gueudet

et al. 2012): in order to find support for solving an

exercise, some students will read the course mate-

rials, whereas others will search for worked exam-

ples. Similarly, two teachers will use the same

textbook differently. A teacher can focus on the

worksheets, or the provision of exercises, while

another will consider the same book as curriculum

guide (Remillard et al. 2009). Thus, it can be said

that this kind of resources offers personal possibil-

ities for adaptations, and teachers have always

adapted and transformed resources: selecting,

changing, cutting, and rephrasing. However, the

main difference with digital resources, such as

digital textbooks, is that these adaptations are tech-

nically anticipated and supported with specific

technical means (Gueudet et al. 2012).

The two-way process, i.e., the influence of the

resources on the teacher and the transformation of

the resources by the teacher, can be described as

a genesis. Gueudet, Pepin, and Trouche (2012)

distinguish between resources, given to the teacher,

and documents, developed alongside such a gene-

sis. These geneses are central in teacher profes-

sional development. They can be individual but

can also involve groups of teachers working col-

laborativelywith resources. Research (e.g., Krainer

and Woods 2008) suggests that these evolutions

can be supported by teacher development programs

which propose the design and testing of their own

resources to groups of teachers.

Evolutions and Issues for Research

Viewing curriculum resources as essential tools for

teachers to accomplish their goals has been

accepted for a long time. However, the vision of

the teacher-tool relationship (Remillard et al.

2009) has changed and needs to be explored in

more depth. Moreover, considering the evolution

of resources available for teachers and students

(e.g., their number, nature, design mode/s), this

opens up new directions for research. It leads in

particular to view the teacher as a designer of his/

her resources. Based on the interpretation of

teaching as design, and teachers as designers,

existing research emphasizes the vital interaction

between the individuals/teachers and the tools/

resources to accomplish their goals, an accom-

plishment inextricably linked to the use of cultural,

social, and physical tools. This opens the door for

many new avenues of researching mathematics

curriculum resources and their interaction with

the “learner,” may it be the teacher or the student.

Studying resources for the teaching of mathe-

matics requires such a stance, particularly as there

have been various recent evolutions linked to the
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use of the Internet. Teachers increasingly become

the designers of their own resources, collecting

various materials on the web, transforming them,

and discussing them with colleagues around the

world. National policies for the design and use of

curriculum resources are starting to take these

evolutions into account, in particular by collecting

users’ comments on websites (e.g., dedicated

websites for particular textbooks).

Analyzing the quality of available resources,

contributing to the design of resources (to be used

by students and teachers), and proposing teacher

development programs drawing on collaborative

resource design are important issues, which need to

be addressed by research in mathematics education.
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Definition

Over the past several decades, changes in

perspective as to what constitute statistics and

how statistics should be taught have occurred,

which resulted in new content, pedagogy and

technology, and extension of teaching to school

level. At the same time, statistics education has

emerged as a distinct discipline with its own

research base, professional publications, and con-

ferences. There seems to be a large measure of

agreement on what content to emphasize in statis-

tics education: exploring data (describing patterns

and departures from patterns), sampling and

experimentation (planning and conducting

a study), anticipating patterns (exploring random

phenomena using probability and simulation),

and statistical inference (estimating population

parameters and testing hypotheses) (Scheaffer

2001). Teaching and learning statistics can differ

widely across countries due to cultural, pedagog-

ical, and curricular differences and the availability

of skilled teachers, resources, and technology.

Changing Views on Teaching Statistics
Over the Years

By the 1960s statistics began to make its way

from being a subject taught for a narrow group

of future scientists into the broader tertiary and

school curriculum but still with a heavy reliance

on probability. In the 1970s, the reinterpretation

of statistics into separate practices comprising

exploratory data analysis (EDA) and confirma-

tory data analysis (CDA, inferential statistics)

(Tukey 1977) freed certain kinds of data

analysis from ties to probability-based models,

so that the analysis of data could begin to acquire

status as an independent intellectual activity. The

introduction of simple data tools, such as stem

and leaf plots and boxplots, paved the way for

students at all levels to analyze real data interac-

tively without having to spend hours on the

underlying theory, calculations, and complicated

procedures. Computers and new pedagogies

would later complete the “data revolution” in

statistics education.

In the 1990s, there was an increasingly

strong call for statistics education to focus more

on statistical literacy, reasoning, and thinking.

Wild and Pfannkuch (1999) provided an

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
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empirically based comprehensive description

of the processes involved in the statisticians’

practice of data-based inquiry from problem

formulation to conclusions. One of the main argu-

ments presented is that traditional approaches to

teaching statistics focus on skills, procedures, and

computations, which do not lead students to reason

or think statistically.

These changes are implicated in a process of

democratization that has broadened and diversified

the backgrounds and motivations of those who

learn statistics at many levels with very diverse

interests and goals. There is a growing recognition

that the teaching of statistics is an essential part of

sound education since the use of data is increas-

ingly common in science, society, media, everyday

life, and almost any profession.

A Focus on Statistical Literacy and
Reasoning

The goal of teaching statistics is to produce

statistically educated students who develop

statistical literacy and the ability to reason

statistically. Statistical literacy is the ability to

interpret, critically evaluate, and communicate

about statistical information and messages.

Statistically literate behavior is predicated on the

joint activation of five interrelated knowledge

bases – literacy, statistical, mathematical, context,

and critical – together with a cluster of supporting

dispositions and enabling beliefs (Gal 2002).

Statistical reasoning is the way people reason

with the “big statistical ideas” and make sense

of statistical information during a data-based

activity. Statistical reasoning may involve

connecting one concept to another (e.g., center

and spread) or may combine ideas about data and

chance. Statistical reasoning also means under-

standing and being able to explain statistical pro-

cesses and being able to interpret statistical results.

The “big ideas” of statistics that are most

important for students to understand and use are

data, statistical models, distribution, center, vari-

ability, comparing groups, sampling and sampling

distributions, statistical inference, and covaria-

tion. Additional important underlying concepts

are uncertainty, randomness, evidence strength,

significance, and data production (e.g., experi-

ment design). In the past few years, researchers

have been developing ideas of informal statistical

reasoning in students as a way to build their

conceptual understanding of the foundations of

more formal ideas of statistics (Garfield and

Ben-Zvi 2008).

What Does Research Tell Us About
Teaching and Learning Statistics?

Research on teaching and learning statistics has

been conducted by researchers from different

disciplines and focused on students at all levels.

Common faulty heuristics, biases, and misconcep-

tions were found in adults when they make

judgments and decisions under uncertainty, e.g.,

the representativeness heuristic, law of small num-

bers, and gambler’s fallacy (Kahneman et al.

1982). Recognizing these persistent errors,

researchers have explored ways to help people

correctly use statistical reasoning, sometimes

using specific methods to overcome or correct

these types of problems.

Another line of inquiry has focused on how to

develop good statistical reasoning and under-

standing, as part of instruction in elementary

and secondary mathematics classes. These stud-

ies revealed many difficulties students have

with concepts that were believed to be fairly

elementary such as data, distribution, center,

and variability. The focus of these studies was

to investigate how students begin to understand

these ideas and how their reasoning develops

when using carefully designed activities assisted

by technological tools (Shaughnessy 2007).

A newer line of research is the study of

preservice or practicing teachers’ knowledge of

statistics and probability and how that understand-

ing develops in different contexts. The research

related to teachers’ statistical pedagogical content

knowledge suggests that this knowledge is in

many cases weak. Many teachers do not consider

themselves well prepared to teach statistics nor

face their students’ difficulties (Batanero et al.

2011).
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The studies that focus on teaching and learn-

ing statistics at the college level continue to point

out the many difficulties tertiary students have in

learning, remembering, and using statistics and

point to some modest successes. These studies

also serve to illustrate the many practical

problems faced by college statistics instructors

such as how to incorporate active or collaborative

learning in a large class, whether or not to use an

online or “hybrid” course, or how to select one

type of software tool as more effective than

another. While teachers would like research

studies to convince them that a particular

teaching method or instructional tool leads to

significantly improved student outcomes, that

kind of evidence is not actually available in the

research literature. However, recent classroom

research studies suggest some practical implica-

tions for teachers. For example, developing

a deep understanding of statistics concepts

is quite challenging and should not be

underestimated; it takes time, a well thought-out

learning trajectory, and appropriate technological

tools, activities, and discussion questions.

Teaching and Learning

As more and more students study statistics,

teachers are faced with many challenges in help-

ing these students succeed in learning and appre-

ciating statistics. The main sources of students’

difficulties were identified as: facing statistical

ideas and rules that are complex, difficult, and/

or counterintuitive, difficulty with the underlying

mathematics, the context in many statistical prob-

lems may mislead the students, and being uncom-

fortable with the messiness of data, the different

possible interpretations based on different

assumptions, and the extensive use of writing

and communication skills (Ben-Zvi and Garfield

2004).

The study of statistics should provide students

with tools and ideas to use in order to react

intelligently to quantitative information in the

world around them. Reflecting this need to

improve students’ ability to reason statistically,

teachers of statistics are urged to emphasize

statistical reasoning by providing explicit atten-

tion to the basic ideas of statistics (such as the

need for data, the importance of data production,

the omnipresence of variability); focus more on

data and concepts, less on theory, and fewer

recipes; and foster active learning (Cobb 1992).

These recommendations require changes of

teaching statistics in content (more data analysis,

less probability), pedagogy (fewer lectures, more

active learning), and technology (for data analy-

sis and simulations) (Moore 1997).

Statistics at school is usually part of the

mathematics curriculum. New K–12 curricular

programs set ambitious goals for statistics educa-

tion, including promoting students’ statistical lit-

eracy, reasoning, and understanding (e.g., NCTM

2000). These reform curricula weave a strand of

data handling into the traditional school mathe-

matical strands (number and operations, geome-

try, algebra). Detailed guidelines for teaching

and assessing statistics at different age levels

complement these standards. However, school

mathematics teachers, which are often not versed

in statistics, find it challenging to teach data han-

dling in accordance with these recommendations.

In order to face this challenge and promote

statistical reasoning, good instructional practice

consists of implementing inquiry or project-

based learning environments that stimulate

students to construct meaningful knowledge.

Garfield and Ben-Zvi (2009) suggest several

design principles to develop students’ statistical

reasoning: focus on developing central statistical

ideas rather than on presenting set of tools and

procedures; use real and motivating data sets to

engage students in making and testing conjec-

tures; use classroom activities to support the

development of students’ reasoning; integrate

the use of appropriate technological tools that

allow students to test their conjectures, explore

and analyze data, and develop their statistical

reasoning; promote classroom discourse that

includes statistical arguments and sustained

exchanges that focus on significant statistical

ideas; and use assessment to learn what students

know and to monitor the development of

their statistical learning, as well as to evaluate

instructional plans and progress.
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Technology has changed the way statisticians

work and has therefore been changing what

and how statistics is taught. Interactive data

visualizations allow for the creation of novel

representations of data. It opens up innovative

possibilities for students to make sense of data

but also place new demands on teachers to assess

the validity of the arguments that students are

making with these representations and to facili-

tate conversations in productive ways. Several

types of technological tools are currently used

in statistics education to help students understand

and reason about important statistical ideas.

However, using technological tools and how to

avoid common pitfalls are challenging open

issues (Biehler et al. 2013).

These changes in the learning goals of

statistics have led to a corresponding rethinking

of how to assess students. It is becoming more

common to use alternative assessments such as

student projects, reports, and oral presentations

than in the past. Much attention has been paid to

assess student learning, examine outcomes of

courses, align assessment with learning goals,

and alternative methods of assessment.

For Further Research

Research in statistics education has made signif-

icant progress in understanding students’ difficul-

ties in learning statistics and in offering and

evaluating a variety of useful instructional

strategies, learning environments, and tools.

However, many challenges are still ahead of sta-

tistics education, mostly in transforming research

results to practice, evaluating new programs,

planning and disseminating high-quality assess-

ments, and providing attractive and effective pro-

fessional development to mathematics teachers

(Garfield and Ben-Zvi 2007). The ongoing efforts

to reform statistics instruction and content have

the potential to both make the learning of statis-

tics more engaging and prepare a generation of

future citizens that deeply understand the ratio-

nale, perspective, and key ideas of statistics.

These are skills and knowledge that are crucial

in the current information age of data.
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Characteristics

The aim of mathematics instruction in primary

school is to provide a basis for thinking mathe-

matically about the world. This is as basic

a skill as literacy in today’s world. Mathematical

knowledge is also a means to achieve better

employment and to enter higher education. For

all these reasons, it is of great importance that

deaf children have adequate access to mathemat-

ical thinking, but unfortunately most deaf

children show a severe delay in mathematics

learning. This delay has been persistent over

many years. The average score in mathematics

achievement tests for deaf children in the age

range 8–15 in a study carried out in 1965 showed

that they were one standard deviation below the

average for hearing children, a result replicated

about three decades later. This means that about

50 % of the deaf pupils perform similarly to

the weakest 15 % of the hearing pupils. Later

results continue to confirm this weak perfor-

mance. In the UK, deaf students aged 16–17

years, at the end of compulsory school, were

found to have a mathematical age between

10 and 12.5 years. In the USA, the mathemat-

ical ability of 80 % of the deaf 14-year-olds

was described as “below basic” in problem

solving and knowledge of mathematical pro-

cedures. A recent systematic review confirmed

these findings (Gottardis et al. 2011) and

analyzed individual differences among deaf

children.

This serious and persistent difficulty is not uni-

versal among children who are deaf; approxi-

mately 15 % perform at age appropriate levels.

The successful minority indicates that deafness is

not a direct cause of difficulty in mathematics

learning (see Nunes 2004, for a discussion). This

article considers what is involved in learning math-

ematics in primary school, why deaf children may

be at a disadvantage, and how schools can support

their learning of mathematics.

Learning Mathematics in Primary School

In order to think mathematically, people need to

learn to represent quantities, relations, and space

using culturally developed and transmitted think-

ing tools, such as oral and written number sys-

tems, graphs, and calculators.

Some researchers argue that numerical concepts

have a neurological basis that is independent

of language learning, without which learning

mathematics is extremely difficult. In view of the

pervasiveness of deaf children’s mathematical dif-

ficulties, it could be hypothesized that they have an

inadequate development of such concepts. Basic

numerical cognition has been studied in research

with young deaf children as well as adults, and the

hypothesis has been discarded. Deaf children and

adults performed at least as well as their hearing

counterparts in such tasks.

The possible consequences of delays in the

acquisition of other language-based numerical

concepts have also been explored. Two examples

are knowledge of counting and understanding of

arithmetic operations.

Counting

Deaf children lag behind hearing children in

learning to count, independently of whether they

are learning to count orally or in sign (Leybaert

and Van Cutsem 2002). Consequently, they

perform less well than hearing children on school-

entry numeracy tests, which typically include tasks

that require counting (e.g., “show me 5 blocks”;

“tell me which number is bigger”). This delay

could be related to the well-established finding

that deaf people perform less well than hearing

people on serial learning tasks, in which words or

gestures must be learned in an exact sequence, just
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as the number string. However, they perform better

if the tasks are presented differently and use spatial

cues to organize the information. These findings are

provocative rather than conclusive. First, they raise

the possibility that deaf children could learn to

count more easily if appropriate visual and spatial

methods were used for teaching rather than serial

learning instruction. Second, serial learning is not

an appropriate description of counting skills beyond

a certain number (about 20 or 30 in English but this

may differ depending on the counting system).

Research with hearing and deaf children shows

that counting is a structured activity: for example,

errors are more likely to occur at the boundaries

between decades (e.g., . . .38, 39, 50, 51, 52. . .) than

within decades. Therefore, in principle deaf

children’s initial disadvantage in counting could

be overcome with appropriate teaching methods

and with support for mastery of the structure of

the system. However, it is possible that their initial

struggle with learning to count lowers adults’

expectations about what they can learn in mathe-

matics, resulting in less stimulation on mathemati-

cal tasks, and that it also interferes with the

children’s own discoveries in the domain of math-

ematical reasoning.

Early Mathematical Reasoning and Arithmetic

Operations

The development of mathematical reasoning starts

before school, when children solve practical prob-

lems using actions, which they learn to combine

with counting. When most children start school (at

age 5 or 6), they can already solve simple addition

and subtraction problems by putting together or

separating objects and counting, and some can

also solve multiplication and division problems.

By counting, children use explicit numerical rep-

resentation both for thinking and communicating.

When numbers are small and the children can use

objects, deaf children do aswell as hearing children

in solving these problems, but if the numbers go

above 10 or 20, most deaf children fall behind.

When they are compared with hearing children of

the same counting ability, they are just as compe-

tent in solving numerical tasks (Leybaert and Van

Cutsem 2002), but their disadvantage in counting is

reflected in their problem-solving skills when they

are compared to same-age hearing peers. Thus, it is

possible that, not knowing number words well

enough to support their mathematical reasoning,

they do not discover how to use counting to solve

simple arithmetic problems or important ideas for

their later success, such as the inverse relation

between addition and subtraction. However,

Nunes and colleagues (2008a, b) have shown that

relatively small amounts of teaching can effec-

tively improve young deaf children’s performance

in the mathematical reasoning and arithmetic

tasks, with which they were struggling before the

teaching.

Conclusion

There is little doubt that many deaf children show

severe and persistent difficulties in learning math-

ematics. Evidence suggests that there is no direct

connection between deafness and problems with

basic number concepts that precede language.

However, deaf children lag behind hearing

children in learning to count, whether orally or in

sign, and at school entry they are behind their

hearing counterparts in mathematical knowledge.

It is possible that falling behind in counting places

deaf children at a disadvantage from the adults’

perspective and that they end up receiving less

stimulation to solve mathematical problems early

on. It is also possible that their own informal

mathematical knowledge is limited by their diffi-

culty in representing quantities explicitly with

number words. These findings and conclusions

suggest that, if parents and preschool teachers

could find visual and spatial ways to teach

counting to deaf children, one would see positive

changes in the average achievement of deaf

children in mathematics in the future.
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Definition

This entry examines the different facets of deduc-

tive reasoning with respect to the learning and

teaching of mathematical proof. Deductive rea-

soning may be defined as a formal way of reason-

ing, usually top-down [from the general to the

particular] with adherence to logical consistency.

Characteristics of Deductive Reasoning

The examinations of the learning and teaching of

proof are multifaceted. They address a broad

range of factors: mathematical, historical-episte-

mological, cognitive, sociological, and instruc-

tional. Research questions involving these

factors include the following:

Mathematical and Historical-Epistemological

Factors

1. What is proof and what are its functions?

2. How are proofs constructed, verified, and

accepted in the mathematics community?

3. What are some of the critical phases in the

development of proof in the history of

mathematics?

Cognitive Factors

4. What are students’ current conceptions of

proof?

5. What are students’ difficulties with proof?

6. What accounts for these difficulties?

Instructional-Sociocultural Factors

7. Why teach proof?

8. How should proof be taught?

9. How are proofs constructed, verified, and

accepted in the classroom?

10. What are the critical phases in the develop-

ment of proof with the individual student and

within the classroom as a community of

learners?

11. What classroom environment is conducive

to the development of the concept of proof

with students?

12. What form of interactions among the students

and between the students and the teacher can

foster students’ conception of proof?

13. What mathematical activities – possibly

with the use of technology – can enhance

students’ conceptions of proof?

14. How is proof currently being taught?

15. What do teachers need to know in order to

teach proof effectively?

Theoretical Factors

16. What theoretical tools seem suitable for

investigating and advancing students’ con-

ceptions of proof?

One’s investigation of these questions is

greatly influenced by her or his philosophical

orientation to the processes of learning and teach-

ing and would reflect her or his conclusion to

questions such as the following: What bearing,

if any, does the epistemology of proof in the
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history of mathematics have on the conceptual

development of proof with students? What bear-

ing, if any, does the way mathematicians con-

struct proofs have on instructional treatments of

proof? What bearing, if any, does everyday justi-

fication and argumentation have on students’

proving behaviors in mathematical contexts?

Historical-Epistemological Developments

Deductive reasoning is a mode of thought com-

monly characterized as a sequence of proposi-

tions where one must accept any of the

propositions to be true if he or she has accepted

the truth of those that preceded it in the sequence.

This mode of thought was conceived by the

Greeks more than twentieth centuries ago and is

still dominant in the mathematics of our days. So

remarkable is the Greeks’ achievement that their

mathematics became a historical mark to which

other kinds of mathematics are compared. The

nature of deductive reasoning varies throughout

history (Kleiner 1991). Of particular contrast is

Greek mathematics versus modern mathematics.

In Greek mathematics, the particular entities

under investigation are idealizations of experien-

tial spatial realities and so also are the proposi-

tions on the relationships among these entities.

Logical deduction came to be central in the rea-

soning process, and it alone necessitated and

cemented the geometric edifice they created. In

constructing their geometry, as is depicted in

Euclid’s Elements, the Greeks had only one

model in mind – that of imageries of idealized

physical reality. From the vantage point of mod-

ern mathematics, neither the primitive terms nor

the axioms in Greek mathematics were variables,

but constants referring to a single spatial model

(Klein 1968; Wilder 1967), as is expressed in the

ideal world of Plato’s philosophy. In modern

mathematics, on the other hand, primary terms

and axioms are open to different possible

realizations. An important manifestation of

this revolution is the distinction between

Euclid’s Elements and Hilbert’s Grundlagen.

The latter characterizes a structure that fits differ-

ent models, that is, in an abstraction of numerous

models, such as the Euclidean space, the surface

of a half-sphere and the ordered pairs and triples

of real numbers, including the interpretation that

the axioms, are meaningless formulas.

Considerations of historical-epistemological

developments led to new research questions

with direct bearing on the learning and teaching

of proofs. For example, to what extent and in

what ways is the nature of the content intertwined

with the nature of proving? In geometry, for

example, does students’ ability to construct an

image of a point as a dimensionless geometric

entity impact their ability to develop the Greek

conception of proof? What is the cognitive or

social mechanism by which deductive proving

can be necessitated for the students? The Greek’s

construction of their geometric edifice seems

to have been a result of their desire to

create a consistent system that was free from

paradoxes. Would paradoxes of the same nature

create a similar intellectual need with students?

Students encounter difficulties in moving

empirical reasoning to deductive reasoning,

particularly from the Greek’s conception of

proof to the modern conception of proof. Exactly

what are these difficulties? What role does the

emphasis on form rather than content in modern

mathematics (as opposed to Greek mathematics,

where content is more prominent) play in this

transition?

Classifications of Conceptualizations of Proof

Harel and Sowder (1998) call these conceptuali-

zations proof schemes, which they classify into

a system of subcategories. Their taxonomy is

organized around three main classes of catego-

ries: the external conviction proof schemes class,

the empirical proof schemes class, and the deduc-

tive proof schemes class. A partial description of

these classes follows.

External Conviction Proof Schemes

Proving within the external conviction proof

schemes class depends either (a) on an authority

such as a teacher or a book, (b) on strictly the

appearance of the argument (e.g., proofs in geom-

etry must have a two-column format), or (c) on

symbol manipulations, with the symbols or the

manipulations having no potential coherent sys-

tem of referents (e.g., quantitative and spatial) in
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the eyes of the student. Accordingly, the external

conviction proof schemes class consists of three

categories: the authoritarian proof scheme cate-

gory, the ritual proof scheme category, and the

non-referential symbolic proof scheme category.

Empirical Proof Schemes

Schemes in the empirical proof scheme class are

marked by their reliance on either (a) an evidence

from examples (sometimes just one example) of

direct measurements of quantities, substitutions

of specific numbers in algebraic expressions,

etc., or (b) perceptions. Accordingly, this class

consists of two categories: the inductive

proof scheme category and the perceptual proof

scheme category.

Deductive Proof Schemes

The deductive proof schemes class consists of

two subcategories, each consisting of various

proof schemes: the transformational proof

scheme category and the axiomatic proof scheme

category.

Classifications of Functions of Proof

In general, the empirical proof schemes and the

deductive proof schemes categories correspond

to what Bell (1976) calls empirical justification

and deductive justification and Balacheff (1988)

calls pragmatic justifications and conceptual jus-

tifications, respectively. Pragmatic justification

is further divided into three categories: naı̈ve

empiricism (justification by a few random exam-

ples), crucial experiment (justification by care-

fully selected examples), and generic example

(justification by an example representing salient

characteristics of a whole class of cases). Con-

ceptual justification is divided into two catego-

ries: thought experiment, where the justification

is disassociated from specific examples, and sym-

bolic calculation, where the justification is based

solely on transformation of symbols.

These taxonomies are not explicit enough

about many critical functions of proof within

mathematics. There is a need to point to these

functions due to their importance in mathematics

in general and to their instructional implications

in particular. The work by Hanna (1990),

Balacheff (1998), Bell (1976), Hersh (1993),

and de Villiers (1999) explicitly address these

functions. De Villiers, who built on the work of

the others scholars mentioned here, raises two

important questions about the role of proof: (a)

“What different functions does proof have within

mathematics itself?” and (b) “how can these

functions be effectively utilized in the classroom

to make proof a more meaningful activity?”

According to de Villiers, mathematical proof

has six not mutually exclusive roles: Verification

refers to the role of proof as a means to demon-

strate the truth of an assertion according to

a predetermined set of rules of logic and pre-

mises – the axiomatic proof scheme.Explanation

is different from verification in that for

a mathematician it is usually insufficient to

know only that a statement is true. He or she is

likely to seek insight into why the assertion is

true. “Mathematicians routinely distinguish

proofs that merely demonstrate from proofs

which explain” (Steiner 1978, p. 135). For

many, the role of mathematical proofs goes

beyond achieving certainty – to show that some-

thing is true; rather, “they’re there to show. . .

why [an assertion] is true,” as Gleason, one of

solvers of the solver of Hilbert’s Fifth Problem

(Yandell 2002, p. 150), points out. Two millennia

before him, Aristotle, in his Posterior Analytic,

asserted, “. . . We suppose ourselves to possess

unqualified scientific knowledge of a thing, as

opposed to knowing it in the accidental way in

which the sophist knows, when we think that we

know the cause on which the fact depends as the

cause of the fact and of no other” (p. 4).

Discovery refers to the situations where through

the process of proving, new results may be dis-

covered. For example, one might realize that

some of the statement conditions can be relaxed,

thereby generalizing the statement to a larger

class of cases. Or, conversely, through the prov-

ing process, one might discover counterexamples

to the assertion, which, in turn, would lead to

a refinement of the assertion by adding necessary

restrictions that would eliminate counterexam-

ples. Systematization refers to the presentation

of verifications in organized forms, where each

result is derived sequentially from previously
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established results, definitions, axioms, and pri-

mary terms. Communication refers to the social

interaction about the meaning, validity, and

importance of the mathematical knowledge

offered by the proof produced. Intellectual

Challenge refers to the mental state of

self-realization and fulfillment one can derive

from constructing a proof.

Students’ Proof Schemes

Status studies on students’ conceptualization of

proof show the absence of the deductive proof

scheme and the pervasiveness of the empirical

proof scheme among students. Students base

their responses on the appearances in drawings,

and mental pictures alone constitute the meaning

of geometric terms. They justify mathematical

statements by providing specific examples, not

able to distinguish between inductive and deduc-

tive arguments. Even more able students may not

understand that no further examples are needed,

once a proof has been given. Students’ preference

for proof is ritualistically and authoritatively

based. For example, when the stated purpose

was to get the best mark, they often felt that

more formal – e.g., algebraic – arguments might

be preferable to their first choices. These studies

also show a lack of understanding of the

functions of proof in mathematics, often even

among students who had taken geometry

and among students for whom the curriculum

pays special attention to conjecturing and

explaining or justifying conclusions in both alge-

bra and geometry. They believe proofs are used

only to verify facts that they already know and

have no sense of a purpose of proof or of its

meaning. Students have difficulty understanding

the role of counterexamples; many do not under-

stand that one counterexample is sufficient to

disprove a conjecture. Students do not see any

need to prove a mathematical proposition, espe-

cially those they considered to be intuitively

obvious. This is the case even in a country like

Japan where the official curriculum emphasizes

proof. They view proof as the method to examine

and verify a later particular case. Finally, the

studies show that students have difficulty writing

valid simple proofs and constructing, or even

starting, simple proofs. They have difficulty

with indirect proofs, and only a few can complete

an indirect proof that has been started.

Impact of Instruction

Students who receive more instructional time on

developing analytical reasoning by solving unique

problems fare noticeably better on overall test

scores. Likewise, students who have been expected

to write proofs and who have had classes that

emphasized proof were somewhat better than

other students. It also seems possible to establish

desirable sociomathematical norms relevant to

proof, through careful instruction, often featuring

the student role in proof-giving. There has been the

concern that the ease with which technology can

generate a large number of examples naturally

could undercut any student-felt need for deductive

proof schemes. Several studies have shown that

with careful, nontrivial planning and instruction

over a period of time, progress toward deductive

proof schemes is possible in technology environ-

ments, where such desiderata as making conjec-

tures and definitions occur.
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Characteristics

Chromosome 22q11.2 deletion syndrome (22q) is

the most common genetic deletion syndrome

with an estimated prevalence of between one in

3,000 and 6,000 births (e.g., Kobrynski and

Sullivan 2007). It has only been detectable with

100% accuracy since 1992 using techniques such

as the FISH test (fluorescence in situ hybridiza-

tion). Prior to identification of a single associated

deletion, the syndrome had been given a number

of different labels according to the primary med-

ical condition, for example, velocardiofacial syn-

drome, DiGeorge syndrome, Cayler syndrome,

Shprintzen syndrome, and Catch 22.

The majority of individuals with 22q

experience some degree of learning difficulty

and generally show a marked imbalance in

performance across different subtests within IQ

batteries. Verbal IQ scores are usually signifi-

cantly higher than performance IQ scores (e.g.,

Moss et al. 1999; Wang et al. 2007).

The majority of children will receive some

form of support at school although some

individuals experience no difficulties at all.

Indeed a very wide level of individual differ-

ences in attainment in individuals with 22q is

noted in all studies to date.

There is consistent evidence that mathemat-

ics skills are weaker than literacy skills in the

majority children with 22q. This profile is

unusual as children with mathematics difficul-

ties are often reported to have comorbid reading

difficulties. Typically, performance on stan-

dardized tests of reading and spelling is within

the normal range, but performance on mathe-

matical reasoning and arithmetic tasks is at least

one standard deviation below age norms in chil-

dren with 22q. Children with 22q specifically

selected to have full scale IQ of at least 70 also

demonstrate this profile, thereby suggesting that

it is associated with 22q per se rather than low

general ability.

There are very few studies examining number

skills in detail in childrenwith 22q. De Smedt et al.

(2006, 2007a, b) tested children, selected to have

an IQ of more than 70, on a series of computerized

tests assessing performance in number reading

and writing, number comparison, counting, and

single and multi-digit arithmetic. A mathematical

word-solving task was also included and reading

ability was measured. Children were individually

matched with typically developing children from

the same class at school for gender, age, and

parental education level. Consistent with their

hypotheses, De Smedt et al. (2007a, b) report

group differences on multi-digit operations

involving a carry, word-solving problems,

and speed in judging the relative value of

two digits. There was no difference in reading,

number reading and writing, single digit addi-

tion, or verbal and dot counting accuracy.

The difficulties with multi-digit operations

are unsurprising given the visuospatial require-

ments of operations such as borrowing and

carrying. Previous researches suggest that

multi-digit arithmetic is an area of particular

difficulty in children with visuospatial learning

disability as well as arithmetic difficulties

(Venneri et al. 2003). More research is needed
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to further uncover the nature of the mathemat-

ical difficulties experienced by children with

22q and to aim to uncover best practice

methods for teaching number skills in 22q as

so far, certainly in the UK, no consensus has

been reached.
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Definition

Design-based research is a formative approach to

research, in which a product or process (or “tool”)

is envisaged, designed, developed, and refined

through cycles of enactment, observation,

analysis, and redesign, with systematic feedback

from end users. In education, such tools

might, for example, include innovative teaching

methods, materials, professional development

programs, and/or assessment tasks. Educational

theory is used to inform the design and refinement

of the tools and is itself refined during the

research process. Its goals are to create innova-

tive tools for others to use, describe and explain

how these tools function, account for the range

of implementations that occur, and develop

principles and theories that may guide future

designs. Ultimately, the goal is transformative;

we seek to create new teaching and learning

possibilities and study their impact on teachers,

children, and other end users.

The Origins and Need for Design
Research

Educational research may broadly be categorized

into three groups: the humanities approach, schol-

arly study that generates fresh insights through

critical commentary, the scientific approach

that analyzes phenomena empirically to better
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understand how the world works, and the engineer-

ing approach that not only seeks to understand the

status quo but also attempts to use existing

knowledge to systematically develop “high-quality

solutions to practical problems” (Burkhardt and

Schoenfeld 2003). Design research falls into this

“engineering” category and, as such, seeks to pro-

vide the tools and processes that enable the end

users of mathematics education (teachers and

students, administrators and politicians) to tackle

practical problems in authentic settings.

Design research is an unsettled construct and

the field is in its youth. It is only at the beginning

of the last two decades that we see design

research as an emerging paradigm for the study

of learning through the systematic design of

teaching strategies and tools. The beginnings of

this movement, at least in the USA, are usually

attributed to Brown (1992) and Collins (1992),

though in a sense, it was an idea waiting to be

named (Schoenfeld 2004). In Europe there have

long been traditions of principled design-based

research under other guises, such as curriculum

development and didactical engineering (e.g.,

Bell 1993; Brousseau 1997; Wittmann 1995).

Prior to the 1990s, much educational and psy-

chological research had relied heavily on quasi-

experimental studies that had been developed

successfully in other fields such as agriculture.

These involved experimental and control treat-

ments to evaluate whether or not particular vari-

ables were associated with particular outcomes.

In mathematics education, for example, one

might design a novel approach to teaching

a particular area of content, assign students to

an experimental or control group, and assess

their performance on some defined measures,

using pre- and posttesting. Though sounding

straightforward, this practice proved highly prob-

lematic (Schoenfeld 2004): the goals of education

are more complex than the mastery of specific

skills; the control of variables in naturalistic set-

tings is often impossible, undesirable, and some-

times even unethical; and much of the theory is

“emergent,” only becoming apparent as one

engages in the research.

In the early 1990s, a number of researchers

began to question the limitations of traditional

experimental psychology as a paradigm for

educational research. Brown’s paper on “design

experiments” was seminal (Brown 1992). Brown

recounts how her own research moved away

from laboratory settings towards naturalistic

ones in which she attempted to transform class-

rooms from “worksites under the management

of teachers into communities of learning.”

She vividly recounts her own struggles in

reconceptualizing her focus and methodology,

deconstructing methodological criticisms against

it (such as the Hawthorne effect). Interestingly

Brown still saw the need for lab-based research,

both to precede and stimulate work in naturalistic

settings and also for the closer study of phenom-

ena that had arisen in those settings. At about the

same time, Collins (1992, pp. 290–293) began

to argue for a design science in education,

distinguishing analytic sciences (such as physics

or biology) as where research is conducted in

order to explain phenomena from design sciences

(such as aeronautics or acoustics) where the goal

is to determine how designed artifacts (such as

airplanes or concert halls) behave under different

conditions. He argued strongly for the need of the

latter in education. In mathematics education,

such designed artifacts might include, for exam-

ple, new teaching methods, materials, profes-

sional development programs, assessment tasks,

or any combination of these.

Since that time, “design research” has become

more widespread and respectable in education.

However it must be said that not all so-called

“design research” studies satisfy the definition

described above. Some, for example, do not sat-

isfy the requirement that the designs should be

theory-based and develop theory, while others do

not move beyond the early stages and test their

designs in the hands of others not involved in the

development process.

Characterizing Design-Based Research

There have been many attempts to characterize

design-based research (Barab and Squire 2004;

Bereiter 2002; Cobb et al. 2003; DBRC

2003, p. 5; Kelly 2003; Lesh and Sriraman 2010;
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Swan 2006, 2011; van den Akker et al. 2006).

While design research is still in its infancy and

its characterization is far from settled, most

researchers do seem to agree that design-based

research is:

Creative and Visionary

The researcher identifies a problem in a defined

context and, drawing on prior research, envisions

a tool that might help end users to tackle it.

A draft design is developed, possibly with the

assistance of end users. For example, the

researcher identifies a particular student learning

need and uses research to design a series of les-

sons. The ultimate aim is to produce an effective

design, an account of the theory and principles

underpinning the design, and an analysis of the

range of ways in which the design functions in the

hands of a typical sample of the target population

of teachers and students.

Ecologically Valid

The researcher studies and refines the design in

authentic settings, such as classrooms. This pre-

cludes the prior manipulation of variables in the

study. It is important, therefore, to distinguish

those aspects of the design that are being studied

from those that are extraneous.

Interventionist and Iterative

The role of the researcher evolves as the research

proceeds. During early iterations, the design is

usually sketchy and the researcher needs to inter-

vene to make it work. With teaching materials,

for example, this phase may be conducted with

small samples of students. Later, as the design

evolves, the researcher holds back, in order to see

how the design functions in the hands of end

users. Early iterations are often conducted in

a few favorable contexts. Early drafts of teaching

materials, for example, may be tested in carefully

chosen classrooms with confident teachers, in

order to gain insights into what is possible with

faithful implementation. Later iterations aim to

study how the design functions in a wider range

of authentic contexts, with teachers who have not

been involved in the design process. Under these

conditions, “design mutations” invariably occur.

Rather than viewing these as negative, interfering

factors, the designs and theories evolve to explain

these mutations. With each cycle of the process,

the sample size is increased and becomes more

typical of the target population. From time to

time, a particular issue may arise that the

researcher wants to study closely. In such

a case, it is possible to go back to the small-

scale study of that isolated issue.

Theory-Driven

The outputs of design research include develop-

ing theories about learning, interventions, and

tools. Rather than focusing on learning outcomes,

using pre- and posttests, the research seeks to

understand how designs function under different

conditions and in different classroom contexts.

The theories that evolve in this way are local

and humble in scope and should not be judged

by their claims to “truth” but rather their claims to

be useful (Cobb et al. 2003). Theory in design

research usually focuses on an explanation of

how and why a particular design feature works

in a particular way. It is both specific and gener-

ative in that it can be used to predict ways in

which future designs will function if they embody

this feature.

Some Issues and Challenges

Design research done well requires great

skill on the part of researchers. Indeed, the

combination of skills required is not usually

found in individuals but in teams. A design

research team will typically involve people

with knowledge of the literature (researchers),

an understanding of pedagogy (teachers), cre-

ative “care and flair” (designers), and facility

with “delivering” the design (publishers IT

technicians).

Secondly, design research often takes a great

deal longer than other forms of research. There is

often a significant “entry fee” in terms of time and

energy taken up with producing a prototype

before any study of it can begin. This is particu-

larly true if the design involves creating

new software. Then, each cycle of design,
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implementation, analysis, and redesign can each

occupy weeks, if not months.

Thirdly, design research is data rich. A

mixture of qualitative and quantitative methods

is used to develop a rich description of the way

the design works as well as the kinds of learning

outcomes that may be expected. This often results

in a proliferation of data. Brown, for example,

found that she “had no room to store all the data,

let alone time to score it” (Brown 1992, p. 152).

Data may include lesson observations, videos

of the designs in use, and questionnaires

and interviews with users. In early iterations,

observation plays a dominant role. Later, how-

ever, more indirect means are also needed as the

sample size grows. Reliability may be improved

through the use of triangulation from multiple

data sources and repetition of analyses across

cycles of implementation and through the use of

standardized measures.

Fourthly, design research requires discipline. It

is all too tempting to turn a “good idea” into a draft

design and then ask someone to try it out to “see

what happens.” Good design-based research is

more than formative evaluation, however; it is

theory-driven. In preparation for a design-based

research study, onemust try to articulate the theory

and draw clear lines of connection between this

and the design itself. This may be done by eliciting

“principles” to direct the design. The research

involves putting these principles in “harms way”

(Cobb et al. 2003). Then, the focus of the research

needs to be articulated. For early iterations this

may be on the potential impact of the faithful use

of the design, while on later iterations, we may be

more interested in refining the design by studying

end users’ interpretations and mutations.

Finally, writing up design research is

problematic. Most designs are too extensive to

be described and analyzed in traditional journal

articles that emphasize methods and results over

tools. Recently e-journals have begun to appear

that allow for a much clearer articulation of

design-based research. These, for example,

allow extensive extracts of teaching and profes-

sional development materials to be displayed,

along with videos of the designs in use (see for

example, http://www.educationaldesigner.org).

Cross-References

▶Curriculum Resources and Textbooks in

Mathematics Education

▶Mathematics Curriculum Evaluation

▶Didactic Engineering in Mathematics

Education
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Definition

Dialogic teaching and learning refers to certain

qualities in the interaction between teachers and

students and among students. The qualities concern

possibilities for the students’ involvement in the

educational process, for establishing enquiry pro-

cesses, and for developing critical competencies.

Characteristics

Sources of Inspiration

There are different sources of inspiration for bring-

ing dialogue into the mathematics classroom, and

let me just refer to two rather different.

The notion of dialogue plays a particular role

in the pedagogy of Paulo Freire. He sees dialogue

as crucial for developing literacy, which refers to

a capacity in reading and writing the world:

reading it, in the sense that one can interpret

sociopolitical phenomena, and writing it, in the

sense that one becomes able to make changes.

With explicit reference to mathematics, the

crucial role of dialogue can be argued with

allusion to Imre Lakatos’ presentation in Proof

and Refutations (Lakatos 1976). Here Lakatos

shows that a process of mathematical discovery

is of dialogic nature, characterized by proofs and

refutations.

Critical mathematics education and social

constructivism have developed dialogic teaching

and learning through a range of examples and

studies. It has been emphasized that dialogue is

principal for establishing critical perspectives on

mathematics and for a shared construction of

mathematical notions and ideas. In fact dialogic

teaching and dialogic learning represents two

aspects of the same process.

Marilyn Frankenstein (1983) has emphasized

the importance of Freire’s ideas for developing

critical mathematics education, and Paul Ernest

(1998) has opened the broader perspective of

social constructivism, also acknowledging the

importance of Lakatos work.

The Inquiry Cooperation Model

The notion of dialogue appears to be completely

open. As a consequence, it becomes important to

try to characterize what a dialogue could mean.

The Inquiry Cooperation Model as presented

in Alrø and Skovsmose (2002) provides such

a specification with particular references to

mathematics.

This model characterizes different dialogic

acts: Getting in contact refers to the act of tuning

in at each other. Locating and identifying refer to

forms of grasping perspectives, ideas, and argu-

ments of the other. Advocating means providing

arguments for a certain point of view – although

not necessary one’s own. Thinking aloud means

making public details of one’s thinking, for

instance, through gestures and diagrams.

Reformulating refers to particular attempts in

grasping other ideas by rethinking, rephrasing,

and reworking them. Challenging means

questioning certain ideas, which is an important

way of sharpening mathematical arguments.

Evaluating refers to reflexive questioning, like:

What insight might we have reached? What new

questions have we encountered?

Dialogic teaching and learning can be

characterized as a process rich of such dialogic

acts.
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New Qualities in Teaching and Learning

The idea of dialogic teaching and learning is to

promote an education with new qualities. Let me

refer to just a few having to do with the students’

interest, making investigations, and developing

a mathemacy.

Students’ Interest. It has been emphasized

that dialogic teaching and learning includes

a sensitivity to the students’ perspectives and

possible interests for learning. This sensitivity

has not only to do with the dialogic act of

“getting in contact” but with all the acts

represented by the Inquiry Cooperation

Model. A principal point of dialogic teaching

is to invite students into the learning process

as active learners.

Making Investigations. Dialogic teaching and

learning can be characterized in terms of investi-

gative approaches, where both teacher and stu-

dents participate in the same inquiry process.

Barbara Jaworski (2006) makes a particular

emphasis on establishing communities of inquiry,

and in any such communities, dialogue plays

a defining role. Landscapes of investigations

(Skovsmose 2011) might also provide

environments that facilitate dialogic teaching

and learning.

Similar to literacy, mathemacy refers not only

to a capacity in dealing with mathematical

notions and ideas but also to a capacity in

interpreting sociopolitical phenomena and acting

in a mathematized society. Thus, mathemacy

combines a capacity in reading and writing

mathematics with a capacity in reading and writ-

ing the world (see Gutstein 2006). Dialogue

teaching and learning is in hectic develop-

ment, both in theory and in practice. A range

of new studies and new classroom initiatives

are being developed. In particular, the very

notion of dialogue is in need of further

development; see, for instance, Alrø and

Johnsen-Høines (2012).
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Introduction

Teachers manage didactical situations that create

and exploit mathematical situations where

practices are exercised and students’ mathemati-

cal knowledge is developed. The study of the

didactical contract concerns the compatibility

on this precise subject of the aspirations and

requirements of the students, the teachers, the

parents, and the society.

Definition

A “didactical contract” is an interpretation of the

commitments, the expectations, the beliefs, the

means, the results, and the penalties envisaged by

one of the protagonists of a didactical situation

(student, teacher, parents, society) for him- or

herself and for each of the others, à propos of

the mathematical knowledge being taught

(Brousseau and Otte 1989; Brousseau 1997).

The objective of these interpretations is to

account for the actions and reactions of the part-

ners in a didactical situation.

The didactical contract can be broken down

into two parts: a contract of devolution – the

teacher organizes the mathematical activity (see

▶Didactic Situations in Mathematics Education)

of the student who in response commits him-

or herself to it – and a contract of institu-

tionalization – the students propose

their results and the teacher vouches for the

part of their results that conforms to refer-

ence knowledge.

Customary practices (Balacheff 1988),

whether explicit or tacit, leave the hope that

divergences are accidental and reducible and

that there exist real contracts, whether or not

they can be made explicit, that are compatible

and satisfactory. This is not so, owing to various

paradoxes that became apparent in the course of

teaching in a way that is based on mathematical

situations. This gave rise to many questions,

among them are as follows:

How could students commit themselves to the

subject of knowledge that they have not yet

learned?

What are the respective roles of what is inex-

pressible, of what is said, of what is not said

or cannot be said to the other in the teaching

relationship?

Does there exist knowledge that ought not to be

made explicit before being learned?

The study of these questions was the origin of

the theory of didactical situations.

Characteristics

Background: Illustrative Examples

These questions arose in the course of research at

theCOREM(Center forObservation andResearch

onMathematics Education, entity formed of a lab-

oratory and a school establishment by the IREMof

the University of Bordeaux (1973–1999)) on the

possibility of assigning tomathematical situations

the job ofmanagingwhat the teacher cannot say or

the student cannot yet understand from a text, and

in the clinical observation of students failing selec-

tively in mathematics:

(a) The Case of Gaël. Gaël (8 years old) always

responded in the manner of a very young

child. It was not a developmental delay, but

rather a posture. By replacing some lessons

with “games” in which he could take a chance

and see the effects of his decisions and by

getting him to make bets – without too much

risk – on whether his answers were right, the

experimenters saw his attitude changes radi-

cally and his difficulties disappear. A new

“didactical contract” with him had been

constructed (Brousseau and Warfield 1998).

(b) The Age of the Captain. Researchers at the

Institute for Research on the Teaching of

Mathematics (IREM of Grenoble) offered

students at age 8 the following problem:

“On a boat there are 26 sheep and 10 goats.

How old is the captain?” 76 of the 97 students

answered, “36 years old.”

This experiment produced a scandal. Some

accused the teachers of stupefying their students;

others reproached the researchers for “laying stu-

pid traps for the children.” In a letter to the exper-

imenters, G. Brousseau indicated to them that it

was a matter of an “effect of the contract” for
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which neither the students nor the teachers were

responsible. So the researchers asked the students:

“What do you think of this problem?” The stu-

dents responded: “It is stupid!” The researchers

ask: “Then why did you answer it?” The students

answered: “Because the teacher asked for it!” The

researchers ask: “And if the captain was 50 years

old?” The students made a response: “The teacher

didn’t give the right numbers.” A similar experi-

ment done with established teachers produced the

same behavior: for various reasons (such as the

hope of an explanation that the teacher wanted to

hear) the subjects produce the answer least incom-

patible with their knowledge, even when they see

very well that it is false: the obligation of answer-

ing is stronger than that of answering correctly.

Despite these explanations, for years the initial

observation elicited strong criticisms of the work

of the teachers (Sarrazy 1996).

Didactical and Ethical Responsibility

The teacher has the responsibility of

supporting the collective and individual activ-

ity of the students, of attesting in the end to

the truth of the mathematics that has been

done, of confirming it or giving proofs, of

organizing it in the standard way, of identify-

ing errors that have been or might be made

and passing judgment on them (without pass-

ing judgment on their authors), and of provid-

ing the students with a moderate amount of

individual help (as with the natural learning of

a language.) Occasional individual help con-

forms to the collective process of mathemati-

cal communities. If the teacher finds himself

acceding to an institutional function, he may

be subject to obligations of equity and of

means for which the responsibility is shared

with the institution. Decisions made about the

teacher and the students based on individual

and isolated results are a dangerous absurdity.

Experts, parents, and society share the respon-

sibility for the effects of such decisions.

Paradoxes of the Didactical Contract

The teacher wants to teach what she knows to

a student who does not know it. This has many

consequences, among them are as follows:

(a) Custom can determine pedagogical and psy-

chological relationships, but not those proper

to new knowledge, because new knowledge

is a specific unexpected adventure that con-

sists of a modification and an augmentation of

old knowledge and of its implications. Thus,

it cannot be known in advance by the student:

the teacher can only commit himself to gen-

eral procedures, and for her part the student

cannot commit herself to a project of which

she does not know the main part.

(b) Paradox of devolution: the knowledge and

will of the teacher need to become those of

the student, but what the student knows

or does by the will of the teacher is not

done or decided by his own judgment. The

didactical contract can only succeed by being

broken: the student takes the risk of taking on

a responsibility from which he already

releases the teacher (a paradox similar to

that of Husserl).

(c) Paradox of the said and unsaid (consequence

of the preceding): it is in what the teacher

does not say that the student finds what she

can say herself.

(d) Paradox of the actor: the teacher must pre-

tend to discover with his students knowledge

that is well known to him. The lesson is

a stage production.

(e) The paradox of uncertainty: knowledge man-

ifests itself and is learned by the reduction of

uncertainty that it brings to a given situation.

Without uncertainty or with too much uncer-

tainty, there is neither adaptation nor learn-

ing. The result is that the optimal progression

of normal individual or collective learning is

accompanied by a normal optimal rate of

errors. Artificially reducing it damages both

individual and collective learning. It is useful

to arrange things so that it is not always the

same students who are condemned to supply

the necessary errors.

(f) As in the case of learning, excessive or pre-

mature adaptation of complex knowledge to

conditions that are too particular leads it to be

replaced by a simplified and specific knowl-

edge. This can then constitute an epistemo-

logical or didactical obstacle to its later
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adaptation to new conditions. (For example,

division of natural numbers is associated

with a meaning, sharing, which becomes an

obstacle to understanding it in the case where

a decimal number needs to be divided by

a larger decimal number, e.g., 0.3/0.8.)

(g) The paradox of rhetoric and mathematics. To

construct the students’ mathematical knowl-

edge and its logical organization, the teacher

uses various rhetorical means, designed to cap-

ture their attention. The culture, pedagogical

procedures, and even mathematical discourse

(commentaries on mathematics) overflow with

metaphors, analogies,metonyms, substitutions,

word pictures, etc. The mathematical concepts

are often constructed against these procedures

(e.g., “correlation is not causation”). The

teacher should thus at the same time as an

educator teach the culture with its historical

mistakes and as a specialist cause the rejection

of the parts that science has disqualified.

These paradoxes can only be unraveled by spe-

cific situations and processes carefully planned out

in the light ofwell-shared knowledge of mathemat-

ical and scientific didactique (Brousseau and Otte

1989; Brousseau 2005).

Observations of Reactions of Teachers to

Difficulties

These observations and the experimental and the-

oretical studies of the didactical contract make it

possible to understand and predict the cumulative

effects of teachers’ decisions.

The contract manifests itself essentially in

its ruptures. These are revealed by the reac-

tions of the students or by the interventions of

the teachers, and they can be classified as

follows:

(a) Abandonment. The teacher does not react to

an error made by the students (e.g., because it

would be too complicated to explain it), or

she repeats the question identically or she

gives the complete solution.

(b) The progressive reduction or manipulation

of the students’ uncertainty, using a great

variety of means:

• Bringing in mathematical, technical, or

methodological information

• Decomposition of the problem into inter-

mediate questions (decomposition of the

objectives)

• Use of various extra-mathematical

rhetorical means: analogies, metaphors,

metonyms, or mnemonic minders (the

“Topaze effect”)

(c) Critical commentary on the errors, the ques-

tion, the knowledge, or the material

(d) A trial of the student and its consequences:

penalties, discrimination, and individualization

In case of failure, the contract obligates the

teacher to try again. The new attempt either

replaces the preceding one or criticizes and

corrects it, making of it a new teaching object

(a meta-process).

For each of these types of response,

there are conditions under which it is the

most appropriate response; thus there is no

universal response.

For example, Novotná and Hošpesová (2007)

identify and classify the behaviors whose system-

atic repetition generates Topaze effects:

1. Explicitly, the teacher

(a) Gives the steps of the solution and trans-

forms it into the execution of a sequence of

tasks

(b) Asks questions in a sequence that man-

dates the procedures of the solution

(c) Gives warnings about a possible error

(d) Enumerates previous experiences or

knowledge, pointing out analogies with

problems that have previously been

resolved or are obvious or well known

2. Implicitly, he

(a) Reformulates students’ propositions or his

own

(b) Uses “guide” words

(c) Pronounces the first syllable of words

(d) Poses new questions that orient the student

towards the solution

(e) Shows doubt about dubious initiatives

Their research confirms that the resulting

Topaze effects go unnoticed but have a high

cost. The students, apparently active, become

dependent on this aid and lose their confidence

in themselves. An error is understood to be a

transgression of the didactical contract and
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proof itself, badly supported, becomes something

to be learned rather than understood.

By using jointly the notions of milieu, of situa-

tion, and of the didactical contract, Perrin-Glorian

andHersant (2003) were able to show in numerous

examples on the one hand what the student and

the milieu are in charge of and thus the occasions

for learning that are their responsibility, and on

the other hand the help brought in by the teacher.

Predicting and Explaining Certain

Long-Term Effects

The uncontrolled recursive resumption of the

same type of response leads to drifting and inev-

itable failures. For example, for the students

studying the procedure for solving problems by

the same pedagogical methods, studying theo-

rems is just as costly, less sure, and less useful.

As another example, a sequence of meta-

slippages contributed to the failure of the reform

of “modern math”: the foundations of mathemat-

ics were interpreted by “naı̈ve” set theory, which

was itself formalized into algebra. This was met-

aphorically represented by “graphs,” which

were finally interpreted in vernacular language.

Each representation betrayed the preceding one

slightly and supported new conventions, and the

slippages were ultimately uncontrollable. In the

absence of didactical situations and proven epis-

temological processes, varying the types of

response seems to be the best strategy.

Enforcing requirements based on the results of

individuals leads to a mincing up of the objec-

tives, to the abandonment of high-level objec-

tives, and to addressing the objectives by painful

behaviorist methods. These slow the learning and

lead to an individualization that slows it yet fur-

ther. Each of these tends to destroy the role of

provisional knowledge and to augment mechani-

cally the time for teaching and learning without

positive impact on the results.

Specifying the means of teaching a subject

involves precise and specific protocols for per-

formances that are known and accepted by the

population. Specifying required results for the

teachers as for the students has absolutely no

scientific basis. Its disastrous effects, predicted

since 1978, have been observable for 40 years.

The mean rate of success is a “regulated” var-

iable of the system. Otherwise stated, the global

progress of all the students is less rapid if one

requires at every stage a 100 % rate of success.

The conception of mathematical activity as an

adventure and a collective practice makes it pos-

sible to mitigate the effects of difference in

rhythms of learning.

It seems that today the requirements of the

different partners of teaching towards one

another are less and less compatible with each

other, perhaps because of the variety of possibil-

ities, of offers, and of perspectives provided by

numerous ill-coordinated sciences.

The experiments on teaching rational and dec-

imal numbers (Brousseau 1997) or statistics and

probability (Brousseau et al. 2002) prove that it is

possible to organize efficient and communicable

processes with the help of didactical contracts

based on the nature of the knowledge to be

acquired.

Extensions

Sarrazy (1996, 1997) studied the pitfalls of these

meta-didactical slippages and more particularly

those that are consequences of a teaching that

aims at making the contractual expectations

explicit, frequently taking the form of the teach-

ing of metacognitive or heuristic procedures – or

even of algorithms for solving problems.

Complementing the work engaged in by

Schubauer-Léoni (1986) in a psychosocial

approach to the didactical contract, Sarrazy rad-

icalized the paradox of the consubstantial rule

(A rule does not contain in itself its conditions

for use) of the contract at the intersection of the

theory of situations and Wittgensteinian anthro-

pology (Wittgenstein 1953). Contrary to the psy-

chological or linguistic interpretations of the

contract (such as that of “the age of the cap-

tain”), he showed how these slippages lead to

a veritable demathematization of teaching by

a displacement of the goals of the contract.

These works also made it possible to establish

the primacy of the role of situations and that of

school cultures (Sarrazy 2002; Clanché and Sarrazy

2002; Novotná and Sarrazy 2011) and family

habits conceived as backgrounds (Searle 1979)
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of the didactical contract. These backgrounds

make it possible to explain the differences in

sensitivity to the didactical contract, that is, the

objective differences of the various positions of

the students with regard to the implicit elements

of the contract and thus of their spontaneous

(and not necessarily conscious or thought-out)

“representations” of the division of responsibil-

ities in the contract (e.g., some of the students

answer that the captain is 36 years old, others

refrain from giving an answer, still others finally

say that they do not know, and some of them

authorize themselves to declare that this prob-

lem is absurd). These results reaffirm the impor-

tance of the Theory of Situations and notably the

explicative power of the contract, but also

underline the interest of considering the peda-

gogical ideologies of the teachers and the

cultures of the students in the interpretation of

contractual phenomena. These works together

lead into a perspective of study baptized

“anthropo-didactique,” situating the phenomena

of the didactical contract in the double perspec-

tive mentioned above. This theoretical current

has made it possible to reinterpret in a fertile way

a certain number of phenomena of teaching (lato

sensu), as much on the micro-didactical level as

the macro-didactical, and of their interactions,

such as school inequities (Sarrazy 2002), school

difficulties (Clanché and Sarrazy 2002; Sarrazy

and Novotna´ 2005) heterogeneities, didactical

time and didactical visibility (Chopin 2011),

student teacher interactions, and the effects of

the genre. These themes have traditionally been

studied by connected disciplines (psychology,

sociology, anthropology, etc.) but independently

of the didactical dimensions which in fact

are necessarily involved in these phenomena.

This approach thus realized the study of

what Brousseau designated in 1991 “didactical

conversions”: “The causes of phenomena of

a non-didactical nature can only influence

didactical phenomena by the intermediary

of elements having their origin in didactical

theory.” This “reinterpretation” of a non-

didactical phenomenon in didactical terms

is a didactical conversion (Brousseau and

Centeno 1991, p. 186).
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ordinaires. Rech Didact Math 23(2):217–276

D 158 Didactic Contract in Mathematics Education

http://dx.doi.org/10.1007/978-94-007-4978-8_47


Sarrazy B (1996) La sensibilité au contrat didactique: rôle
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d’arithmétique au cycle trois. Thèse de doctorat en
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Sarrazy B, Novotná J (2005) Didactical contract: theoret-
ical frame for the analysis of phenomena of teaching
mathematics. In: Novotná J (ed) Proceedings SEMT
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Definition

In mathematics education, there exists a tradition

of research giving a central role to the design

of teaching sessions and their experimentation

in classrooms. Didactical engineering, which

emerged in the early 1980s and continuously

developed since that time, is an important form

taken by this tradition. In the educational

community, it mainly denotes today a research

methodology based on the controlled design

and experimentation of teaching sequences and

adopting an internal mode of validation based

on the comparison between the a priori and

a posteriori analyses of these. However, since its

emergence, the expression didactical engineering

has also been used for denoting development

activities, referring to the design of educational

resources based on research results or construc-

tions and to the work of didactical engineers.

History

From its emergence as an academic field of study,

mathematics education has been associated with

the design and experimentation of innovative

teaching practices, in terms of both mathematical

content and pedagogy. The importance to be

attached to design was early stressed by

researchers as Brousseau and Wittman, for

instance, who very early considered that mathe-

matics education was a genuine field of research

that should develop its own frameworks and prac-

tices and not just a field of application for other

sciences such as mathematics and psychology.

The idea of didactical engineering (DE),

which emerged in French didactics in the early

1980s, contributed to firmly establish the place of

design in mathematics education research. Foun-

dational texts regarding DE such as Chevallard

(1982) make clear that the ambition of didactic

research of understanding and improving the

functioning of didactic systems where the teach-

ing and learning of mathematics takes place

cannot be achieved without considering these

systems in their concrete functioning, paying the

necessary attention to the different constraints

and forces acting on them. Controlled realizations

in classrooms should thus be given a prominent

role in research methodologies for identifying,

producing, and reproducing didactic phenomena,

for testing didactic constructions. As a research

methodology, DE emerged with this ambition,

relying on the conceptual tools provided by the

Theory of Didactical Situations (TDS), and

conversely contributing to its consolidation and
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evolution (Brousseau 1997). It quickly became a

well-defined and privileged methodology in the

French didactic community, accompanying

the development of research from elementary

school up to university level as evidenced in the

synthesis proposed at the 1989 Summer School of

Didactics of Mathematics (Artigue 1990, 1992).

From the 1990s, DE migrated outside its

original habitat, being extended to the design of

teacher preparation and professional development

sessions, used by didacticians from other disci-

plines, for instance, physical sciences or sports,

and also by researchers in mathematics education

in different countries. Simultaneously, the pro-

gressive shift of research attention towards

teachers increased the use of methodologies

based on naturalistic observations of classrooms,

leading to theoretical developments and results

that, in turn, affected DE.Moreover, design-based

research perspectives emerged in other contexts,

independently of DE (Design-Based Research

Collaborative 2003). These evolutions and the

resulting challenges are analyzed in Margolinas

et al. (2011).

DE as a Research Methodology

As a research methodology, DE is classically

structured into four different phases: preliminary

analyses; design and a priori analysis; realization,

observation, and data collection; and a posteriori

analysis and validation (Artigue 1990, 2009).

Preliminary analyses usually include three

main dimensions: an epistemological analysis of

the mathematical content at stake, an analysis of

the conditions and constraints that the DE will

face, and an analysis of what educational research

has to offer for supporting the design.

In the second phase, design and a priori analy-

sis, research hypotheses are engaged in the pro-

cess. Design requires a number of choices, from

global to local. They determine didactic variables,

which condition the interactions between students

and knowledge, between students and between

students and teachers, thus the opportunities that

students have to learn. In line with TDS, in design,

particular importance is attached:

To the search for fundamental situations, i.e.,

mathematical situations encapsulating the

epistemological essence of the concepts

To the characteristics of themilieuwith which the

students will interact in order to maximize the

potential it offers for autonomous action and

productive feedback

To the organization of devolution and institution-

alization processes by which the teacher, on the

one hand, makes students accept the mathemat-

ical responsibility of solving the task and, on

the other hand, connects the knowledge they

produce to the scholarly knowledge aimed at

The a priori analysis makes clear these choices

and their relation to the research hypotheses.

Conjectures are made regarding the possible

dynamic of the situation, students’ interaction

with the milieu, students’ strategies, their evolu-

tion and their outcomes, about teacher’s neces-

sary input and role. Such conjectures regard not

individuals but a generic and epistemic student

entering the mathematical situation with some

supposed knowledge background and accepting

to enter the mathematical game proposed to her.

The actual realization will involve students with

their personal specificities and history, but the

goal of the a priori analysis is not to anticipate

all these personal behavior; it is to build

a reference with which classroom realizations

will be contrasted in the a posteriori analysis.

During the phase of realization, data are

collected for the analysis a posteriori. The nature

of these data depends on the precise goals of

the DE, the hypotheses tested, and the conjectures

made in the a priori analysis. The realization can

lead to some adaptation of the design in itinere,

especially when the DE is of substantial size.

These adaptations are documented and taken

into account in the a posteriori analysis.

A posteriori analysis is organized in terms of

contrast with the a priori analysis. Up to what

point the data collected during the realization

support the a priori analysis? What are the signif-

icant convergences and divergences and how to

interpret them? The hypotheses underlying the

design are put to the test in this contrast. There

are always differences between the reference pro-

vided by the a priori analysis and the contingence
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analyzed in the a posteriori analysis. The valida-

tion of the hypotheses underlying the design does

not, thus impose perfect match between the two

analyses. Moreover, the validation of the research

hypotheses may require the collection of comple-

mentary data to those collected during the class-

room, especially for appreciating the learning

outcomes of the process. Statistical tools can be

used, but what is essential is that validation is

internal, not in terms of external comparison

between control and experimental groups.

These are the characteristics of DE as research

methodology when associated with the concep-

tion of a sequence of classroom sessions having

a precise mathematical aim. However, as shown

in Margolinas et al. (2011), this methodology has

been extended to other contexts such as teacher

education, more open activities such as project

work or modeling activities, and even mathemat-

ical activities carried out in informal settings. In

these last cases, the content of preliminary ana-

lyses must be adapted; what the design ambitions

to control in terms of learning trajectories and the

reference provided by the a priori analysis cannot

exactly have the same nature.

Realizations

The first exemplars of DE research regarded ele-

mentary school. Paradigmatic examples are the

long-term designs produced by Brousseau, on the

one hand, and by Douady, in the other hand, for

extending the field of numbers from whole num-

bers to rational numbers and decimals (Brousseau

et al. 2014; Douady 1986). The two constructions

were different, but they proved both to be success-

ful in the experimental settings where they were

tested, and they significantly contributed to the

state of the art regarding the learning and teaching

of numbers. Beyond that, they had theoretical

implications. The development of the tool-object

dialectics and the identification of the learning

potential offered by the organization of games

between mathematical settings by Douady are

intrinsically linked to her DE for the extension of

the number field; the idea of obsolescence of

didactic situations emerged from the attempts

made at reproducing Brousseau’s DE year after

year. These are only two examples among the

many we could mention. DEs were progressively

developed at all levels of schooling, covering a

diversity of mathematical domains and addressing

a diversity of research issues. At university level,

for instance, paradigmatic examples remain the

construction developed by Artigue and Rogalski

for the study of differential equations, combining

qualitative, algebraic, and numerical approaches to

this topic (Artigue 1993) and that developed by

Legrand for the teaching of Riemann integral

within the theoretical framework of the scientific

debate (Legrand 2001). Both were experimented

with first year students and showed their resistance

to students’ diversity. Constraints met at more

advanced levels of schooling contributed to the

deepening of the reflection on an optimized orga-

nization of the sharing of mathematical responsi-

bilities between students and teacher in DE and to

the softening of the conditions and structures often

imposed to design at more elementary levels. DE

was also enriched by its use in other domains

than mathematics and by researchers trained in

other cultural traditions. A good example of it is

provided by its use in sports, already mentioned,

and by the elaboration of DE combining the

theoretical support of TDS and that of semiotic

approaches (cf. for instance, (Falcade et al. 2007;

Maschietto 2008) using such combination for

studying the educational potential of digital

technologies). More globally, ICT has always

been a privileged domain for DE, for exploring

and testing the potential of new technologies,

and for supporting technological development as

well as theoretical advances in that area.

Another interesting example is the use of DE

within the socio-epistemological framework in

mathematics education (Farfán 1997; Cantoral

and Farfán 2003).

Challenges and Perspectives

DE developed as a research methodology, but

DE from the beginning had also the ambition of

providing a model for productive interaction

between fundamental research and action
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on didactic systems. DEs produced by research

were natural candidates for supporting such

a productive interaction. Quite soon, researchers

however experienced the fact that the DEs they

had developed and successfully tested in experi-

mental setting did not resist to the usual dissemi-

nation processes. This problem partly motivated

the shift of interest towards teachers’ representa-

tions and practices. Addressing it requires to

clearly differentiate research DE (RDE) and devel-

opment DE (DDE), acknowledging that these can-

not obey the same levels of control. In Margolinas

(2011), this issue is especially addressed by

Perrin-Glorian through the idea of DE of sec-

ond generation, in which the progressive loss

of control that the elaboration of a DDE

requires is co-organized in collaboration with

teachers and illustrated by an example. Such a

strategy implies a renewed conception of dis-

semination of research results, in line with the

current evolution of vision of relationships

between researchers and teachers.

Another challenge is the issue of relationships

between the tradition of DE described above and

the different forms of designwhich are developing

in mathematics education under the umbrella of

design-based research, reflecting the increased

interest for design in the field, or the vision of

design introduced in the Anthropological Theory

of Didactics (ATD) in the last decade in terms of

Activities of Study and Research (ASR) and

Courses of Study andResearch (CSR) (Chevallard

2006). Despite de fact that ATD and TSD

emerged in the same culture, the visions of

design they propose today present substantial

differences. Establishing productive connec-

tions between the two approaches without

losing the coherence proper to each of them

is a problem not fully solved but also

addressed in Margolinas (2011).
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Didactical Situation

A didactical situation in mathematics is

a project organized so as to cause one or some

students to appropriate some piece of mathemat-

ical reference knowledge. (The organizer and the

student may be individuals, a population,

institutions, and so on.)

Components

Every didactical process is a sequence of situa-

tions, each pertaining to one of the following

three types:

A “situation of devolution” in which the teacher

sets the students up:

– to accept boldly and confidently the

challenge of an engaging and instructive

mathematical situation whose instruc-

tions he gives in advance: conditions,

rules, goal, and above all the criterion

for success

– and to do it without his help, on their own

responsibility (Brousseau1997, pp. 230–235)

A “mathematical situation” that supports the

students in autonomous mathematical activi-

ties, both individual and collective, that repre-

sent those in use by mathematicians. Rather

than looking to gain credit for themselves, the

students are engaged in:

– Producing “new” statements and discussing

their validity

– Making decisions, formulating hypotheses,

predicting and judging their consequences,

attempting to communicate information,

producing and organizing models, argu-

ments and proofs, etc., adequate for certain

precise projects

– and evaluating and correcting by them-

selves the consequences of their choices

It is thus not the students who are in question,

but some conjectures and some knowledge

(Brousseau 1997, pp. 230–235).

A “situation of institutionalization” in which

the teacher:

– Takes note of the progress of the mathe-

matical situation, of the questions and

answers that have been obtained or studied

from it, and of those that have emerged, and

places them within the perspective of the

curriculum

– Distinguishes among the pieces of knowl-

edge (connaissances) that have appeared

those that have revealed themselves to be

false and those that are correct, and among

the latter those that will serve as references,

presenting in that case the canonical way of

formulating them

– And draws conclusions for the organization

of further sequences (exercises, problems,

etc.) (Brousseau 1997, pp. 235–243).

Teaching methods

Teaching methods can be distinguished first by

the interpretation, the role, and the importance

assigned to each of the components. Here are

two very different examples of this:

Example 1: In certain methods, devolution con-

sists of a prerequisite teaching of new knowl-

edge (a lecture), followed by examples and

exercises, and followed by the presentation

of problems whose autonomous solution by

the students constitutes the mathematical situ-

ation. Institutionalization consists of correc-

tion, evaluation, and the conclusions that the

teacher draws from them. Sometimes the
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mathematical situation is considered only as

a means of verifying the individual learning

produced by the lecture.

Example 2: In other methods, devolution is

reduced to the organization, presentation, and

staging of an individual or collective mathe-

matical situation aimed at provoking activities

and processes like those of mathematicians:

a search for solutions or proofs but also

production of questions, hypotheses or conjec-

tures, reformulations, definitions and study

of objects, sorting, debates, challenges,

etc. Learning is the means and the product of

this activity. Institutionalization then consists

of identifying and organizing, among the cor-

rect pieces of knowledge produced by the stu-

dents, those consistent with common usage

and with accepted mathematical knowledge,

and among those the ones that are sufficiently

“acquired” by all of the students so that the

teacher and students can refer to them with

each other in future mathematical situations.

The “lecture” consists of a conclusion and

of putting things in order. Exercises are

a means of training available to the students

(Margolinas et al. 2005; Illustrative examples

in Warfield 2007).

Origin and Necessity of the Concept of
“Didactical Mathematical Situation”

The Reform of the Foundations (1907–1980)

The term “didactical situation” appeared in the

1960s with the meaning “mathematical situation

for teaching.”

The new mathematical concepts on which

teaching was to be rebuilt were communicated

by formalized texts in a symbolic language

unintelligible to students and/or by reformulations,

metaphorical representations, and ambiguous

commentaries. On the other hand, they referred

necessarily to examples taken from the classical

mathematics that they were reorganizing. The

“fundamental” concepts were thereby postponed

to the end of the studies.

The challenge was thus to imagine conditions,

situations, that could induce in the students the

geneses of fundamental mathematical concepts,

in a form and by processes comparable to those

put into operation by mathematicians before the

final presentation of their results, in the process

mathematical development. This idea found jus-

tification in the work of the period: the acquisi-

tion of language does not follow the classic

formulation of its grammar, and Piaget identified

certain mathematical structures in the genesis of

logical thought in children.

Conceiving of similar geneses, and especially

imagining conditions capable of inducing them,

could only arise from the competence of the

mathematical community. It did so through

a gigantic effort of its researchers and of its

teachers, realizing as it did so the aspirations of

pedagogues like Dewey, Montessori, or Freinet.

But diffusing these conceptions more widely,

against the traditional culture of teaching, posed

yet more redoubtable problems, which have not

at this point been surmounted.

Learning Mathematics by Doing It Reverses

the Classic Pedagogical Order

The teaching of mathematics is based on a text or

some texts that express it in a canonical way (i.e.,

in the order: definitions, properties and theorems,

and finally proofs). The classical conception

consists of teaching using the texts first, so that

a student could never argue that he or she is being

required to use a piece of knowledge that was not

first revealed and taught. Teaching pieces of

knowledge before needing to use them gives

the appearance of being a “rational” method,

but it introduces a disassociation (learn with

metamethods that have no relationship with the

object and its use), an inversion (learn terms

before understanding them and doing anything

with them), and finally teleological requirements:

the student is blamed in the course of learning

for not having first learned what is in fact

the goal of the teaching that is going on. This

epistemological error greatly limits the field of

application, the age of learning, and the degree of

success of the classical method.

Conversely, direct acculturation to specific

mathematical practices that can produce these

texts brings their learning closer to that
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of vernacular language or natural thought.

Everything then rests on the power of the

situations to induce in the children the “process

of mathematization.”

It would be absurd and detrimental to want to

exclude some method or to uniformly recom-

mend it over some other. The conditions to

which each is best adapted must be scientifically

studied and their advantages combined. For

example, situations of cooperative discovery

and collective adventures create homogeneity

and motivation and make it possible to acquire

the classical practices by use. Exercises can help

in doing well and rapidly what is worthwhile and

has been understood (Brousseau 1992).

The Project of a Mathematical Science:

Didactique

The organization of these mathematical situations

and their succession obey various reasons: mathe-

matical, epistemological, rational, empirical, ideo-

logical, etc. Their scientific study combines:

1. The (anthropological) observation and the

analysis (semiological) of the practices and

conceptions of the teachers and of the students

2. The conception, realization, and experimental

study of original mathematical situations appro-

priate to each of the pieces of mathematical

knowledge aimed for (▶Didactic engineering

in mathematics education)

3. The inventory of possible choices, their

modeling in the form of situations, the

experimental and theoretical study of their

conditions and of their properties, and the

creation of appropriate instruments of analysis

(theory of didactical situations)

The conception of these situations requires prior

and specific mathematical study of the knowledge

to be taught, along with that of its historical

genesis, of its epistemological properties, and

of its possible didactical geneses and their

properties. But the scientific confrontation of

these speculations with actual teaching is

fundamental.

The theory of situations, its concepts, and its

research methods is one of the most ambitious

among the numerous scientific approaches to the

phenomenon of didactique.

But well before being able to offer teachers, in

the name of mathematicians, an aid, or some

ready-to-implement solutions for teaching math-

ematics, didactique must describe, understand,

and explain in a scientific manner mathematical

activity and its possible didactical transpositions.

Didactique plays a role in the reorganization

and transformation of mathematical knowledge.

Its results are thus first addressed to the commu-

nity of mathematicians, to whom falls – for good

reasons – the responsibility towards society of the

reference in teaching materials to the established

knowledge of its specialty. Didactique of mathe-

matics requires specific concepts and methods of

study. It thus joins logic, computer science, epis-

temology, history of mathematics, and so on as

one of the mathematical sciences. It takes charge

of the knowledge of everything that is specific to

the discovery, the diffusion, or the appropriation

of each piece of mathematical knowledge, new or

not, that results from the adventures specific to it.

It extends, enriches, and puts to the test the gen-

eral contributions of classical social sciences,

which are indispensible but insufficient for

clarifying all the facets of this teaching.

Mathematical Situations

Definition

Every mathematical concept is the solution of at

least one specific system of mathematical condi-

tions, which itself can be interpreted by at least

one situation, for example, a game, whose solu-

tion (decision, message, argument) is one of the

typical manifestations of the concept. A situation

is composed of a milieu and a project. The

duration of the life of a mathematical situation

(the time of studying it) can vary from

a few seconds to several centuries for humanity

or several months for teaching.

Examples

Example 1: Children 4–5 years old. From a col-

lection of thirty or so familiar objects, 5 or 6 are

hidden in a box by a child in the morning. In the

afternoon, she is supposed to enumerate them to

another child, who confirms the presence or
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absence of the objects she names. The solution of

this game is the creation, enumeration, and use of

lists. Knowing neither how to read nor how to

write, the children represent the objects in their

own way (pictograms) to distinguish them, first

individually and then collectively. The lists of

symbols represent sets; belonging or not, conjunc-

tions and disjunctions of characters are used,

corrected, understood, and formulated in vernac-

ular language (Pérès 1984; Digneau 1980).

Example 2: Children 10–11 years old. To be

certain of the number ofwhitemarbles contained in

a firmly closed opaque bottle with a known number

of marbles, some white and some black, students

invent hypothesis testing and themeasure of events

(33 short sessions) (Brousseau et al. 2002).

A great many researchers have imagined

and studied various types of situations destined

for all sorts of notions, for all levels of school

and even university. See, for example,

Bessot (2000), Laborde and Perrin-Glorian

(2005), Bloch (2003).

Types of Mathematical Knowledge,

Reference Knowledge (Savoirs)

Classical methods forbid the teacher from tolerat-

ing without immediate correction, the manifesta-

tion of anything contrary to written established

mathematics. A genuine mathematical activity

necessarily gives rise to all sorts of knowledge.

Some is knowledge sought for – these are the

references, recognized as correct, true and

known: they are professed and expected. But

there also necessarily appear pieces of knowledge

that are ill made, ill formed, incomplete, doubtful,

false, or even inexpressible. They are “knowledge”

in the sense of “the trace of an encounter.” Their

presence, whether or not firmly nailed down, is

indispensible to thought. For example, a theorem

that the student knows verywell (savoir), but about

whose usefulness in a situation is unsure, functions

provisionally as a simple piece of nonestablished

knowledge (connaissance).

The teacher cannot intervene in this flow of

activities without blocking its functioning and

must therefore delegate the responsibility for

exercising a pragmatic penalty to the initiatives

of the students that result from their knowledge.

He entrusts it to amilieu that is clearly stripped of

teleological or pedagogical intentions [its reac-

tions depend neither on the intended goal nor on

the individuals].

The milieu of a situation is what the students

exercise their actions on and what gives them

objective responses. The teacher thus entrusts to

themilieu the job of showing the students’ errors by

their effects, without using an argument of author-

ity or revealing any intentions. The milieu may

comprise informative texts; material objects;

other students, cooperating or concurrent; and so

on. To this must be added the established knowl-

edge of the student as well as her memories of

relevant previous events, and objective conditions,

that may not be known to the student but that

intervene in her choices and in the effects of her

decisions. The cognitive variables of the situation

are those whose value has an influence on the issue

of the situation or on the knowledge developed.

These variables are didactical if their value can be

chosen by the teacher (the sex of the students may

influence the progress of a situation, but it is not a

didactical variable). The milieu can be interpreted

metaphorically by games that present some states

that are permissible and some that are excluded,

rules of action, and issues of which one would be

the goal sought (Warfield 2007).

Examples of Milieux

1. Cabri geometry permits the student to realize,

in the context of geometrical objects and

transformations, which of her projects are

constructible, that is, compatiblewith the axioms

(Laborde et al. 1995). The projects lead the

students to gain knowledge of, formulate, and

test what the milieu permits them to glimpse.

2. Analysis of a situation. The reader will find an

example of the analysis of a didactical situation

(the Race to 20), of its milieu, of the strategies

used by students, of the theorems in action that

support them, and of the didactical methods

that make it possible to lead them to a complete

proof and then to extend it so as to have

them reinvent an algorithm: the search for

the remainder of a Euclidean division, in

Brousseau (1997, pp. 3–18). This work also

includes numerous other examples.
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The project is an objective, a final state of the

milieu, the response to a question, or even a

pretext for exploration. It is what explains,

justifies, or condemns after the fact the choices

that have been chosen or ventured by the subject.

The resolution is the occasion to put to trial

not the student, but a way of knowing.

Remarks: The milieu of a situation is not

a natural milieu and does not turn mathematics

into a sort of experimental science. The project

is essential, and its goal is to establish the

consistency of certain statements.

Different branches of mathematics developed

in different milieux: geometry in the knowledge

of space, probability in the statistics of games,

algebra in arithmetic, arithmetic in the measure-

ment of amounts, etc.

In elementary teaching, knowledge of these

milieux is neither spontaneous nor contained in

their mathematical interpretation. For example,

the knowledge that is useful for finding one’s way

around a big city merits specific work that cannot

be reduced to some geometry.

Types of Mathematical Situations

Characteristic of Activities, of Pieces of

Knowledge, and of Pieces of Mathematical

Learning

The mathematical knowledge of a student mani-

fests itself in her interactions with a milieu, as

a means of attaining or maintaining a desired

state. These interactions are grouped in four

types of situations which are, in the order of

didactical necessity, inverse to the ordinary chro-

nological order:

1. Situation of reference: A person (student or

teacher) refers the person asking to a piece of

mathematical knowledge (a proof, a theorem,

a definition, etc.) that belongs to their common

repertoire (Perrin-Glorian 1993).

2. Situation of argumentation (of proof):

A proposer communicates to an opponent an

argument, an element of proof. He makes use

for that of their common repertoire which his

message tends to augment. The argumentmakes

reference to a milieu and a (mathematical)

project in common that gives it its meaning

and its value. The two speakers have the same

information, in particular, on the milieu, the

same rights of refutation, and the same interest

in arriving at a consistent agreement (for an

action on the milieu).

3. Situation of information (communication): The

transmitter and receiver cooperate on an action

on the milieu, in whose success they are inter-

ested and which depends on their joint action.

Neither of the two has at the same time all of

the information and all of the necessary means

of action. They exchange messages in order to

realize a common mathematical project.

4. Situation of action: A subject intervenes on the

milieu to modify it with a determined aim. She

observes the effect of her actions and attempts

to anticipate them by constructing pieces of

knowledge, conscious and explainable or not.

This situation encompasses all of the others,

but it extends beyond them by stimulating the

existence of inexpressible and possibly even

unconscious models of action.

Each of these types of situation creates distinct

typical motivations (modify a milieu, communi-

cate some information, debate the validity of a

declaration, establish a reference) that mobilize

and expand the corresponding repertoires

(implicit models of action, semiological or

linguistic repertoires, logical repertoires, mathe-

matics or metamathematics, established knowl-

edge and theory) which are themselves acquired

according to specific different modes of learning

or acculturation.

The actual situations are, every one of them,

specific to a precise piece of knowledge.

This is the level which must be appealed to in

order to judge the relevance of the contributions

of other scientific domains (pedagogy, psychol-

ogy, sociology, etc.).

The Processes

Different modes of composition and articulation

of these elementary situations make it possible

to create composite situations and sequences of

situations that form processes:

1. Process of mathematization: A sequence

of autonomous mathematical situations that

are introduced by didactical interventions

of the teacher and that work together towards
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the construction of the same complex knowl-

edge (e.g., rational and decimal numbers

(Brousseau et al. 2004, 2007, 2008, 2009)).

2. Genetic situation: It introduces and without

other external intervention generates the

sequence of situations that lead to the acquisi-

tion of a concept (e.g., how many white

marbles [article cited]).

The didactical work of the teacher then

consists of maintaining the intensity and the

relevance of the exchanges and implementing

their progress and their conclusion. Examples of

process: on areas, Perrin-GlorianM.J. (1992), and

on geometry, Salin M.H., Berthelot R. (1998).

Some of the Results of Research on
Didactical Situation

The notion of didactical situationwas used inmany

research projects. It gave rise to numerous reflec-

tions and, with modifications, was expanded in

more work than it is possible to summarize or

cite here:

1. One of its first results was to establish that adap-

tation to certain conditions tends to render it

more difficult to adapt to others and thus creates

the phenomenon of didactical obstacles, then to

show that the history of mathematics presents

phenomena similar to the epistemological obsta-

cles detected by G. Bachelard, and finally, to

take advantage of this phenomenon in teaching

by use of situations presenting “jumps in

informational complexity” (▶Epistemological

Obstacles in Mathematics Education)

2. Research on situations had the goal of furnish-

ing alternatives to the classical conceptions

that showed their limitations in the face of

the influx of knowledge to be taught and of

the fundamental reorganizations necessitated

by that influx. This research showed the

importance of the role of the unsayable in

mathematical situations and of the unsaid in

the didactical relationship.

Rather than imagining teaching and producing

learning of the texts that resulted from real

mathematical activity by universal, that is

nonspecific, nonmathematical teaching methods,

it appeared that it would be preferable to have the

students themselves produce this knowledge

and these texts, thanks to specific mathematical

activities that best stimulated the real activity of

mathematicians.

The many didactical situations realized showed

that this project was realizable. Experiments

proved it. Curricula were conceived, experimented

with, and reproduced for all the branches of math-

ematics and for all the basic levels of teaching

(3–12 years old) in an establishment conceived

for the purpose (the COREM).

Currently they cannot be developed because

of the complexity of knowledge necessary for the

teachers to conduct them and for the public to

accept them.

This research produced counterexamples to

most of the “universal principles,” explicit or

implicit, of classical didactics, for behaviorist

methods as well as radical constructivism. It

showed, for example, that in the classical concep-

tion, errors can have no status other than that of

being far from some norm. They are interpreted

as a failure of the student and/or the teacher that

involves their responsibility and ultimately their

guilt for a failure of their will. This absurd

process generates very bad working conditions

for the students and for the teachers.

Among many other results, The classical

conception led to seeking out individualization

of teaching, but this individualization did

not improve the results, because mathematical

knowledge is produced by the cooperation of

numerous individuals operating in the same com-

munity, and no isolated brain can produce the

exact form that history has given it. For a large

portion of the students, the real use of communi-

cation and mathematical debates is indispensible.

The concept of situation has been the object

and has been illustrated in a great deal of research

of different types:

1. Empirical, so as to identify the observables of

a given teaching episode and analyze them

a priori and a posteriori

2. Experimental, to conceive of either a precise

teaching project (engineering) or a teaching

design (of cognitive psychology, of sociology,

of didactique, etc.)
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3. Theoretical, to study their properties (eco-

nomic, ergonomic, etc.) on appropriatemodels,

possibly mathematics (automata, games, vari-

ous systems), or conceive of modes or specific

indices for these studies (implicative statistical

analysis for the study of dependencies)

(Artigue and Perrin-Glorian 1991)

The results of these studies were used in

many research projects more particularly centered

on students, teachers, or school knowledge and the

didactical transposition (Mercier et al. 2000).

Research Perspectives

1. The study of the optimal conditions for

articulation of mathematical situations and

of institutionalization is a necessity. Pieces

of “knowledge” proposed in mathematical

situations, whether erroneous or valid, must

evolve sufficiently rapidly to arrive at

established knowledge. Making these pieces of

provisional knowledge the object of classical

teaching, on the pretext that theywere produced

by the students themselves, is a major error. On

the contrary, the reorganization of spontaneous

knowledge around established knowledge with

a complement of information (a lecture)

is a mathematical necessity that offers an

indispensible time gain. Didactique is a science

of dynamic equilibrium of situations.

2. What are the relationships between the

teaching of mathematics (microdidactique)

and the explicit or latent mathematical or

didactical conceptions held by the various

social, economic, cultural, and scientific

components of a society (macrodidactique)?

3. What are the factors in the failure of the

reform of modern mathematics?

Cross-References
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Definition

The process of didactic transposition refers to the

transformations an object or a body of knowledge

undergoes from themoment it is produced, put into

use, selected, and designed to be taught until it is

actually taught in a given educational institution.

The notion was introduced in the field of didactics

of mathematics by Yves Chevallard (1985, 1992b).

It highlights the fact that what is taught at school is

originated in other institutions, constructed in con-

crete practices, and organized in particular sets of

objects. In the case of mathematics or any other

subject, the taught knowledge, the concrete prac-

tices and bodies of knowledge proposed to be

learned at school, originates from what is called

the scholarly knowledge, generally produced at

universities and other scholarly institutions, also

integrating elements taken from a variety of related

social practices. When one wishes to “transpose”

a body of knowledge from its original habitat to

school, specific work should be carried out to

rebuild an appropriate environment with activities

aimed at making this knowledge “teachable,”

meaningful, and useful.

Different actors participate in this

transpositive work (see Fig. 1): producers of

knowledge, teachers, curriculum designers,

etc. They belong to what is called the noosphere,

the sphere of those who “think” about teaching,

an intermediary between the teaching system and

society. Its main role is to negotiate and cope with

the demands made by society on the teaching sys-

tem while preserving the illusion of “authenticity”

of the knowledge taught at school, thus possibly

denying the existence of the process of didactic

transposition itself. It must appear that taught

knowledge is not an invention of school. Although

it cannot be a reproduction of scholarly knowledge,

it should look like preserving its main elements. For

instance, the body of knowledge taught at school

under the label of “geometry” (or “mechanics,”

“music,” etc.) has to appear as genuine. It is thus

important to understand the choices made in the

designation of the knowledge to be taught and the

construction of the taught knowledge to analyze

what is transposed and why and what mechanisms

explain its final organization and to understand

what aspects are omitted and will therefore not be

diffused.

Scope

Besides mathematics, research on didactic

transposition processes has been carried out in

many other educational fields, such as the natural
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sciences, philosophy,music, language, technology,

and physical education. These investigations have

spread faster in the French- and Spanish-speaking

communities (Arsac 1992;Arsac et al. 1994; Bosch

and Gascón 2006) than in the English-speaking

ones, although some prominent figures soon con-

tributed to develop the first transpositive analyses

(Kang and Kilpatrick 1992). The notion of didactic

transposition has been generalized to institutional

transposition (Chevallard 1989, 1992a; Artaud

1995) when knowledge is transposed from one

social institution to another. Because of social

needs, bodies of knowledge originated and devel-

oped in different “places” or institutions of society

need to “live” in other institutions where they

should be transposed. They have to be transformed,

deconstructed, and reconstructed in order to adapt

to their new institutional setting. For instance, the

mathematical objects used by economists, geogra-

phers, or musicians need to be integrated in other

practices commonly ignored by the mathemati-

cians who produced them. It is clear from the

history of science that institutional transpositions –

including didactic ones – do not necessarily pro-

duce degraded versions of the initial bodies of

knowledge. Sometimes the transpositive work

improves the organization of knowledge and

makes it more understandable, structured, and

accurate to the point that the knowledge originally

transposed is itself bettered. The organization of

knowledge in fields and disciplines as it exists

today is the fruit of complex and changing histor-

ical interactional processes of institutional and

didactic transpositions that are not well known yet.

An Emancipatory Tool

In a field of research, new notions are not only

introduced to describe reality but to provide new

ways of questioning and new possibilities to

modify it. The notion of didactic transposition

is conceived, first of all, as an analytical instru-

ment to avoid the “illusion of transparency”

concerning educational phenomena and, more

particularly, the nature of the knowledge

involved, that is, to emancipate research from

the viewpoint of the scholarly and the teaching

institutions about the knowledge involved in

educational processes.

Any taught field or discipline is the product of

an intricate process the singularity of which

should never be underrated. As a consequence,

one should not take for granted the current,

observable organization of a field or discipline

taught at school, as if it were the only possible

one. Instead one should see it against the (fuzzy)

set of organizations that could have existed,

some of which may someday turn into reality.

Considering the “scholarly knowledge” as part

of the object of study of research in didactics

is part of this emancipatory movement of

detachment. Although school teaching has to

be legitimized by external entities that guaran-

tee the pertinence and epistemological rele-

vance of the knowledge taught (in a complex

process of negotiations which includes crises

and disagreements), researchers do not have to

consider these institutional perspectives as the

true or correct viewpoints or as the wrong

ones; they just need to know them and inte-

grate them in the analysis of educational

phenomena.

In some cases, the “scholarly legitimation”

of school knowledge can be questioned by the

noosphere, on behalf of its cultural relevance:

“Is this the geometry citizens need?” Such

a conflict situation can change significantly

the conditions of teaching and learning, by

allowing a self-referential, epistemologically

Scholarly

knowledge
Scholarly and

other

knowledge

to be taught
“Noosphere”

Taught

knowledge
Teaching

institutions

Learned/available

knowledge
Groups of students

Didactic Transposition in Mathematics Education, Fig. 1 Diagram of the process of didactic transposition
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confined teaching. Moreover, there are certain

teaching processes in which the scholarly

body of knowledge is created afterwards

because of the need to teach a given content

that has to be organized, labeled, and recog-

nized as something relevant (an illustrative

example is the case of accounting and its

corresponding body of knowledge, accoun-

tancy). It is also possible that something that

is not even commonly recognized as a proper

body of knowledge may appear as “scholarly

knowledge” for the role it assumes in a given

educational process. For instance, in the

teaching of sports, the scholarly knowledge,

albeit not academically tailored, includes that

of high-level sport players, even if they are

a far cry from what we normally consider

“scholars” to be!

Enlargement of the Object of Study

The second consequence of the detachment

process introduced by the notion of didactic

transposition is the evolution of the object of

study of didactics as a research discipline.

Besides studying students’ learning processes

and how to improve them through new teach-

ing strategies, the notion of didactic transposi-

tion points at the object of the learning and

teaching itself, the “subject matter,” as well as

its possible different ways of living – its

diverse ecologies – in the institutions involved

in the transposition process.

Let us take an example on negative numbers.

Regarding the transpositive process, the first issue

is to consider what the taught knowledge is made of

(what concrete activities that are proposed to the

students, their organization, the domain or block of

contents they belong to, etc.) and how official

guidelines and noospherian discourses present

and justify these choices (the knowledge to be

taught). Today, at most schools, negative numbers

are officially related to the measure of quantities

with opposite directions and introduced in the con-

text of real-life situations. Where does this school

organization come from? It results from different

scholar (“new mathematics”) or social (“back-to-

basics”) pressures, canalized by the noosphere, that

cannot be presented here but that delimit the kind of

mathematical practices our students learn (or fail to

learn) about this body of knowledge. If we look at

scholarly knowledge, the environment is different:

negative numbers are defined as an extension of the

set of natural numbers N and form the ring of

integers Z, without any specific discussion (http://

www.encyclopediaofmath.org/index.php/Integer).

This has not always been the case: it is very well

known that until the mid-nineteenth century, the

possibility of “quantities less than zero” was still

denied by many scholars. Their final acceptation

was strongly related to the needs of algebraic

work, which explains why, for a long time, inte-

gers were called “algebraic numbers.” It also

explains why the introduction of negative num-

bers was considered one of the main differences

between arithmetic and algebra. This relation-

ship to elementary algebraic work has now

completely disappeared from the scholar’s and

school’s conception of negative numbers,

despite the fact that some practices of calcula-

tion – for instance, those involving the product

of integers – acquire their full sense when

interpreted in this context.

Various other analyses have brought

similar results regarding how the transposition

process has affect other different mathematical

contents (school algebra, linear algebra, limits

of functions, proportionality, geometry, irratio-

nal numbers, functions, arithmetic, statistics,

proof, modeling, etc.): more generally speak-

ing, there is no such thing as an eternal, con-

text-free notion or technique, the matter taught

being always shaped by institutional forces

that may vary from place to place and time

to time. These investigations underline the

institutional relativity of knowledge and show

to what extend most of the phenomena related

to the teaching and learning of mathematics

are strongly affected by constraints coming

from the different steps of the didactic trans-

position process. Consequently, the empirical

unit of analysis of research in didactics

becomes clearly enlarged, far beyond the rela-

tionships between teachers and students and

their individual characteristics.
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The Need for Researchers’ Own
Epistemological Models

Taking into consideration transpositive phenom-

ena means moving away from the classroom and

being provided with notions and elements to

describe the bodies of knowledge and practices

involved in the different institutions at different

moments of time. To do so, the epistemological

emancipation from scholarly and school institu-

tions requires researchers to create their own

perspective on the different kinds of knowledge

intervening in the didactic transposition process,

including their own way of describing knowledge

and cognitive practices, their own epistemology.

In a sense, there is no privileged reference system

from which to observe the phenomena occurring

in the different institutions involved in the teach-

ing process: the scholarly one, the noosphere, the

school, and the classroom. Researchers should

build their own reference epistemological models

(Barbé et al. 2005) concerning the bodies of

knowledge involved in the reality they wish to

approach (see Fig. 2). The term “model” is used

to emphasize the fact that any perspective

provided by researchers (what mathematics is,

what algebra is, what measuring is, what

negative numbers are, etc.) always constitutes

a methodological proposal for the analysis; as

such, it should constantly be questioned and

submitted to empirical confrontation.

From Didactic Transposition to the
Anthropological Approach

When knowledge is considered a changing

reality embodied in human practices taking

place in social institutions, one cannot think

about teaching and learning in individualistic

terms. The evolution of the research perspec-

tive towards a systematic epistemological

analysis of knowledge activities explicitly

appears at the foundation of the anthropolog-

ical theory of the didactic (Chevallard 1992a,

2007; Winslow 2011). It is approached through

the study of the conditions enabling and the con-

straints hindering the production, development,

and diffusion of knowledge and, more generally,

of any kind of human activity in social

institutions.
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Matemàtica, Barcelona, pp 533–551. http://www.recer
cat.net/bitstream/handle/2072/200617/Documents10.
pdf?sequence¼1. Accessed 25 Oct 2012

Didactical Phenomenology
(Freudenthal)

Marja Van den Heuvel-Panhuizen

Freudenthal Institute for Science and

Mathematics Education, Faculty of Science &

Faculty of Social and Behavioural Sciences,

Utrecht University, Utrecht, The Netherlands

Keywords

Phenomena in reality; Mathematical thought

objects; Didactics; Realistic mathematics

education; Analyses of subject matter

What Is Meant by Didactical
Phenomenology?

The term didactical phenomenology was coined

byHans Freudenthal. Although his initial ideas for

it date from the late 1940s, he likely first used the

term in aGerman article in 1974. A few years later,

the term appeared in English in his bookWeeding

and Sowing – Preface to a Science of Mathemat-

ical Education (Freudenthal 1978). Understanding

the term requires comprehending Freudenthal’s

notion of a phenomenology of mathematics,

which refers to describing mathematical concepts,

structures, or ideas, as thought objects (nooumena)

in their relation to the phenomena (phainomena) of

the physical, social, and mental world that can be

organized by these thought objects.

The term didactical is used by Freudenthal in

the European continental tradition referring to the

way we teach students and the organization of

teaching processes. This definition of didactics

goes back to Comenius’ (1592–1670) Didactica

Magna (Great Didactics) that contains a well-

founded view on what and how students should

be taught. As such, this meaning of didactics

contrasts with the Anglo-Saxon tradition in

which it merely has a superficial meaning

involving a set of instructional tricks.

Combining the two terms into didactical

phenomenology implies considering the
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phenomenology of mathematics from a didactical

perspective.

Merit of a Didactical Phenomenology for
Mathematics Education

In Freudenthal’s words (1983, p. ix), a didactical

phenomenology of mathematics can “show

the teacher the places where the learner might

step into the learning process of mankind.” In

other words, a didactical phenomenology informs

us on how to teach mathematics, including how

mathematical thought objects can help organiz-

ing and structuring phenomena in reality, which

phenomena may contribute to the development of

particular mathematical concepts, how students

can come in contact with these phenomena, how

these phenomena beg to be organized by the

mathematics intended to be taught, and how

students can be brought to higher levels of under-

standing. As such, Freudenthal’s didactical phe-

nomenologies are landmarks for developing

teaching outlines.

Relation with Realistic Mathematics
Education

By disclosing the sources of mathematics in real-

ity, a didactical phenomenology is strongly

related to Realistic Mathematics Education

(RME), the domain-specific instruction theory

for mathematics, which has been developed in

the Netherlands and in which Freudenthal was

heavily involved (Freudenthal 1991). In RME,

rich, realistic situations have a prominent posi-

tion in the learning process. These situations

serve as sources for initiating the development

of mathematical concepts, tools, and procedures.

What situations can serve as contexts for this

development is revealed by a didactical phenom-

enology. By tracing phenomena in reality that can

elicit mathematical thoughts, the students are

given access to the sources of mathematics in

everyday experiences. Building on these sources

offers them an orientation basis they experience

as real and opens the possibility of personal

engagement and solving problems in a way they

find meaningful. This attachment of meaning

to mathematical constructs students have to

develop touches on a main principle of RME.

Examples of Didactical Phenomenology

InWeeding and Sowing, Freudenthal exemplified

his idea of a didactical phenomenology by

providing an analysis of the topic of ratio and

proportion. Furthermore, he announced to deal

comprehensively with didactical phenomenology

in a following book. That book was Didactical

phenomenology of mathematical structures

(Freudenthal 1983). In this book, he gave more

examples of didactical phenomenologies,

including those of length, natural numbers, frac-

tions, geometry and topology, negative numbers

and directed magnitudes, algebraic language, and

functions.

Remarkably, these examples did not just deal

with connecting mathematical thought objects to

phenomena in reality to find starting points for

learning mathematics. In fact, these examples

were profoundly scrutinized analyses of subject

matter in which the key concepts of a particular

mathematical topic were disclosed together with

contexts which have a model character and with

significant landmarks in students’ learning

pathways.

The Method

Unfortunately, in Didactical phenomenology of

mathematical structures, Freudenthal did not

elaborate much on how to establish these

didactical phenomenologies. Although the book

contains a short chapter titled The method, this

did not reveal how to generate such phenomenol-

ogies. Nevertheless, a corner of the veil was

lifted when Freudenthal (1983, p. 29) considered

the material he needed to write this book:

I have profited from my knowledge of mathemat-
ics, its application, and its history. I know how
mathematical ideas have come or could have
come into being. From an analysis of textbooks
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I know how didacticians judge that they can
support the development of such ideas in the
minds of learners. Finally, by observing learning
processes I have succeeded in understanding
a bit about the actual process of constitution of
mathematical structures and the attainment of
mathematical concepts

This statement and the provided examples

show how a didactical phenomenology results

from a number of analyses, each taking

a different perspective: didactical, phenomeno-

logical, epistemological, and historical-cultural.

Mathematics-Related Analyses
Constituting the Didactics of
Mathematics

These analyses have in common that they all take

mathematics as their starting point. Didactical

analyses examine the nature of the mathematical

content as a basis for teaching this content.

By identifying the determining aspects of mathe-

matical concepts and their relationships, knowl-

edge is gathered about didactical models that can

help students to understand these concepts.

Phenomenological analyses disclose possible

manifestations of these mathematical concepts

in reality and can suggest contexts for students

to meet these concepts. Epistemological analyses

focus on students’ learning processes and can

uncover how the mathematical understanding of

students in a classroom interaction may shift.

Finally, in historical-cultural analyses, we may

encounter current and past approaches to

teaching mathematics through which we can

gain a better understanding of learning mathe-

matics and how education can contribute to it.

These analyses are all included in

Freudenthal’s didactical phenomenology and

surpass its narrow literal meaning, which would

certainly have his approval, as in Weeding and

Sowing Freudenthal (1978, p. 116) already stated:

“[T]he name does not matter; nor is that activity

[didactical phenomenology] an invention of

mine; more or less consciously it has been

practiced by didacticians of mathematics for

a long time” (Freudenthal 1978, p. 116). Indeed,

the name is not essential, but these analyses

are. In Freudenthal’s view, they form the heart

of researching and developing mathematics

education.
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Introduction

The first challenge in addressing this topic is the

multiplicity of ways in which the term discourse

is used and defined – or not defined – within

mathematics education (see Ryve 2011). It is

frequently found, especially in discussions within

the context of curriculum reform, simply to sig-

nify student engagement in talk in the classroom.

Without denying the value of the development of

such engagement, the approaches to discourse

and discourse analysis considered in this article
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all take rather more complex and theoretically

shaped views of the nature of discourse – views

that influence the focus of research and the

analytic methods. An important component of

the ways these approaches conceive of discourse

is a concern with the relationship between lan-

guage (and other modes of communication), the

social context in which it is used, and the

meanings that are produced in this context

(Howarth 2000). It is this concern and the funda-

mental assumption that studying the way lan-

guage is used can provide insight into the

activity or practice (mathematics or mathematics

education) in which it is used that leads

researchers to adopt discourse analytic

approaches. Of course, a very high proportion of

the data used in studies across many branches of

mathematics education research is primarily lin-

guistic or textual: interviews, written responses to

questionnaires, classroom transcripts, written

texts produced by students, etc. Increasingly it

has also been recognized by researchers using

a wide range of approaches that the language

produced by students or other research subjects

is not a transparent medium through which it is

easy to decipher an underlying truth. What distin-

guishes research that adopts a discourse analytic

approach is the assumption that the language

is itself an inextricable part (or, for some

researchers, even the whole) of the object of

study. This assumption is shared with another

analytic approach, conversation analysis, and

some discourse analysts make use of methods

developed in conversation analysis. However,

whereas discourse analysis is generally interested

in characterizing the practices within which lan-

guage plays a role, conversation analysis focuses

primarily on how linguistic interactions them-

selves are organized to achieve social actions

(see Wooffitt 2005, for an introduction to the

two approaches from a conversation analytic

perspective).

Gee (1996) makes a useful distinction

between discourse, defined as instances of com-

munication, and Discourses, the conjunctions of

ways of speaking, subject positions, values,

etc. that characterize and structure particular

social practices. The notion of Discourses has

its origin in the thinking of the French philoso-

pher Foucault (e.g., 1972) whose work includes

studies of the construction of “regimes of truth”

about notions such as madness or sexuality.

Though not all discourse analytic research in

mathematics education comes from this tradition,

it can generally be characterized as tending either

towards analysis of discourse, focusing on

communication events and the local social

practices within which they arise, or towards

analysis of Discourse, taking larger scale social

practices and structures as the object of research.

Of course, some approaches move between

the two, generating interpretation of specific

communication events by applying knowledge

of wider social practices and structures or

building a picture of a significant social practice

through analysis of local communication events.

Discourse analytic approaches thus vary in two

dimensions: the extent to which they make use of

detailed linguistic analysis and the extent of

their focus on social practices, structures, and

institutions.

The adoption and development of discourse

analytic approaches in mathematics education

research largely coincided with what Lerman

termed the “social turn” (Lerman 2000).

Increased recognition of the importance of

studying and taking account of the social nature

of mathematics education practices as well as of

individual cognition demanded the development

of theoretical ways of conceiving of social

practices and methodological approaches to

studying them. Discourse analytic approaches

provided one way of addressing this demand.

This development within the field of mathematics

education reflected a much wider development of

theories of discourse and discourse analytic

methods within social science and the humani-

ties. As researchers have begun to draw on

theories and methods originating outside the

field of mathematics education, they have faced

the challenge of ensuring that both theory and

methods take account of the specialized nature

of mathematical communication and practices

and that they have the power to illuminate issues

of interest to mathematics education. Facing

this challenge is a continuing project; notable

Discourse Analytic Approaches in Mathematics Education 177 D

D



contributions have come from within mathemat-

ics education (e.g., Morgan 1998; Sfard 2008)

and from linguistics (e.g., O’Halloran 2005).

With a few exceptions, notably the work of

Walkerdine (1988) who used analyses of

Discourses, including Discourses of gender and

of child-centered education, in order to under-

stand how differences between various social

groups are constructed in mathematics education

practices, early interest in discourse analytic

approaches, such as that represented in the

Special Issue of Educational Studies in

Mathematics edited by Kieren et al. (2001), was

dominated by analysis of communication events

(discourse), focusing on understanding class-

room interaction and the development of

mathematical thinking in interaction. At a time

when the majority of research in mathematics

education focused on the mathematical thinking

of individuals, this application of discourse

analysis may be seen as an incremental manifes-

tation of the “social turn,” addressing the same

interest in mathematical thinking but reconcep-

tualizing it as a phenomenon that is evident

(and, for some researchers, produced) in social

interaction. More recently, the issues addressed

by the mathematics education research commu-

nity have expanded, incorporating a wider

conceptualization of mathematics and mathemat-

ics education as social practices. Thus more

research has addressed, inter alia, identity,

power relationships, and social justice – issues

that lend themselves to study using approaches

that focus on Discourses. Some of this research

has adopted approaches that may be character-

ized as structuralist, drawing on sociological

accounts of social structures such as the work of

Basil Bernstein (e.g., 2000) to describe and inter-

pret discursive phenomena. Others have adopted

poststructural approaches, in which the commu-

nicative action itself constructs the “reality” of

which it speaks. A recent edited book entitled

Equity in Discourse for Mathematics Education

(Herbel-Eisenmann et al. 2012) reflects this range

of approaches and interpretations, combining

detailed analyses of classroom interactions with

concern for how these interactions and broader

social practices affect the possibilities for

participation in mathematics of students from

different social groups.

In this article there is no space to provide

a detailed review of the full range of approaches

taken to discourse analysis. Instead, we provide

a small number of contrasting cases, exemplify-

ing the scope of discourse analytic methods

and the problems in mathematics education that

they may be used to address.

Critical Discourse Analysis

Critical discourse analysis (CDA) comprises

a group of analytic approaches, all of which make

strong analytic connections between forms of lan-

guage use, social practices, and social structures.

The label “critical” indicates a concern of the

researchers to make use of the knowledge achieved

through the analysis in order to enable critique and

transformation of the social practices and/or struc-

tures. Research using CDA approaches thus tends

to produce analyses that not only describe existing

practices but also critique the ways these practices

position students and/or teachers and the kinds of

mathematics and mathematical identities that are

valued and made possible.

CDA studies generally involve detailed

analyses of texts, including oral and written

texts produced and used by students and teachers

in the classroom but also including texts such as

the curriculum and policy documents that

structure and regulate these educational practices

and thus affect the interpretation of classroom

texts. Within mathematics education, probably

the most widely used type of CDA is based on

the approach of Norman Fairclough (2003), using

linguistic tools drawn from systemic functional

linguistics (SFL). This approach has been used to

investigate specific practices such as the

assessment of student reports of mathematical

investigation (Morgan 1998) or the use of

“real-world problems” in an undergraduate

mathematics course (Le Roux 2008). Research

adopting a CDA approach may also use a range

of other methods to address textual data,

including corpus analysis of large data sets (e.g.,

Herbel-Eisenmann et al. 2010).
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Whatever the linguistic tools used to describe

the data, the interpretative stage of CDA involves

considering how the features identified in the data

function to construe the “reality” of the practice

being studied and the social positionings and

relations of the participants. As Fairlough

argues, such interpretation requires explicit use

of “insider knowledge” of the social practices

studied (Fairclough 2003). This means that

researchers in mathematics education need to

bring knowledge of broader mathematics educa-

tion practices and knowledge of mathematical

practices to bear on their analyses. For example,

Morgan’s study of teachers’ assessment practices

is informed by an analysis of the constructs

and values found in the associated curriculum

documents, policy, and professional literature,

while Le Roux draws on Sfard’s (2008)

characterization of mathematical discourse

(discussed further below) to enable her analysis

to address the nature of the mathematical activity

involved in the use of real-world problems.

Poststructural Approaches

The approaches to discourse analysis discussed

under the heading of postmodern or

poststructural share with CDA approaches

a concern with issues such as power and

subjectivity that arise in considering relationships

between individuals and social practices and

structures. There are, however, both philosophi-

cal and methodological differences between

the approaches. There is a range of philosophical

positions associated with postmodern and

poststructural thought; however, a shared

foundation is a rejection of the notions of an

objective world and of the fixed subjectivity of

a rational knowing subject. These philosophical

assumptions are shared by some but certainly not

by all those employing CDA approaches, though

there is a common interest in characterizing the

key entities that play a role in a Discourse and the

possibilities for individual subjectivities, identi-

ties, or positioning.

The major distinction drawn here between the

approaches to discourse analysis discussed in this

section and those identified under the

heading CDA is methodological. While CDA

involves close analysis of specific texts, usually

employing analytical tools and methods drawn

from linguistics, the starting point for postmod-

ern/poststructural researchers tends to be at

the level of the major functions of discourse.

For example, Hardy (2004) uses the Foucauldian

constructs of power as production and

normalization as her analytical tools for interro-

gating a teacher training video produced as part

of the English National Numeracy Strategy to

demonstrate “effective teaching” of mathematics

in a primary classroom. Rather than focus on

detailed characteristics of the discourse of this

video, Hardy uses these constructs to provide an

alternative perspective on the data as a whole.

This enables her to tell a story of what the

Discourse of the National Numeracy Strategy

achieves – how it produces assumptions about

what is normal and what is desirable – a story

that runs counter to the “common sense” stories

about effective teaching.

A rather different approach is taken by Epstein

et al. (2010), though again founded in

Foucauldian theory. They first characterize the

ways in which mathematics and mathematicians

are represented in popular media – as hard,

logical, and ultrarational but also as eccentric or

even insane. Having identified different and in

some cases apparently contradictory Discourses

about mathematics, Epstein et al. then use these

to analyze interviews with students, identifying

how individual students deploy the various

discursive resources in order to produce their

own identities as mathematicians or as

nonmathematicians and their relationships to

mathematics as a field of study.

Mathematical Discourse, Thinking, and
Learning

The main discourse analytic theories mentioned

so far have their origins outside mathematics

education, drawing on fields such as linguistics,

ethnography, sociology, and philosophy. For

mathematics education researchers, this raises
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the important theoretical and methodological

problem of the extent to which the specifically

mathematical aspects of the practices being

studied may be captured and accounted for. In

order to address this problem, an increasing

number of researchers, including some of those

working with CDA or other discourse analytic

approaches, are turning to the work of Anna

Sfard (2008). While Sfard draws on a number of

sources, including Wittgenstein’s notion of

language game, her own theory of mathematical

discourse has been developed within the field of

mathematics education and is designed to address

the problems arising in this field. Her communi-

cative theory of cognition identifies thinking

mathematically as participating in mathematical

discursive practices, that is, as communicating

(with oneself or with others) using the forms of

discourse characteristic of mathematics. Sfard

identifies four aspects of mathematical discourse

that form the basis for her analytic method: spe-

cialized mathematical vocabulary and syntax

(what may be considered the “language” of

mathematics), visual mediators (nonlinguistic

forms of communication such as algebraic nota-

tion, graphs, or diagrams), routines (well-defined

repetitive patterns, e.g., routines for performing

a calculation, solving an equation, or demonstrat-

ing the congruence of two triangles), and

endorsed narratives (the sets of propositions

accepted as true within a given mathematical com-

munity). Scrutinizing how these four aspects are

manifested in discourse provides a means of

describingmathematical thinking and hence allows

one to address questions such as the following:

How does children’s thinking about a mathemati-

cal topic vary from that expected by their teacher or

by an academic mathematical community? How

does children’s thinking develop (i.e., how does

their use of a mathematical form of discourse

change over time)? What kinds of mathematical

thinking are expected of students taking an

examination or using a textbook?

As may be seen from the research topics

and questions illustrated in this article, discursive

approaches can address a wide range of issues

of concern within the field of mathematics

education, bridging, as indicated in the title

of Kieran et al.’s (2001) Special Issue of

Educational Studies in Mathematics, the individual

and the social. While the various approaches share

a basic assumption that language and social prac-

tices play a role in the ways that individuals make

sense of mathematical activity, they differ in the

ways they conceptualize this role (and, indeed, in

how they conceptualize language, social practice,

and mathematics). Hence they also differ in the

research questions they pose and themethodological

tools they employ. It can be argued that discourse

analytic approaches allow us to see through what is

said to reveal what is achieved by using language.

The challenge for researchers and for the readers of

research is to clarify how the theoretical and

methodological tools employed enable this and to

distinguishwhich kinds of actions and achievements

are made visible by the different approaches.
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Definition

The teaching of “discrete mathematics” is not

always clearly delimited in the curricula and can

be diffuse. In fact, the meaning of “discrete

mathematics teaching and learning” is twofold.

Indeed, it includes the teaching and learning of

discrete concepts (considered as defined objects

inscribed in a mathematical theory), but it also

includes skills regarding reasoning, modeling,

and proving (such skills are specific to discrete

mathematics or transversal to mathematics).

What Is Discrete Mathematics?

Discrete mathematics is a comparatively young

branch of mathematics with no agreed-on defini-

tion (Maurer 1997): only in the last 30 years did it

develop as a specific field in mathematics with

new ways of reasoning and generating concepts.

Nevertheless, the roots of discrete mathematics

are older: some emblematic historical discrete

problems are now well known, also in education

where they are often introduced as enigma,

such as the Four Color Theorem (map coloring

problem), the Königsberg’s bridges (traveling

problem), and other problems coming from the

number theory for instance.

There is no exact definition of discrete math-

ematics. Themain idea is that discretemathematics

is the study of mathematical structures that are “dis-

crete” in contrast with “continuous” ones. Discrete

structures are configurations that can be character-

ized with a finite or countable set of relations. (A

countable set is a set with the same cardinality

(number of elements) as some subset of the set of

natural numbers. The word “countable” was intro-

duced by Georg Cantor.) And discrete objects are

those that can be described by finite or countable

elements. It is strongly connected to number the-

ory, graph theory, combinatorics, cryptography,

game theory, information theory, algorithmics,

discrete probability but also group theory, algebraic

structures, topology, and geometry (discrete

geometry and modeling of traditional geometry

with discrete structures).

Furthermore, discrete mathematics represents

a mathematical field that takes on growing

importance in our society. For example, discrete

mathematics brings with it the mathematical

contents of computer science and deals with

algorithms, cryptography, and automated
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theorem proving (with an underlying philosoph-

ical and mathematical question: is an automated

proof a mathematical proof?).

The aims of discrete mathematics are to

explore discrete structures, but also to give a

specific modeling of continuous structures, as

well as to bring the opportunity to consider

mathematical objects in a new manner. Then

new mathematical questions can emerge, as

well as new ways of reasoning, which implies a

challenge for mathematicians.

Some famous problems of discrete mathemat-

ics have inspired mathematics educators. That is

the case of a combinatorial game: the game of

Nim, played since ancient times with many

variants. The regular game of Nim is between

two players. It is played with three heaps of any

number of objects. The two players alternatively

take any number of objects from any single one of

the heaps. The goal is to be the last one to take an

object. Brousseau (1997) explicitly refers to the

game theory to conceptualize the theory of

didactical situations. The game of Nim is the

background of the generic example of

Brousseau’s theory, “the Race to 20.”

Why Teach and Learn Discrete
Mathematics? New Context, Concepts,
and Ways of Reasoning: A New Realm
of Experience for the Classroom

To Integrate Discrete Mathematics into the

School Curriculum: A Current Challenge

More and more fields of mathematics use results

from discrete mathematics (topology, algebraic

geometry, statistics, among others). Moreover, dis-

crete mathematics is an active branch of contempo-

rary mathematics. New needs for teaching are

identified: they are linked to the evolution of the

society and also other disciplines such as computer

science, engineering, business, chemistry, biology,

and economics, where discrete mathematics

appears as a tool as well as an object. Then discrete

mathematics should be an integral part of the school

curriculum: the concepts and the ways of reasoning

that should be taught in a specific field labeled

“discrete mathematics” still should be more

precisely identified. A dialog between mathemati-

cians and mathematics educators can help for this

delimitation.

However, the place of discrete mathematics in

curricula is today very variable depending on the

countries and on the levels. In a few countries,

there has been a long tradition to introduce graph

theory in the secondary level among other

components of discrete mathematics. This place

is strengthened and attested by the contents at the

university level. In other countries, only a very

small number of discrete mathematics concepts

are taught, especially those involved in the fields

of combinatorics and number theory. Things are

changing; the reader can refer to Rosenstein et al.

(1997), and DIMACS (2001) contributions to go

into details regarding the challenge of introducing

discrete mathematics in curricula (especially

the example of the NCTM standards [National

Council of Teachers of Mathematics] which

focus on discrete mathematics as a field of

teaching). The following arguments summarize

themain ideas of these contributions, emphasizing

the interests and the potential ways to implement

discrete mathematics in the curricula:

• Proof and abstraction are involved in discrete

mathematics (for instance, in number theory,

induction, etc.).

• It allows an introduction to modeling and

proving processes, but also to optimization

and operational research, as well as

experimental mathematics.

• Problems are accessible and can be explored

without an extensive background in school

mathematics.

• The results in discrete mathematics can be

applied to real-world situations.

• Discrete mathematics brings a specific work

on algorithms and recursion.

• The main problems in discrete mathematics

are still unsolved in ongoing mathematical

research: a challenge for pupils and students to

be involved in a solving process close to the one

of mathematicians and to promote cooperative

learning (in a specific and suitable context: in

particular, teachers should be trained to discrete

problems and also to their teaching and

management).
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Benefits from Teaching and Learning Discrete

Mathematics: Some Examples

Learning discrete mathematics clearly means

learning new advantageous concepts but also

new ways of reasoning, making room for

a mathematical experience.

Many variants exist of the following famous

problems that are developed below. Some of

them are presented and analyzed for instance in

Rosenstein et al. (1997) and on the website http://

mathsamodeler.ujf-grenoble.fr/.

Accessible Problems and Concepts

Discrete concepts are easily graspable, applica-

ble, accessible, and also neutral when not yet

included in the curricula: this last argument

implies that the way students deal with discrete

concepts is quite new and different from the way

they usually consider mathematics.

Traveling salesperson problem: the problem

is to find the best route that a salesperson could

take if he/she would begin at the home base, visit

each customer, and return to the home base (“best”

was defined as minimizing the total distance).

Map coloring problem (combinatorial optimi-

zation problem): a map coloring problem consists

in discovering the minimum number of colors

needed to properly color a map (or a graph).

A map is properly colored if no two countries

sharing a border have the same color. The proof

of the minimum number of colors is also

required. Similar coloring problems exist in

graph theory. Such map and graph coloring prob-

lems are very useful to explore what discrete

mathematical modeling is.

Richness of Discrete Concepts, A Way to Deal with

the Construction of Axiomatic Theory

A certain amount of discrete objects can be

defined in several ways, with different character-

izations. The modeling of continuous concepts in

the discrete case raises the problem of the con-

struction of a mathematical consistent theory

from an axiomatic point of view. It is illustrated

with the following example of discrete geometry.

Discrete Geometry: Example of Discrete

Straight Lines Discrete straight lines form

a concept accessible by its representation. It is

noninstitutionalized (an institutionalized concept

is a “curriculum” concept, i.e., a concept that has

a place in the classic taught content). Delimiting

what a straight line can be in a discrete context

proves to be quite a challenge. Professional

researchers have several definitions of it at their

disposal, but the proof of the equivalence of these

definitions remains worth considering. Research

on a discrete axiomatic theory is still in progress

(it implies, for instance, the following questions:

what is the intersection of two discrete straight

lines? What does it mean to be parallel in the

discrete case? etc.): the question of a “good” def-

inition of a discrete straight line is currently an

Discrete Mathematics Teaching and Learning, Fig. 1 Are these lines straight lines?

Discrete Mathematics Teaching and Learning 183 D

D

http://mathsamodeler.ujf-grenoble.fr/
http://mathsamodeler.ujf-grenoble.fr/


open and interesting problem. So are the ques-

tions of the definitions of other discrete geomet-

rical concepts (Figs. 1–3).

Several Ways of Questioning, Proving,

and Modeling

Besides, discrete mathematics arouses interest

because it offers a new field for the learning and

teaching of proofs (Grenier and Payan 1999;

Heinze et al. 2004; http://mathsamodeler.ujf-gre-

noble.fr/). Some discrete problems fruitfully

bring different ways to consider proof and

proving processes. How can discrete mathemat-

ics contribute to make students acquire the

fundamental skills involved in defining, model-

ing, and proving, at various levels of knowledge?

It is still a fundamental question in mathematics

education. The following example brings an

opportunity to deal with an optimization problem

which involves several kinds of reasoning.

Besides, this problem is close to the contempo-

rary research in discrete mathematics.

Hunting the beast. Your garden is a collection

of adjacent squares (see Fig. 4) and a beast is

itself a collection of squares (like the one drawn

in Fig. 5). Your goal is to prevent a beast from

entering your garden. To do this, you can buy

traps. A trap is represented by a single black

Discrete Mathematics

Teaching and Learning,
Fig. 2 Are these shapes
triangles?

Discrete Mathematics Teaching and Learning,

Fig. 3 Is it a circle?

Discrete Mathematics Teaching and Learning,

Fig. 4 A garden

Discrete Mathematics

Teaching and Learning,

Fig. 5 A beast (a beast can
be rotated or reversed)
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square that can be placed on any square of the

garden. The question we ask is the following:

what is the minimum number of traps you need

to place so that no beast can land on your garden?

On Fig. 6, the disposition of the traps does not

provide a solution to the problem, since a beast can

be placed. On Fig. 7, a solution with five traps is

suggested. Is it an optimal one for this configuration?

In the literature, the problem Hunting the

beast can be seen as a variation of the Pentomino

Exclusion Problem introduced by Golomb

(1994).

A Mathematical Experience

Discrete mathematics then brings the opportunity

for students to be involved in a mathematical

experience. Harel (2009) points out the following

principle:

The ultimate goal of instruction inmathematics is to
help students develop ways of understanding and
ways of thinking that are compatible with those
practiced by contemporary mathematicians. (p. 91)

The “doingmathematics as a professional” com-

ponent is clearly a new direction for the educational

research in the problem solving area, and discrete

mathematics offers promising nonroutine potenti-

alities to develop powerful heuristic processes, as

underscored by Goldin (2009).

Bearing in mind the aforesaid arguments, dis-

crete mathematics provides a mathematical expe-

rience and is a field of experiments that questions

concepts involved in other mathematical

branches as well. Nevertheless, if the discrete

problems are sometimes (and even often) easier

to grasp than the continuous ones, the mathemat-

ics behind can be quite advanced. That is the

reason why the didactic should analyze both the

discrete mathematics for itself and the

discrete mathematics helping the teaching of

other concepts.

Interesting Perspectives for Research in
Mathematics Education

Discrete mathematics is a relatively young

science, still in progress with accessible and

graspable concepts and ongoing questionings;

hence the questions regarding the introduction

of it in the curricula and in the classroom concern

both mathematics educators and mathematicians.

Two separated but linked perspectives for the

educational research emerge:

• The didactical study of teaching and learning

discrete mathematics

• The didactical study of the teaching of con-

cepts and skills (such as proof and modeling)

with the help of discrete problems

Besides, discrete mathematics can be intro-

duced either as a mathematical theory or as a set

of tools to solve problems. The links between

discrete mathematics as a tool and discrete math-

ematics as an object in teaching and learning

should also be analyzed in depth, as well as the

Discrete Mathematics Teaching and Learning,

Fig. 6 Not a solution

Discrete Mathematics Teaching and Learning,

Fig. 7 A solution with 5 traps
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proof dimension involved in dealing with discrete

concepts and structures. The didactic transposi-

tion of discrete concepts and ways of reasoning is

still a current problem for mathematics educa-

tion. It can raise the question of the development

of models for teaching and learning discrete

mathematics. Some epistemological models do

exist (around transversal concepts such as impli-

cation, definition, and proof (see, for instance,

Ouvrier-Buffet 2006) and specific contents such

as the teaching of graph theory (see the work of

Cartier 2008)) but the work is still in progress.

Note that it involves the same questionings for

mathematics education as the introduction of

algorithmics in the curricula.

Furthermore, the introduction of discrete

mathematics in the curricula clearly offers an

opportunity to infuse new instructional tech-

niques. In this perspective, the teacher training

should be rethinked.
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Definition

Discursive approach to learning is a research

framework grounded in the view that learning

such subjects as mathematics, physics, or history

is a communicational activity and should be

studied as such. Learning scientists who adopt

this approach treat discourse and its development

as the primary object of exploration rather than

as mere means to the study of something else

(e.g., development of mental schemes). The

term discourse is to be understood here as refer-

ring to a well-defined type of multimodal (not just

verbal) communicational activity, which does not

have to be audible or synchronous.

Background

Ever since human learning became an object of

systematic study, researchers have been aware of

its intimate relationship with language and, more

generally, with the activity of communicating. The

basic agreement on the importance of discourse

notwithstanding, a range of widely differing opin-

ions have been proposed regarding the way these

two activities, learning and communicating, are

related. At one end of the spectrum, there is the

view that language-related activities play only the

secondary role of means to learning; the other

extreme belongs to those who look upon discourse

as the object of learning. It is this latter position, the

one that practically equates mathematic with

a certain well-defined form of communicational

activity, that can be said to fully reflect

a discursive approach to learning.

Several interrelated developments in philoso-

phy, sociology, and psychology combined

together to produce this approach. It is probably

the postmodern rejection of the notion of “absolute

truth,” the promise of which fuelled the positivist

science, that put human studies on the path toward

the “discursive turn.” Rather than seeing human

knowledge as originating in the nature itself, post-

modern thinkers began picturing it as “a kind of

discourse” (Lyotard 1979, p. 3) or as a collection of

narratives gradually evolving in the “conversation

of mankind” (Rorty 1979, p. 389).

Following this foundational overhaul, the

interest in discourses began crossing disciplinary

boundaries and established itself gradually as

a unifying motif of all human sciences, from

sociology to anthropology, to psychology, and

so forth. Throughout human sciences, the

discursivity – the fact that all human activities

are either purely discursive or imbued with and

shaped by discourses – has been recognized as a

hallmark of humanity. Nowhere was this realiza-

tion more evident than in the relatively young

brand of psychology known as “discursive”

(Edwards 2005) and defined as “one that takes

language and other forms of communication as

critical in the possibility of an individual

becoming a human being” (Lerman 2001, p. 93).

As evidenced by the steadily increasing number

of studies dealing with interactions in mathemat-

ics classroom, the discursive turn has been taking

place also in mathematics education research

(Ryve 2011).

Foundations

For many discursively minded researchers, even

if not for all, the shift to discourse means that

some of those human activities that, so far, were

considered as merely “mediated” or “helped” by

concomitant discursive actions may now be

rethought as being communicational in nature.

For example, as an immediate entailment of

viewing research as a communicational practice,

one can now say that the research discipline

known as mathematics is a type of discourse,

and thus learning mathematics is a discursive

activity as well.

Recognition of the discursive nature of math-

ematics and its learning, if followed all the way

down to its inevitable entailments, inflicts a lethal

blow to the famous “Cartesian split,” the strict

ontological divide between what is going on

“inside” the human mind and what is happening

“outside.” Once thinking, mathematical or any

other, is recognized as a discursive activity,

mental phenomena lose their ontological distinc-

tiveness and discourse becomes the superordinate

category for the “cognitive” and the “communi-

cational.” This non-dualist position, which began

establishing itself in learning sciences only quite

recently, has been implicitly present already in

Lev Vygotsky’s denial of the separateness of
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human thought and speech and in Ludwig

Wittgenstein’s rejection of the idea of “pure

thought,” the amorphous entity supposed to

preserve its identity through a variety of verbal

and nonverbal expressions (Wittgenstein 1953).

In spite of the fact that the announcement of

the ontological unity of thinking and communi-

cating has been heralded by some writers as the

beginning of the “second cognitive revolution”

(Harré and Gillett 1995), non-dualism has not

become, as yet, a general feature of discursive

research. More often than not, discursivist

researchers eschew explicit ontological commit-

ments (Ryve 2012), whereas their occasional use

of hybrid languages brings confusing messages

about the nature of the objects of their study.

One can therefore speak about weaker and stron-

ger discursive approaches, with the adjective

“strong” signaling the explicit adoption of

non-dualist stance (Sfard 2008).

The ontological heterogeneity notwithstand-

ing, all discursively oriented researchers seem to

endorse Vygotsky’s (1978) famous statement that

uniquely human learning originates on the “social

plane” rather than directly in the world. Conse-

quently, they also view learning as a collective

endeavor and recognize the need to always con-

sider its broad social, historical, cultural, and situ-

ational context. Strong discursivists, in addition,

are likely to claim that objects of discourses –

numbers or functions in the case of mathematics

and conceptions or meanings in the case of

researcher’s own discourse – grow out of commu-

nication rather than signifying any self-sustained

entities preexisting the discourse about them. As a

consequence, the researchers always keep in mind

that any statement on the existence or nature of

these entities is a matter of personal interpretation

andmust be presented as such.Moreover, since the

protagonists of researchers’ stories are themselves

active storytellers, researchers must always inquire

about the status of their own narratives vis-à-vis

those offered by the participants of their study.

Strands

The current discursive research on learning at

large and on mathematics learning in particular

may be roughly divided into three main strands,

according to perspectives adopted, aspects

considered, and questions asked. The first two

of these distinct lines of research are concerned

with different features of the discourse under

investigation and can thus be called

intra-discursive or inward looking. The third

one deals with the question of what happens

between discourses or, more precisely, how

inter-discursive relations impact learning.

The first intra-discursively oriented strand of

research on mathematics learning focuses on

learning-teaching interactions, whereas its main

interest is in the impact of these interactions on

the course and outcomes of learning. Today,

when inquiry learning, collaborative learning,

computer-supported collaborative learning, and

other conversation-intensive pedagogies (also

known as “dialogical”) become increasingly

popular, one of the main questions asked by

researchers is that of what features of small

group and whole-class interactions make these

interactions conducive to high-quality learning.

Participation structure, mediation, scaffolding,

and social norms are among the most frequently

used terms in which researchers formulate their

responses. Whereas there is no doubt about

theoretical and practical importance of this strand

of research, some critics warn against the

tendency of this kind of studies for being

unhelpfully generic, which is what happens

when findings regarding patterns of learning-

teaching interactions are presented as if they

were independent of their topic.

This criticism is no longer in force in the second

intra-discursively oriented line of research on

mathematics learning, which inquires about the

development of mathematical discourse and thus

looks on those of its features that make it into

distinctly mathematical: the use of specialized

mathematical words and visual mediators, specifi-

cally mathematical routines, and narratives about

mathematical objects that the participants endorse

as “true.” Comparable in its aims to research

conducted within the tradition of conceptual

change, this relatively new type of study on learn-

ing is made distinct by its use of methods of dis-

course analysis, and this means, among others, its

attention to contextual issues, its sensitivity to the
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inherent situatedness of learning, and its treatment

of the discourse in its entirety as the unit of analysis,

rather than restricting the focus to a single concept.

Questions asked within this strand include queries

about ways in which learners construct mathemat-

ical objects, develop sociomathematical norms,

engage in argumentation, or cope with

uneasy transitions to incommensurable discourses.

Methods of systemic functional linguistics

(Halliday 2003) are often employed in this kind

of study. One of the main tasks yet to be dealt with

is to forge subject-specific methods of discourse

analysis, tailored according to the distinct needs

of the discourse under study. Another is to explore

the possibility of improving school learning by

overcoming its situatedness. Yet another regards

the question of how mathematical learning

occurring as if of itself while people are

dealing with their daily affairs differs from

the one that takes place in schools and results

from teaching.

Finally, the inter-discursively oriented studies

inquire about interactions between discourses

and their impact on learning. This type of

research is grounded in the recognition of the

fact that one’s participation in mathematics dis-

course may be supported or inhibited by other

discourses. Of particular significance among

these learning-shaping aspects of communication

are those that pertain to specific cultural norms

and values or to distinct ideologies. Studies

belonging to this strand are often concerned

with issues of power, oppression, equity, social

justice, and race, whereas the majority of

researchers whom this research brings together

do not hesitate to openly admit their ideological

involvement. The notion of identity is frequently

used here as the conceptual device with which

to describe the way cultural, political, and

historical narratives impinge upon individual

learning. Methods of critical discourse analysis

(Fairclough 2010) are particularly useful in this

kind of study.

Methods

As different as these three lines of research on

learning may be in terms of their focus and goals,

their methods have some important features in

common. In all three cases, the basic type of

data is the carefully transcribed communicational

event. A number of widely shared principles

guide the processes of collection, documentation,

and analysis of such data. Above all, researchers

need to keep in mind that different people may be

using the same linguistic means differently and

that in order to be able to interpret other person’s

communicational actions, the analysts have to

alternate between being insiders and outsiders to

their own discourse: they must sometimes look

“through” the word to what they usually mean by

it, and they also must be able to ignore the word’s

familiar use, trying to consider alternative

interpretations. For the same reason, events

under study have to be recorded and documented

in their entirety, with transcriptions being as

accurate and complete records of participants’

verbal and nonverbal actions as possible. Finally,

to be able to generalize their findings in a cogent

way, researchers should try to support qualitative

discourse analysis with quantitative data regard-

ing relative frequencies of different discursive

phenomena.

The admittedly demanding methods of dis-

course analysis, when at their best, allow the

analyst to see what inevitably escapes one’s

attention in real-time conversations. The

resulting picture of learning is characterized by

high resolution: one can now see as different

things or situations that, so far, seemed to be

identical and is able to perceive as rational those

discursive actions that in real-time exchange

appeared as nonsensical.
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Harré R, Gillett G (1995) The discursive mind. Sage,
Thousand Oaks

Lerman S (2001) Cultural, discursive psychology:
a sociocultural approach to studying the teaching
and learning of mathematics. Educ Stud Math 46:
87–113

Lyotard J-F (1979) The postmodern condition: A report on
knowledge. Minneapolis: University of Minnesota
Press.

Rorty R (1979) Philosophy and the mirror of nature.
Princeton University Press, Princeton

Ryve A (2011) Discourse research in mathematics
education: a critical evaluation of 108 journal articles.
J Res Math Educ 42(2):167–198

Sfard A (2008) Thinking as communicating: human devel-
opment, the growth of discourses, and mathematizing.
Cambridge University Press, Cambridge, UK

Vygotsky LS (1978) Mind in society: the development of
higher psychological processes. Harvard University
Press, Cambridge, MA

Wittgenstein L (1953/2003) Philosophical investiga-
tions: the German text, with a revised English
translation (trans: Anscombe GEM), 3rd edn.
Blackwell, Malden

Down Syndrome, Special Needs, and
Mathematics Learning

Sophie Brigstocke

Department of Psychology, University of York,

Heslington, York, UK

Keywords

Genetic disorder; Mathematics difficulties;

Number difficulties; Cognitive impairment

Characteristics

Down syndrome is a genetic disorder which has

serious consequences for cognitive development.

Most children with Down syndrome showmild to

moderate cognitive impairments with language

skills typically being more severely impaired

than nonverbal abilities (Næss et al. 2011).

Children with Down syndrome are frequently

reported to have problems with short-term and

working memory. While a relatively large

number of studies have investigated the language

and reading skills (Hulme et al. 2011) of children

with Down syndrome, much less is known

about the development of number skills in

this group.

Early case studies and studies using highly

selected samples have reported some relatively

high levels of arithmetic achievement in individ-

uals with Down syndrome. However, for the

majority of individuals with Down syndrome, sim-

ple single digit calculations and even counting

represent a significant challenge (Gelman and

Cohen 1988). Carr (1988) reported that more than

half of her sample of 41 individuals aged 21 years

could only recognize numbers and count on the

Vernon’s arithmetic-mathematics test. Buckley

and Sacks (1997) surveyed 90 secondary school-

age childrenwith Down syndrome in the and found

that only 18% could count beyond 20 and only half

of the sample could solve simple addition

problems.

Studies conducted on larger samples consis-

tently report low arithmetic achievement in

individuals with Down syndrome relative to

other scholastic skills such as reading accuracy

(Hulme et al. 2010; Buckley and Sacks 1987;

Carr 1988). Age equivalents on standardized

number tests are typically reported to lag age

equivalent reading scores by around 2 years

in children with Down syndrome (e.g., Carr

1998).

Arithmetic performance is reported to improve

with chronological age in children with Down

syndrome, but this varies widely within IQ levels

and is not true for all children (e.g., Carr 1988). It

seems highly plausible that a relationship might

exist between IQ level and arithmetic performance

level, but thus far, there is no consensus in the

literature. Education has a positive influence on

arithmetic performance as might be expected,

and individuals in mainstream school are reported
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to achieve higher levels of mathematical attain-

ment compared to special school (e.g., Carr 1988).

Individual differences in response to interven-

tion are primarily determined by quality and

quantity of teaching (Nye et al. 2005). In the UK,

Jo Nye has written a book on adapting Numicon

for use with children with Down syndrome,

“Teaching Number Skills to Children with Down

Syndrome Using the Numicon Foundation Kit.” In

the USA, DeAnna Horstmeier has written a book

titled “Teaching Math to People with Down

Syndrome and Other Hands-On Learners: Basic

Survival Skills.” More research is needed to

determine the origin of the difficulties that individ-

uals with Down syndrome before a theory driven

intervention program can be designed.
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What is Early Algebra?

Early algebra refers to a program of research,

instructional approaches, and teacher education

that highlights the importance of algebraic rea-

soning throughout K-12 mathematics education.

The program stresses that elementary arithmetic

rests on ideas and principles of algebra that merit

a place in the early curriculum. Early algebra

focuses on principles and representations of

algebra that can be and presumably need to be

mastered by young students as the foundations

for later learning.

In some countries, preparation for algebra is

implicitly integrated into the early mathematics

curriculum. This can be assessed by analysis of

curricula implemented in different countries,

a task that goes beyond the scope of this account

of research on early algebra. For now, it suffices

to state that the goal of introducing algebra in

elementary school is far from being universally

embraced, despite promising results of classroom

intervention studies of early algebra.

As early algebra developed as an area of

research, different proposals for introducing

algebra into the existing K-12 curriculum

emerged (see Carraher and Schliemann 2007).

Intervention studies based on these perspectives

have consistently shown that, well before

adolescence, students’ demonstrate algebraic rea-

soning, use conventional algebraic forms for

expressing such reasoning, and make mathemat-

ical generalizations that have an algebraic

character.

What Is Algebraic Reasoning?

Algebraic reasoning is generally understood as

some combination of (a) operating on unknowns;

(b) thinking in terms of variables and their

relations (where variables have a domain and

co-domain containing many, possibly an infinite

number of, elements); and (c) acknowledging

algebraic structure. Students may be engaged in

algebraic reasoning, regardless of whether they

are using algebraic notation.

Operating on Unknowns

A variable is a symbol or placeholder (typically

a letter but sometimes a simple figure or other

token) that stands for an element of a set of

possible values. The set typically contains num-

bers or measures (i.e., numbers along with units

of measure), but it may be defined over any sorts

of objects, mathematical or not.

Althoughmathematics tends not to distinguish

an unknown from a variable, in mathematics

education, an unknown is often taken to refer to

a fixed number. As a result, the term unknown

leaves open the issue of whether the variable is

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
# Springer Science+Business Media Dordrecht 2014



employed in the former or latter sense. Given this

ambiguity, variability (the idea that a variable can

take on multiple values) is generally treated as

a distinct feature of algebraic reasoning.

Operating on unknowns entails being able to

express the relationship among quantities

(variable or not) in a novel way. The statement,

“Michael had some marbles, then won 8 marbles,

finishing with 14 marbles,” is a natural language

representation of what might be expressed

through algebraic notation as “x + 8 ¼ 14.”

A student who realizes that the answer can be

found by subtracting 8 from 14 has reconfigured

the description of the relationship among known

and unknown values such that the answer can

be directly calculated from the givens without

having to resort to trial and error. This rudimen-

tary form of algebraic reasoning through

inverting or “undoing” is significantly different

from solving a problem through recall of number

facts or adding counting numbers to 8 in order to

obtain the sum of 14. Algebraic reasoning

is entailed whenever one validly expresses the

relationship among givens and unknowns in an

alternative form.

Early algebra research (see Kaput et al. 2008;

Schliemann et al. 2007) shows that children as

young as 8 and 9 years of age can learn to use

letters to represent unknown values, to operate on

those representations, and to draw new infer-

ences. They can do so without assigning specific

values to variables. This brings us to the second

characteristic of algebraic reasoning.

Thinking About Variables

Algebraic reasoning can take place in the

absence of algebraic notation. Variables can be

represented through expressions such as amount

of money, elapsed time, number of children,

distance (from school to home), etc. Young

students may use simplified drawings to represent

variables (e.g., a wallet to represent the amount of

money in a wallet). It is important to distinguish

such cases from literal drawings depicting one

single value or unknown.

Students are engaged in algebraic reasoning

whenever they are thinking about variables and

relations among variables.

Acknowledging Algebraic Structure

Algebraic structure is primarily captured in

the Rules of Arithmetic (the field axioms) and in

the principles for transforming equations (the

original techniques which gave rise to the subject

known as algebra).

In the early grades, students can focus on

the algebraic structure of simple equations to

the extent that they treat the letters as generalized

numbers (e.g., when 2n + 2 ¼ 2 � (n + 1), for all

n in the domain) and, thereby, treat the operations

as having validity over a particular set of

numbers.

Approaches to Early Algebra Instruction

Early algebra proponents have adopted three gen-

eral complementary approaches, each showing

some success in developing students’ algebraic

reasoning. They focus on students’ reasoning

about (a) physical quantities and measures,

(b) the properties of the number system, and/or

(c) functions.

Reasoning About Physical Quantities and

Measures

In this approach, students are encouraged from

early on to use letter notation for comparing

unknown magnitudes (e.g., a displayed distance

or a distance expressed as a magnitude of a unit of

measure). For example, they learn to express the

length of a line segment, A, as greater than

the length of another line segment, B, by the

inequality A>B (or B<A) or through equations

such as A¼ B + C, B¼A – C. Furthermore, they

use multiple forms of representation (diagrams of

line segments, tables of values, and algebraic

notation) to express relations among givens and

unknown magnitudes.

For example, research by Davydov’s (1991)

group, in the former Soviet Union, shows

that quantitative reasoning in concert with

multiple forms of representation can support the

emergence of algebraic reasoning among second

to fourth graders who solve problems like:

“In the kindergarten, there were 17 more hard

chairs than soft ones. When 43 more hard chairs
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were added, there were five times more hard

chairs than soft ones. How many hard and soft

chairs were there?”

The Properties of Number Systems:

Generalized Arithmetic

A generalized arithmetic approach emphasizes

algebraic structure early on. For example, the

equation 8 + 7 ¼ 9 + ❐ sets the stage for

a discussion about the equal sign as meaning

something different from the idea of “makes”

or “yields”; rewriting the number sentence as

8 + 7 ¼ 8 + (1+ ❐) may evoke the insight that

1 + ❐ equals 7, making use of the associative

property of addition.

Authors whose work falls under this general

approach (e.g., Bastable and Schifter 2007;

Carpenter et al. 2003) find that elementary school

children come to display implicit algebraic

reasoning and generalizations supported by

intuitive arguments, discuss the truth or falsity

of number sentences, and think about the struc-

tural relations among the numbers, considering

them as placeholders or as variables.

Functions Approaches to Early Algebra

Functions approaches subordinate many

arithmetic topics to more abstract ideas and con-

cepts. Multiplication by 3 is viewed as a subset of

the integer function, 3n, that maps a set of input

values to unique output values, thus preparing the

ground for the continuous function, f(x) ¼ 3x,

over the real numbers and its representation in the

Cartesian plane. Functions approaches often rely

on multiple representations of mathematical

functions: descriptions in natural language, func-

tion tables, number lines, Cartesian graphs, and

algebraic notation. Students are encouraged to

treat what might initially appear to be a single

value (e.g., “John and Mary each have a box

containing the same number of candies. Mary

has three additional candies. What can you say

about how many candies they each have?”), as

a set of possible values.

Results of classroom studies using a functions

approach to early algebra are consistently

positive. Moss and Beatty (2006) show that,

after working with patterns where the position

or step is explicitly treated as an independent

variable, while the count of some property (e.g.,

points in a triangular figure) is treated as

a dependent variable, students in grades 2–4 can

learn to formulate rules that are consistent with

a closed form representation of the function such

as 3x + 7. Blanton and Kaput (2005) found that

children come to represent additive and multipli-

cative relations, transitioning from iconic and

natural language registers at grades PreK-1 to

use of t-charts and algebraic notational systems

by grade 3. Students from grades 3 to 5 who

participated in a longitudinal study of early alge-

bra, focused on variables, functions, and their

multiple representations (Carraher et al. 2008)

have been found to perform better than their

control peers in the project’s written assessment

problems related to algebraic notation, graphs,

and equations, as well as in algebra problems

included in state mandated tests. The benefits of

the intervention persisted 2–3 years later, when

treatment students were, again, compared to

a control group (Schliemann et al. 2012).

In Summary

Early algebra highlights the algebraic character

of time-honored topics of early mathematics. The

successful adoption of early algebra depends

upon the fluidity with which teachers are able to

move back and forth between algebraic represen-

tations and those expressed through natural lan-

guage, diagrams, tables of values, and Cartesian

graphs. There are robust examples of how this

can be done in the research literature. The next

step is to prepare teachers to interweave these

activities into their regular curriculum.
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What Is Meant by Early Childhood
Mathematics Education?

Early childhood mathematics education includes

providing activities or creating learning environ-

ments by professionals such as teachers and care

takers in order to offer young children experi-

ences aimed at stimulating the development of

mathematical skills and concepts. In general,

early childhood mathematics education involves

children who are 3–6 years old. Depending on the

age of the children and the educational system of

their country, early childhood education takes

place in preschool care centers or in kindergarten

classes. Children’s mathematical development

can also be stimulated by encounters and events

that take place outside an educational setting, that

is, in the children’s home environment, in which,

among other things, children can develop some

basic notions about number by playing games

with their siblings. These family-based activities

are highly esteemed as the foundation on which

mathematics education in the early years

can build.

History

Teaching mathematics to young children has

already a long history. Saracho and Spodek

(2009a, b) gave in two articles an overview of it.

According to them we can consider the beginning

of early mathematics education in 1631 when

Comenius, who was at that time a teacher in

Poland, published his book School of Infancy. In

this book, Comenius described the education of

children in their first 6 years. By emphasizing the

observation and manipulation of objects as the

main source for children’s learning, Comenius

stimulated the creation of mathematics programs

for young children which heavily rely on the use of

concrete materials. Two centuries later, in the

nineteenth century, Comenius’ approach was

reflected in the educational method of Pestalozzi

in Switzerland which also focused on observing

and manipulating physical objects.

A further landmark in the development of

mathematics education for young children was
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the foundation of the Infant School by Owen in

Scotland in 1816. The method of this school for

teaching arithmetic was aimed at developing

understanding of different arithmetic operations

for which, like by Pestalozzi, concrete materials

were used. Similarly, in the United States,

Goodrich introduced in 1818 in his book The

Children’s Arithmetic the idea that young

children can discover arithmetic rules when they

manipulate concrete objects such as counters and

bead frames. This innovative approach rejected

the view that arithmetic is learned through

memorization. Later, in the United States,

Colburn used Goodrich’s and Pestalozzi’s work

to develop a method which he called “mental

arithmetic.” The book First Lessons, which

he published in 1821, was meant for 4- and

5-year-old children and started with simple levels

of numerical reasoning elicited by word problems

and naturally progressed to more complex

levels. Colburn attached much value to children

having pleasure in their solutions because this

contributes to their learning and the integration

of concepts. Moreover, he emphasized the

inductive approach, which has many similarities

to the constructivist view on learning.

In the second half of the nineteenth century,

early childhood mathematics education was

influenced by Fröbel who in 1837 established

the first kindergarten in Germany and developed

an educational program for young children.

A central component in this program were the

so-called gifts, small manipulative materials

by which children could be made aware of

numerical and geometric relationships and

which could provide them experiences with

respect to, for example, patterns, symmetry,

counting, measurement, addition, division,

fractions, and properties of shapes. One of the

gifts consisted of a series of cubes made out of

wood, divided into smaller parts, and followed by

square and triangular tablets. The gifts were

offered to the children in a prescribed sequence,

and the children were expected to build precise

forms with them. Although children in the

Fröbelian kindergarten might have acquired

a substantial amount of mathematical knowledge,

attained incidentally and instinctively through

play, the ultimate goal of Fröbel was not

to teach children mathematics, but help 3-

to 6-year-olds to understand the relationship

between nature, God, and humanity.

At the turn of the twentieth century, many

from the kindergarten community began to ques-

tion the appropriateness of Fröbel’s curriculum

and his methods. For example, Dewey considered

the Fröbelian activities as mindless copying and

manipulation of artificial objects. These concerns

led to the so-called “child-centered approach,”

which originated from the eighteenth century

philosopher Rousseau. In this approach there

was no specific program for mathematics instruc-

tion, but children were engaged in activities

based on their interests, which would incidentally

help children prepare for the later learning of

formal mathematics. This approach also applied

to the nursery school which was established

firstly in England in the beginning of the

twentieth century. The educational program was

predominantly focused on children’s play and

ignored academic subjects which would be taught

later when the children are older.

A different approach was reflected by

Montessori, who at the beginning of the twentieth

century introduced a method for teaching young

children that was deeply mathematical. Most of

the activities she suggested were requiring, for

example, working with patterns and exploring the

properties of geometric shapes, numbers and

operations. Her approach included working with

sensory materials and was based on the idea that

children use their senses to acquire information

about the world. For example, children felt the

shape of numerals made of sandpaper before

writing these numerals.

Halfway the twentieth century, the ideas of

Piaget influenced the teaching of mathematics to

young children. He related the construction

of number concepts to the development of

children’s logical thinking and focused on

understanding common properties of quantities

like conservation, seriation, and class inclusion

rather than on counting. Piaget emphasized that

there is a relationship between the basic struc-

tures of modern mathematics and the mental

structures developed in children. Although these
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and other ideas of Piaget were questioned, Piaget,

together with other pioneers since Comenius, has

contributed to the present awareness of the

importance of mathematics education for young

children.

Recent Interest in Early Childhood
Mathematics Education

Currently, early childhood education has risen

to the top of the national policy agenda with

recognition that ensuring educational success

and attainment must begin in the earliest years

of schooling (National Research Council 2009).

An important reason for this is that research

has shown that the amount of mathematical

knowledge children bring with them when they

start in grade 1 has large, long-term consequences

for their further learning of mathematics

(Duncan et al. 2007).

For example, in the United States, the recent

awareness of mathematics as a key aspect of early

childhood education was boosted in 2000 when

the National Council of Teachers of Mathematics

published their revised 1989 standards for

elementary and secondary school mathematics

and included prekindergarten for the first time

in their description of standards. A further

step was a joint position statement titled Early

Childhood Mathematics: Promoting Good

Beginnings by the National Association for the

Education of Young Children and the National

Council of Teachers of Mathematics (NAEYC

and NCTM 2002) that was aimed at achieving

high-quality mathematics education in child care

and other early education settings. The book

resulting from the Conference on Standards

for Early Childhood Mathematics Education

(Clements et al. 2004) and the Curriculum

Focal Points for Prekindergarten through

Grade 8 Mathematics (NCTM 2006) were other

breakthroughs for early childhood mathematics

education. Similar documents for teaching

mathematics in the early years of schooling

were also released in other countries, for

example, in the United Kingdom (Department

for Children, Schools and Families 2008), France

(Ministère de l’Education Nationale 2002),

Australia (Australian Association of Mathematics

Teachers and Early Childhood Australia 2006),

and the Netherlands (Van den Heuvel-Panhuizen

and Buys 2008).

Another indication for the new prominent

position of early childhood mathematics

education is reflected by the establishment, in

2009, of the working group on Early Years

Mathematics in the Congress of the European

Society for Research in Mathematics Education

(CERME), which focuses into research on

learning and teaching mathematics to children

aged 3–8. The work of this group in the last two

meetings of CERME has shown that investigat-

ing mathematics education during the early

years is a rather complex and multidimensional

endeavor. The specificities of early childhood

education in different countries and educational

systems, e.g., the differences in the conception of

schooling and early years mathematics and in the

transition ages from preprimary to primary school

and the differences in the education and develop-

ment of prospective preschool and kindergarten

teachers regarding the didactics of mathematics

as well as the constraints in the ability of young

children to articulate their mathematical thinking

and understanding, are only some of the factors

that contribute to this complexity.

Mathematics Taught in Early Childhood

Although in the past, early childhood mathemat-

ics education was often restricted to teaching

arithmetic, several early pioneers such as Fröbel

and Montessori as well as Piaget offered

a wider program to children. Presently, there is

expert consensus (see National Research Council

2009) that two content areas of mathematics

are particularly important for young children to

learn, namely, (1) numerical and quantitative

ideas and skills and (2) geometric and spatial

ideas and skills. Moreover, according to Clem-

ents and Sarama (2007), these ideas and skills are

permeated by mathematical activities such as

dealing with patterns, analyzing data, and sorting

and sequencing.
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Ways of Teaching Mathematics to
Young Children

There is also general agreement that “teaching”

mathematics to young children should have many

characteristics of the informal learning as it takes

place in the family setting where children come

along with mathematics in a natural way and

“mathematical ideas permeate children’s play”

(Ginsburg and Amit 2008, p. 275). Young

children develop mathematical ideas and skills

primarily in informal ways which make sense to

them. Thus a major part of early mathematics

education needs to be organized in informal

contexts which are meaningful for the young

children.

Play

Such learning opportunities can be provided in

kindergarten through play (Pramling-Samuelsson

and Fleer 2009). By offering playful activities

such as free play, sensorimotor play, making

constructions, and role playing, children can

know the world mathematically. They can

spontaneously deal, for example, with counting

up to large numbers, comparing the height of

their towers of blocks, creating and extending

patterns when jumping up and down, and

connecting movements to verbal expressions,

investigating shapes, and exploring symmetry

and spatial relations.

According to Vygotsky play in early childhood

becomes the leading activity of development. The

challenges the children encounter during play

and the help they receive from more knowledge-

able others, such as teachers, who assign math-

ematical meaning to their play actions, enable

the children to move a step forward in their

abilities. In this way they enter the zone of

proximal development.

Picture Books

Another way of offering children meaningful

contexts in which they can encounter mathemat-

ics-related problems, situations, and phenomena

that can support the learning of mathematics is by

reading them picture books (Van den Heuvel-

Panhuizen and Elia 2012). From a Vygotskian

and action-psychological approach to learning

(Van Oers 1996), picture books can contribute

to forming, exchanging, and negotiating all

kinds of personal meanings within everyday

practices and to acquiring mathematics as an

activity involving historically developed and

approved meanings. Furthermore, they can

offer cognitive hooks to explore mathematical

concepts and skills. An example concerns the

book Vijfde zijn [Being Fifth] (Jandl and Junge

2000), which is about a doctor’s waiting room in

which five broken toys are waiting for their turn

(see Fig. 1). Even though the book was not

written for the purpose of teaching mathematics,

Early ChildhoodMathematics Education, Fig. 1 Page 3 of the picture book Vijfde zijn [Being Fifth], Left side: Text
“One in”, Right side: Illustration of five broken toys in a doctor’s waiting room (Jandl and Junge 2000)
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it implicitly touches on counting backwards

and spatial orientation as part of the narrative

and has the power to offer children a rich

environment for eliciting mathematical thinking

(Van den Heuvel-Panhuizen and Van den

Boogaard 2008).

Information and Communication
Technology

Although there is still debate about whether Infor-

mation and Communication Technology (ICT) is

appropriate for teaching young children, there is

ample evidence from research that computer use

can be meaningful, motivating, and beneficial for

children 3 years of age and above (e.g., Haugland

2000; Clements et al. 2004). The use of computers

in early years’ mathematics can support young

children’s mathematical thinking in various

ways. One of the most powerful affordances of

the use of computers in early childhoodmathemat-

ics education is that they embody the processes

children need to develop and mentally use.

Computers can also help children connect

concrete and symbolic representations of the

same mathematical concept, e.g., by providing

a dynamic link between base-ten blocks and

numerical symbols. Using mathematical computer

games enables children to explore mathematical

concepts, such as geometric figures, in ways that

they cannot with physical manipulatives. For

example, they can modify the size of geometric

shapes, without changing their critical attributes.

Furthermore, the use of computers can support

children in bringing mathematical processes and

ideas, such as shape transformations, in an explicit

level of awareness. The Building Blocks program

(Clements et al. 2004), for example, uses computer

software tools (see Fig. 2) to help preschoolers

acquire geometric and numerical ideas and skills.

In sum, the computers can provide valuable

opportunities for learning in early childhood math-

ematics education. However, realizing the full

potential of technology requires comprehensive,

meaningful, and well-planned instructional set-

tings. The development and organization of such

settings strongly depends on the curriculum and the

teacher (Clements 2002). Thus, effectively inte-

grating technology in the early childhood mathe-

matics curriculum and appropriate professional

development of kindergarten teachers should be

vitally important concerns in relation to computer

use in mathematics education in the early years.

Future Perspectives in Early Childhood
Mathematics Education

Presently there is broad diversity of theories of

learningmathematics ranging from cognitivist the-

ories including a Piagetian approach, situated

Early Childhood

Mathematics Education,
Fig. 2 Geometric puzzle
in a Building Blocks’
software tool
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cognition, and semiotic approaches to various con-

structivist theories and social-cultural theories.

A recent research direction in mathematics educa-

tion is the theory of embodied learning in mathe-

matics which claims on the basis of knowledge

from neuroscience that cognition and concepts

are strongly founded on bodily experiences.

Although this new approach to learning is closely

related to how young children explore and make

sense of their environment, not much research has

been carried out in how ideas from embodiment

theory can be used to acquire a better understand-

ing of young children’s mathematical develop-

ment and how early childhood education can

contribute to this development.
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Definition

Education of teacher educators refers to the prep-

aration, professional development, teaching, or

facilitating of teacher educators. It is understood

as a goal-directed intervention in order to pro-

mote teacher educators’ learning and further

development of beliefs, knowledge, and practice,

including formal as well as informal activities.

Nowadays, the term “teacher educators” com-

monly refers to both those who educate prospec-

tive teachers and those who educate practicing

teachers, that is, to those who initiate, guide, and

support teacher learning across the lifespan

(Even 2008; Krainer and Llinares 2010). Yet,

sometimes the term “teacher educators” refers

only to educators of prospective teachers, that

is, to those who teach future teachers and not to

those who provide professional development for

practicing teachers.

Theoretical Background

There is general recognition and agreement today

that the education and professional development

of teachers is key to improving students’ oppor-

tunities to learn (Even and Ball 2009; Krainer

2011). Accordingly, the focus and nature of the

education of prospective and practicing teachers

have received immense international attention

in recent years, and the past decades have

seen substantial increase in scholarship on

mathematics teacher education. A significant

issue identified recently as crucial for improving

the education and professional development of

mathematics teachers is the education and

development of teacher educators and related

research (Adler et al. 2005; Even and Ball 2009;

Jaworski and Wood 2008).

In different countries around the world,

various professionals are responsible for initiat-

ing, guiding, and supporting teachers’ learning:

university faculty with disciplinary expertise

and those who specialize in education; school

teachers, teacher mentors, and staff of curriculum

implementation projects; educators whose major

occupation is to work with teachers and those

who do it only as an add-on part-time temporary

activity; those who work with both prospective

and practicing teachers; and those whose role

is to educate solely prospective or practicing

teachers, but not both. Yet, this vast range of

teacher educators has little formal preparation

for their work. Most become teacher educators

through practice with little institutional and pro-

fessional support. With the expanding current

interest in the issue of professional education

and development of teacher educators in different

countries, pioneering formal programs to prepare

educators to educate teachers started to emerge.

These include, for example, the Pedagogy and

Subject-Didactics for Teachers (PFL) Program

in Austria, the MANOR Program in Israel for

educating educators of practicing mathematics

teachers, the School for Research and Develop-

ment of Education Programs for Teacher College
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Faculty (MOFET Institute) in Israel, a special

M.Ed. program in Pakistan, and the Leadership

Curriculum for Mathematics Professional Devel-

opment (LCMPD) Project in the USA.

Important Scientific Research and Open

Questions

The education of teacher educators has only

recently become of interest to the international

community. Thus, not much is known about

the development of teacher educators and

about effective ways to educate educators to

initiate, guide, and support teacher learning

(Even 2008).

Research studies that center on issues

pertaining to professional education and develop-

ment of teacher educators in a specific subject

area are rare. Mathematics is among the subjects

where efforts in investigating the education of

teacher educators have become visible recently

(Even 2005; Jaworski and Wood 2008; Nardi

2008; Oikkonen 2009). Most research on the

professional education and development of math-

ematics teacher educators includes reflections of

teacher educators on their own personal develop-

ment (e.g., Cochran-Smith 2003; Jaworski and

Wood 2008). This research suggests that reflec-

tive inquiry has a central role in learning to teach

teachers and in developing as teacher educators.

Yet, this line of research provides information

mainly on the professional development of uni-

versity-based teacher educators with research

interest in teacher education, but not on that of

the wide range of professionals responsible for

supporting prospective and practicing teachers’

learning.

Because formal preparation for mathematics

teacher educators scarcely exists, research

that examines formal programs and activities

intended to educate mathematics teacher educa-

tors is sparse. Pioneering work in this direction

addresses various aspects of curriculum (What

should teacher educators learn?) and pedagogy

(How should teacher educators be taught?). It

suggests several areas of professional knowledge

base for mathematics teacher educators (Jaworski

and Wood 2008); two relate to knowledge shared

by teacher educators and teachers: pedagogical

knowledge and disciplinary knowledge. A third

area of professional knowledge base for educat-

ing teacher educators relates to knowledge spe-

cific to the mathematics teacher educator:

knowledge of teaching teachers and of teachers’

learning. In addition to professional knowledge

base, research suggests the need to purposely

teach practices of educating teachers, giving

explicit attention to the nature of work in which

mathematics teacher educators engage. These

practices may be general, such as teaching

courses, supervising student teachers, and facili-

tating seminars (Cochran-Smith 2003), or subject

matter specific, such as planning, conducting, and

assessing activities, workshops, and courses for

mathematics teachers (Even 2005). This line of

research also suggests that inquiry is central to

learning to teach teachers and to developing as

mathematics teacher educators. Additionally, it

shows the importance of attending to the relation-

ships of knowledge and practice.

Thus far, it is not known whether, or in what

ways, formal education of mathematics teacher

educators needs to be responsive to the wide

range of professionals responsible for supporting

teachers’ learning or may be common to all, for

example, whether the professional education of

educators of practicing mathematics teachers

needs to be different from the education of

educators of prospective mathematics teachers,

as the education of prospective and that of prac-

ticing mathematics teachers are commonly of

different nature, often occurring in different

settings, and not necessarily conducted by the

same people.
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Mirror images of an emerging field: researching
mathematics teacher education. Educ Stud Math
60(3):359–381

Education of Mathematics Teacher Educators 203 E

E

http://dx.doi.org/10.1007/978-94-007-4978-8_176
http://dx.doi.org/10.1007/978-94-007-4978-8_108


Cochran-Smith M (2003) Learning and unlearning: the
education of teacher educators. Teach Teach Educ
19:5–28

Even R (2005) Integrating knowledge and practice at
MANOR in the development of providers of
professional development for teachers. J Math Teach
Educ 8(4):343–357

Even R (2008) Facing the challenge of educating
educators to work with practicing mathematics
teachers. In: Jaworski B, Wood T (eds) The
international handbook of mathematics teacher
education: the mathematics teacher educator as
a developing professional. Sense, Rotterdam,
pp 57–73

Even R, Ball DL (eds) (2009) The professional education
and development of teachers of mathematics – the 15th
ICMI study. Springer, New York

Jaworski B, Wood T (eds) (2008) The international
handbook of mathematics teacher education, vol 4,
The mathematics teacher educator as a developing
professional. Sense, Rotterdam

Krainer K (2011) Teachers as stakeholders in mathematics
education research. In: Ubuz B (ed) Proceedings of the
35th conference of the international group for the
psychology of mathematics education, vol 1. PME,
Ankara, pp 47–62

Krainer K, Llinares S (2010) Mathematics teacher
education. In: Peterson P, Baker E, McGaw B (eds)
International encyclopedia of education, vol 7.
Elsevier, Oxford, pp 702–705

Nardi E (2008) Amongst mathematicians: teaching and
learning mathematics at university level. Springer,
New York

Oikkonen J (2009) Ideas and results in teaching beginning
maths students. Int J Math Educ Sci Technol
40(1):127–138

Elkonin and Davydov Curriculum in
Mathematics Education

Barbara Dougherty1 and Martin Simon2

1College of Education, University of Missouri,

Columbia, MO, USA
2Steinhardt School of Culture, Education, and

Human Development, New York University,

New York, NY, USA

Keywords

Developmental learning; Activity theory;

Sociocultural theory; Vygotsky; Curriculum;

Measurement

Definition

The Elkonin-Davydov mathematics curriculum

was an elementary mathematics curriculum

developed in Russia based on Russian activity

theory. In recent years, the original Russian

curriculum has been expanded to include grades

K–8 and has been refined into several different

curricula. In addition, research projects in

other countries (e.g., USA) have investigated

applications with local populations.

Characteristics and Origin

In 1959, Daniil Borissowitsch Elkonin

(1904–1984) and Vasily Vasil’evich Davydov

(1930–1998), Russian psychologists and students

of Lev Vygotsky, developed an elementary

mathematics curriculum. Their work was initially

situated in experimental school #91 in Moscow

where their team functioned as researchers

and teachers. The project was grounded in

Russian activity theory, which grew out of the

cultural-historical theory of Vygotsky.

Davydov was critical of the existing schooling

system and argued that traditional pedagogy

failed to develop a general concept of number

that could support the learning of numbers of all

types. Students were forced to learn a new

concept of number each time they focused on

a different number domain (e.g., integers, rational

numbers, irrational numbers, imaginary num-

bers). Elkonin and Davydov believed that devel-

opmental learning coupled with Vygotsky’s

description of the development of scientific

concepts (Vygotsky 1987) could overcome the

restrictions of a traditional approach.

The E-D approach is characterized by

two essential principles within developmental

learning. The first is dialectical logic, which can

be thought of as diametrically opposed to empir-

ical thinking in which learning is based on accu-

mulation of cases (Davydov 1990). To support

dialectical logic, the E-D approach aims at the

learning of more general ideas and then builds on

those general ideas to develop advanced concepts

that incorporate those ideas. Thus, in the E-D
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curriculum a general concept of number is

developed and then built on as different number

domains are explored.

Elkonin and Davydov believed that thinking

about conceptual and abstract ideas should lead

to a child’s ability to analyze, reflect, and plan.

Explicitly, analysis is the child’s ability to isolate

the critical and essential relation in a problem.

Reflection is the child’s understanding of the

bases of his/her own activity. Planning is the

child’s ability to construct ways to solve

a problem based on systems of activities.

The second principle of developmental

learning is learning through one’s own activity

(Leont’ev 1978). In the E-D approach, this is

characterized by students’ activities in which

they reconstruct mathematical ideas from their

origin. That is, the mathematics is presented so

that students see how ideas build, one on another.

There is a specific learning goal toward which the

instructional tasks are structured. In their work

on the tasks, students interact with specific tools

that help them see the mathematics in particular

ways during the learning process.

In order to foster a general understanding of

number that can support learning related to all

types of number, the E-D curriculum (Davydov

et. al 1999) starts with a prenumeric stage rather

than counting and builds on a foundation of mea-

surement concepts. In the prenumeric stage, chil-

dren first identify the attributes of objects that can be

compared and engage in direct comparison. For

example, two bottles can be compared in multiple

ways such as their height, the area of their bases, the

volume of water they can hold, and their masses.

These four attributes are considered to be general-

ized, nonspecific continuous quantities. Continuous

quantities, in contrast with discrete quantities, can

be subdivided a limitless number of times and each

part of the subdivisions is of the same type. The

quantities are generalized and nonspecific because

they have no number (as determined by measure or

count) associated with them.

By using the attributes of length, area, volume,

and mass, children explore equality and inequality

including creating an equal relationship from one

that is unequal (by adding or subtracting the dif-

ference). The fundamental properties of arithmetic

(such as commutativity and associativity) natu-

rally arise from these explorations – all without

numbers. Reasoning about generalized quantities

is supported by introducing letters to represent the

quantities and arrow diagrams and equations to

represent the relationship between quantities.

The prenumeric work, in which students

examine relationships among physical quantities,

forms the basis for the E-D curriculum. Number

is not a primitive idea as it is in curricula that

begin with counting. Number is the result of

measuring a quantity with a unit. The need for

measurement is introduced in order to compare

quantities that cannot be compared directly (e.g.,

two lengths that cannot be laid side by side). To

measure a quantity, one needs to determine a unit

that can measure the quantity. If a quantity and

a unit exist, then to find the count, the unit is

iterated until the quantity has been fully mea-

sured. The counting of the iterations drives the

introduction of number. Thus a number is defined

as the result of measuring a quantity with a unit.

Note that neither the quantity nor the unit has

numbers associated with them. Numbers are pro-

duced through measuring one with the other.

In each of the grades, however, the E-D cur-

riculum consistently begins a topic of study with

learning problems that lead to a system of activ-

ities. Learning problems are situations that sig-

nificantly change students’ thinking. The change

occurs within children’s activity and thus the

material chosen for the learning problem is

ultimately an important consideration. It must

support the acquisition of constructing a general

way to view the activity itself.

For example, initially in grade 1, students use

direct comparison to find the relationship

between two quantities. In a new learning prob-

lem, students are then given the challenge to

determine how two quantities compare when

they cannot be moved to perform a direct com-

parison. This motivates students to consider how

the direct comparison method can be changed so

that it will fit the new parameters of the problem.

In the above example, the inability to perform

a direct comparison requires children to consider

the use of a tool that mediates the situation. From

this task, the need for a portable representation of
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at least one of the quantities is created. Children

must now negotiate a tool and find a systematic

way to use it. Additionally, if they construct the

tool to be only some part of the whole quantity, it

becomes the introduction to counting as they mea-

sure the quantity through iterations. By changing

the task ever so slightly, children are beginning the

generalization of the process of measuring. Since

the task represented above can occur in any of the

four continuous quantities, children come to view

this as a generalized model for any measurement,

even those associated with discrete sets.

The outcome of this approach is that children

see “unit” as the basis of all number. The

relationship of the unit to a quantity and its mea-

sure is critical in determining how each compo-

nent relates one to another. The relationship is

expressed in multiple forms that reflect the action

used to determine the count and show the rela-

tionship across the unit (E), the quantity (Q), and

the count (n) (See Fig. 1).

From these representations, children general-

ize that as the unit (E) gets larger, the count (n)

gets smaller. Even though this is introduced in

grade 1, it is an important concept for the devel-

opment of rational number. Subsequent instruc-

tion builds on these initial concepts of quantities,

units, measurement, and number. Place value is

taught as relationship between different size units

in a system of units in which each larger unit is

n times larger than the prior unit. Multiplication is

taught as the use of an intermediate unit to find

the number of units in a quantity. For example,

a meter could be used as an intermediate unit to

find out how many centimeters are in a quantity.

Multiplication is the relationship between the

number of centimeters in a meter and the number

of meters in the quantity that gives the number of

centimeters in the quantity. Fractions are taught

by introducing partial units, initially by reversing

the process that created larger place values.

Implementation and Adaptation

The E-D elementary mathematics curriculum has

been implemented in about 10 % of elementary

schools throughout the Russian Federation since

the collapse of the Soviet educational system

in 1991. Evaluation studies consistently demon-

strate that students in E-D elementary classrooms

do better overall than students in other elemen-

tary classrooms (Nezhnov et al. 2009; Vysotskaia

and Pavlova 2007; Zuckerman 2005). In a

comparative study of E-D (Davydov et. al 1999)

and six other curricula in Russia, Vysotskaia and

Pavlova (2007) found that the E-D students were

better able to solve a variety of problems than

those in other curricula. Similarly, Zuckerman

(2005) compared the E-D curriculum to two

other curricula using selected problems from the

PISA international mathematics tests. She found

that 15-year-old students who had been taught

through the E-D curriculum demonstrated a

higher ability to use diagrams, graphs, and other

representations for solving problems.

There are at least two significant adaptations of

the E-D curriculum outside of Russia. One adap-

tation focused on grades 1–3 only in one school in

the USA. The results, however, are compelling in

that the findings from multiyear implementations

indicate the use of E-D curriculum supported com-

putational competency as well as the development

of algebraic concepts (Schmittau 2005).

On a larger scale, in 2001, the Curriculum

Research & Development Group, University of

Hawaii, entered into a collaborative arrangement

with the Elkonin-Davydov group to create an

adaptation of the E-D curriculum for grades

1–5. The adapted curriculum, Measure Up

(Dougherty 2008), closely followed the E-D

approach but revised the instructional approaches

to include significant language components (read-

ing, writing, speaking, and critical listening).

Additionally, some contents, such as fractions,

were introduced in a slightly different way even

though the focus on quantitative reasoning and

measurement was maintained. The resulting cur-

riculum (Dougherty et al. 2004) was implemented

and tested in two sites in Hawaii with significant

results. A study (Slovin and Venenciano 2008)

E
n

Q
Q

= n
E

Elkonin and Davydov Curriculum in Mathematics

Education, Fig. 1 Example of two ways to express rela-
tionship of quantity, unit, and count
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used the Chelsea Diagnostic Mathematics Test:

Algebra (Hart et al. 1985) (originally designed

for 13–15-year-old students) to determine how

well 5th and 6th grade students who had engaged

in the Measure Up curriculum were prepared for

algebra. Measure Up students performed dispro-

portionately better than studentswho had not expe-

rienced Measure Up on a subset of items focused

on concept of variable.

Even though studies both in the USA and

Russia have indicated that students learn signifi-

cant mathematics, the issue of broader dissemina-

tion remains problematic for at least three reasons.

First, the approach tomathematics is unique in that

it does not follow the conventional approach we

have come to expect in elementary mathematics

where we begin with counting and number.

Second, content knowledge that is expected in

teacher preparation courses is not sufficient for

teaching the E-D orMeasure Up curricula. Finally,

high-stakes assessments are often based on

a conventional approach and sequence to elemen-

tary mathematics. Thus children are learning

concepts and skills in a different sequence.

Cross-References
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Definition

Embodied cognition is a subdomain of cognitive

psychology that focuses on the interaction

between an individual and the environment

(social, environmental, instructional). It moves
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beyond the traditional distinctions between mind

and body in the sense that actions or interactions

embody projections of the mind and vice versa.

Some Definitional Differences in

Mathematics Education

Many embodied ideas eventually are represented

symbolically in mathematics. Examples of these

are enumeration systems which are abstractions

of human gestures for counting, pointing, and

measuring. Freudenthal (1973) claimed that

geometry is based upon our experiences with

our bodies in the world. This suggests that the

only mathematics we are able to know is the

mathematics that our bodies and brains allow us

to know (Lakoff and Nunez 2000; Fyhn 2010).

Freudenthal (1973) also claimed that geometry is

about grasping space. Fyhn (2010) interprets

“Space” according to this definition as that

“in which the child lives, breathes and moves”

(p. 296). The idea of a “grounding metaphor” is

used to connect different mathematical ideas

such as arithmetic, the Cartesian coordinate sys-

tem, functions (Bazzini 2001), and even calculus

(Lakoff and Nunez 2000) to everyday activities.

One should note that there is a difference between

micro-embodied experiences such as gestures

and macro-embodied experiences such as throw-

ing an object, climbing stairs, or climbing a wall.

Embodied Cognition in Mathematics
Education

Nunez et al. (1999) claim that learning and using

mathematics are closely associated with the

social, cultural, historical, and contextual factors

(p. 45). These have also been labeled as

“situated” learning (Lave 1988). Mathematics is

conceived as a product of human activities in the

process of adapting to the external environment

and needs, and shared and made meaningful

through language and other means, but based

ultimately on biological and bodily experiences.

The creation of mathematics through “situated”

cognition and sensemaking is not arbitrary, rather

is bodily grounded (Lakoff and Nunez 2000).

From an embodied cognition perspective, the

learning of mathematical knowledge occurs in

naturally situated, often unconscious, everyday

thoughts. The implication of embodied cognition

in the pedagogy of mathematics education is that

rather than teaching students to learn “rigorous”

definitions/theorems of the pre-givenmathematical

ideas, one needs to focus on the understanding and

sensemaking that students need to develop. It is

daily experiences that provide the initial grounds

for the abstractions that constitute mathematics.

This view has been suggested earlier since the

early 1960s by Zoltan Paul Dienes (Sriraman and

Lesh 2007).

Cognitive Science of Embodied
Cognition

Lakoff and Nunez (2000) discussed the cognitive

science of mathematics based on the key concept

of embodied cognition. The basic assumption is

that mathematics is not mind-free. There are

claims such as newborn babies aged 3 or 4 days

old having the innate arithmetic abilities to

discriminate between collections of two and

three items (Antell and Keating 1983) which are

supported by other studies beyond the scope of

this entry. Basic arithmetic uses various capaci-

ties of our brain such as subitizing, perception of

simple arithmetic relationships, estimate and

approximation, and the ability to use symbols

(Dehaene 1997). Mathematical cognition often

occurs unconsciously (Lakoff and Nunez 2000).

This is because the general cognitive mechanisms

that use everyday nonmathematical thoughts can

create mathematical understanding and structure

mathematical ideas (p. 29). Again Lakoff and

Nunez (2000) claim that there are two types of

conceptual metaphors that play an important role

in the development of mathematical ideas, i.e.,

grounding metaphors and linking metaphors. The

interested reader should examine chapters from

Where Mathematics Comes From that focus on

these ideas. In a nutshell a grounding metaphor

refers to basic, direct mathematical ideas.

For example, multiplication as repeated addition

sets as containers and elements of a set as objects

in a container. Linking metaphor refers to
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abstraction, which produces sophisticated ideas.

For instance, geometric figures as algebraic

equations (Lakoff and Nunez 2000, p. 53).

Dienes’ Contributions to Embodied

Mathematics

Based on a survey of prior studies in mathematics

education, Sriraman and Lesh (2007) claimed

that Dienes not only studied a phenomenon that

later cognitive scientists have come to call

embodied knowledge and situated cognition but

he also emphasized the multiple embodiment

principle whereby students need to make predic-

tions from one structured situation to another.

And he also emphasized the fact that, when con-

ceptual systems are partly off-loaded from the

mind using a variety of interacting representa-

tional systems (including not only spoken lan-

guage written symbols, and diagrams but also

manipulatives and stories based on experience-

based metaphors), every such model is, at best,

a useful oversimplification of both the underlying

conceptual systems being expressed and the

external systems that are being described or

explained. Thus, Dienes’ notion of embodied

knowledge presaged other cognitive scientists

who eventually came to recognize the importance

of embodied knowledge and situated cognition –

where knowledge and abilities are organized

around experience as much as they are organized

around abstractions (as Piaget, e.g., would have

led us to believe) and where knowledge is dis-

tributed across a variety of tools and communities

of practice.
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Definition

Enactivist theories assert that cognition is

a process that occurs through feedback loops

within the interaction of complex dynamical

organisms/systems.

Characteristics

Closely related and often conflated with

enactivist theory is embodied cognition. The dis-

tinction taken here is made on the basis of the

roots of the two theories. Enactivism has biolog-

ical roots, for example, in the writing ofMaturana

and Varela (1992) and others, whereas embodied
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mathematics has linguistic roots (see Embodied

cognition).

Enactivist theory is a development of biolog-

ical and evolutionary science and complexity

theory and addresses, among other things, the

critique of Cartesian dualistic notions of object/

subject. In enactivist theory it is argued that

cognition is a process that occurs through the

interaction between the living organism and its

environment (autopoiesis).

We propose as a name the term enactive to

emphasize the growing conviction that cognition

is not the representation of a pregiven world by

a pregiven mind but is rather the enactment of

a world and a mind on the basis of a history of the

variety of actions that a being in the world

performs (Varela et al. 1991, p. 9).

From an enactivist perspective learning is seen as

a process of restructuring that is triggered by inter-

action that occurs within the complex dynamic

system of coupling (structural coupling) between

person and environment.

We speak of structural couplingwhenever there

is a history of recurrent interactions leading to the

structural congruence between two (or more)

systems (Maturana and Varela 1992, p. 75).

Restructuring within the person, however, is

determined by the (biological) structural proper-

ties of the person (structural determination), not

by the properties of the environment within

which the restructuring occurs. The interaction

also triggers changes in the environment, which

is also consequently determined by the structure

of the environment; this is referred to as coevo-

lution/coadaptation, or co-emergence. As can be

deduced from the above quotation from Varela

et al. enactivism also challenges theories that

require some form of mental knowledge repre-

sentation structures in which perception and

reflection are actions uponmental representations

of the world constructed independently by the

perceiving subject. Cognition and knowing are

explained within enactivist theory as active pro-

cesses that occur directly through the interaction

between the cognizing subject and the environ-

ment, rather than as a construction of representa-

tions of the environment by the cognizing

subject.

Knowing is effective action, that is, operating

effectively in the domain of existence of living

beings (Maturana and Varela 1992, p. 29).

Enactivist theories have roots in biological

sciences (Maturana and Varela 1992; Varela

et al. 1991) and Darwinian theory of evolution

and thus might be viewed as a development

of Piaget’s constructivism. However, Proulx

(2008a) draws attention to some ontological and

epistemological differences between enactivism

and constructivism. Philosophical antecedents of

enactivist theories are shared with closely related

“embodied” theory, and more generally situated

cognition, these theories refer to seminal philo-

sophical contributions by Edmund Husserl,

Maurice Merleau-Ponty, and Ludwig Wittgen-

stein (Reid 1996).

Autopoiesis: Complex dynamic systems can

be defined at many levels, from complex molec-

ular structures within a single cell to solar

systems within a galaxy. Autopoiesis is asserted

by Maturana and Varela to be the process that

distinguishes living beings.

Our proposition is that living beings are char-

acterized in that, literally, they are continually

self-producing. We indicate this process when

we call the organization that defines them an

autopoietic organization (Maturana and Varela

1992, p. 43).

Cognition and knowing is one part of

autopoietic organization.

Thus a learner within a mathematics

classroom constitutes a dynamic system; alterna-

tively one, or a group of, teacher(s) within

a professional development setting constitute

a system. The learner is a distinct unity (Maturana

and Varela 1992, p. 40) within the environment of

a mathematics class comprising other learners,

teacher, and resources. The learner is structurally

coupled with the classroom environment. Distur-

bances within the environment trigger changes

within the learner as she/he adapts herself/him-

self to the environment. However, the adaptation

of the learner is determined by the “structure”

(prior experiences and learning and affective

characteristics) of the learner, not by the interac-

tion with the environment. The interaction

merely “triggers” the change. Thus enactivist
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theory asserts that cognition is structurally

determined by the organization of the learner

(Maturana and Varela 1992, p. 96).

Enactivist theories began to emerge within the

research field of mathematics education in the

1980s, especially following the publication of

Maturana and Varela’s book Tree of Knowledge

(1992). A group of Canadian mathematics edu-

cation researchers established themselves as

a center of interest in enactivist theories forming

an “Enactivist Research Group” (Reid 1996).

However, research within enactivist theories as

a framework and methodology is now actively

pursued throughout the world, as can be seen

from the account below. The account indicates

how enactivist theories have entered into the

discourse of mathematics over three decades,

1982–2012, thematically, geographically, and

through publication in the major scientific

journals and conferences in the field.

Tom Kieren and Daiyo Sawada (Canada)

became interested in the work of Maturana and

Varela in 1982, and later Kieren and Sawada

introduced enactivist theory to the mathematics

education group at the University of Alberta,

Canada (Proulx et al. 2009). The first edition of

HumbertoMaturana and Francisco Varela’s book

The Tree of Knowledge was published in 1987

(Maturana and Varela 1992). Then around 1993

The Enactivist Research Group was established

in Canada (Reid 1996).

Maturana and Varela’s theory entered the

international discourse of mathematics education

through the annual conferences of the Interna-

tional Group for the Psychology of Mathematics

Education (PME) during the period 1994–1996.

In 1994 at the 18th PME conference held in

Lisbon, John Mason (UK) made reference to

Maturana and Varela’s work in his plenary lec-

ture “Researching from the inside in mathematics

education.” One year later at the 19th PME con-

ference in 1995 held in Recife, Rafael Núñez and

Laurie Edwards (USA) convened a discussion

group that focused on embodied cognition; the

participants included David Reid (Canada) and

Laurinda Brown (UK) who later became signifi-

cant contributors to the development and appli-

cation of enactivist theory within mathematics

education research and practice. At the same

PME conference Edwards and Núñez presented

a theoretical paper in which enactivism was iden-

tified as one of the several nonobjectivist theories

within the compass of new paradigms in cogni-

tive science. A year later David Reid presented

a research report at the 20th PME conference

held in Valencia in 1996; in this Reid set out

enactivism as a methodology. He described

research from an enactivist perspective in

terms of autopoietic relationships, between

researcher and data: between researchers as

they engage with each other and the co-

emergence of ideas between researchers and

the “coemergent autopoetic (sic) ideas which

live in the medium of our minds and of which

we are emergent phenomena (as the herd is of

the antelope)” (Reid 1996, p. 205). The report

included a brief review of enactivist theory

and its roots.

Also in 1995 Brent Davis (Canada) published

a paper in the journal For the Learning of

Mathematics that set out an enactivist rationale

for learning mathematics; the paper included

a brief account of the nature of mathematical

activity from an enactivist perspective. In this

paper Davis applies an enactivist argument to

emphasize the inseparability of process and

product in mathematical activity (Davis 1995).

In 1997 Davis suggested that enactivism

provides “a framework for interpreting the

phenomenon of mathematics teaching . . . that

might allow us to embrace the insights of

constructivism without losing the substance of

the social critics’ arguments,” in a report

published by Journal for Research in Mathemat-

ics Education (Davis 1997, p. 355).

During the following decade (1998–2007)

interest in enactivist theory developed interna-

tionally and in its application to various domains

of research within mathematics education.

In 1998 Markku Hannula (Finland) applied

enactivist theory to research into affect and learn-

ing mathematics. He later published more exten-

sively, for example, in the journals Educational

Studies in Mathematics and Research in Mathe-

matics Education (see Hannula 2012 for refer-

ences). A year later in 1999, Andy Begg
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(New Zealand) presented a paper introducing

enactivist theory at the annual conference of the

Mathematics Education Research Group of

Australasia (MERGA-22) (Begg 1999). In the

same year, Laurinda Brown and Alf Coles (UK)

explained how enactivism informs their research

at the November day conference of the British

Society for Research into the Learning of

Mathematics.

In 2000 the journalMathematics Thinking and

Learning published a paper by Edward Drodge

and David Reid (Canada) that considers emo-

tional orientation through the lens of embodied

cognition. Drodge and Reid take an enactivist

perspective to explore the role of decision mak-

ing in learning mathematics and use illustrations

from an episode in which a group of boys

engaged in a geometry problem solving task

(Drodge and Reid 2000). Later, David Reid, in

2002, adopted an enactivist perspective of

learning to describe “clearly one pattern of

reasoning observed in the mathematical activ-

ity of students in a Grade 5 class” and explore

and clarify the characteristics of mathematical

reasoning. Reports from this study are

published in Journal for Research in Mathe-

matics Education and Journal of Mathematical

Behavior (Reid 2002).

In 2003 Davis and Simmt (Canada) focused on

the application of complexity science and how

this might contribute “to discussions of mathe-

matics learning and teaching” (Davis and Simmt

2003, p. 138); complexity theory is deeply

embedded in the notion of autopoiesis.

In 2005 Elena Nardi, Barbara Jaworski, and

Stephen Hegedus (UK) published enactivist

framed research into teaching mathematics at

university level in Journal for Research in

Mathematics Education (Nardi et al. 2005).

The following year, 2006 Laurinda Brown and

David Reid (UK & Canada) applied enactivist

theory to explore learner’s “non-conscious”

decision making processes that occur prior to con-

scious awareness ofmaking choices and how emo-

tions subsequently structure events (Brown and

Reid 2006). The first, nonconscious decisions

might be explained as a feature of “structural

determinism,” and the latter, restructuring of

events, explained as “coemergence” as the envi-

ronment is shaped by the learner.

Maria Trigueros and Maria-Dolores Lozano

(Mexico) reported in 2007 on the use of an

enactivist approach in the design of resources

for teaching and learning mathematics with dig-

ital technologies in the journal For the Learning

of Mathematics (Trigueros and Lozano 2007).

A year later, 2008, Lozano reported an enactivist

analysis and interpretation of students algebra

learning from a longitudinal study of grade 6

(elementary school) through grades 7 and

8 (first years at secondary school) (Lozano

2008). In the same year Jérôme Proulx (Canada)

published his use of the enactivist notion of struc-

tural determinism to explain characteristics of

mathematics teachers’ learning (Proulx 2008b).

Proulx (2008a) also argues that there are ontolog-

ical and epistemological differences between

constructivist and enactivist theories of cogni-

tion, such that enactivism “should not be (mis)

interpreted as another form of constructivism”

(p. 24).

The period 2009–2012 reveals both consoli-

dation of international effort and maturation of

research conducted within enactivist theory.

In 2009 the 33rd annual conference of PME

held in Mexico included a Research Forum on

enactivist theory of cognition (Proulx et al. 2009).

The “forum” included brief papers by many

researchers and groups (from Canada, Emirates,

New Zealand, Mexico, the UK, the USA) that

were applying enactivist theory in their research.

The report offered a “state of the art” (in 2009)

account of enactivism in mathematics education

from an international perspective. Proulx

concludes the report by suggesting a number of

outstanding questions related to learning and

teaching mathematics that might focus further

research from an enactivist perspective. In 2010

Duncan Samson (South Africa) reported at

MERGA-33 the application of enactivism as

a theoretical framework and research methodol-

ogy to inquire into the sense students make of the

visual clues held within the figural patterns of

algebraic generalization tasks (Samson 2010).

Then in 2011 Brown and Coles (UK) reported

their application of enactivist theory to teacher
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learning in professional development settings,

and they draw links with the notion of co-learning

of teachers and researchers/developers in com-

munities of inquiry. In a paper published in ZDM,

they explain how an enactive approach is taken to

“reframe” teacher education at the University of

Bristol. Attention is given to the links between

perception and action emphasized with enactivist

theory and how this is worked out in terms of

experience as the basis of working approaches,

discussions, and focusing attention in teacher edu-

cation (Brown and Coles 2011). In 2012 Hannula

(Finland) reported in the journal Research in

Mathematics Education how enactivist theory

can be used to explain a dimension of a

“metatheoretical foundation for relating differ-

ent branches of research on mathematics-

related affect to each other” (Hannula 2012).

In the same year Brown and Coles (2012)

published research in the journal Educational

Studies in Mathematics that takes an enactivist

stance to analyze “how we do reflection”

(p. 222) in the processes of learning to teach

mathematics.

Enactivist theories have been used within

mathematics education including theoretical

reflections and studies about the nature of mathe-

matics and the rationale for learning mathematics

(Davis 1995), issues of learning topics within

mathematics (geometry, Drodge and Reid 2000;

reasoning, Reid 2002; algebra, Lozano 2008; and

algebraic generalization, Samson 2010), teacher

knowledge and teacher learning (Proulx 2008b),

teacher education (Brown and Coles 2011),

mathematics teaching at university level (Nardi

et al. 2005), affective issues in teaching and

learning mathematics (Brown and Reid 2006;

Hannula 2012), design research (Trigueros and

Lozano 2007), and as a research methodology

(Reid 1996).

Cross-References

▶Complexity in Mathematics Education

▶Constructivism in Mathematics Education

▶Embodied Cognition

▶ Situated Cognition in Mathematics Education
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The concept of epistemological obstacle emerges

in philosophy of science in the works of

Bachelard (1938) who is the first to interpret the

genesis of scientific knowledge with the support

of this concept: “It is in terms of obstacles

that one must pose the problem of scientific

knowledge [. . .] it is in the very act of knowing

that we will show causes of stagnation and even

of regression, this is where we will distinguish

causes of inertia that we will call epistemological

obstacles.”

The examples given by Bachelard are typical

of the prescientific thinking and connect to what

he calls the obstacle of primary experience. In

this, the substantialist obstacle consists in refer-

ring to a substance equipped with quasi magic

properties in order to explain the observed

phenomena: as an example, the attraction of

dust by an electrically charged surface will be

explained by the existence of an electric fluid.

Bachelard rightly explains that the obstacle arises

from the fact that this is not a metaphor but indeed

an explanation of the situation created by what

our senses tell us: “We think as we see, we think

what we see: dust sticks to the electrically

charged surface, so electricity is an adhesive, is

a glue. One is then taking a wrong way where

false problems will generate worthless experi-

ments, the negative result of which will fail

in their role of warning, so blinding is the first

image [. . .].”

Brousseau (1976, 1983) is the first to transpose

the concept of epistemological obstacle to the

didactics of mathematics by highlighting the

change in status for the error, that this notion

generates: it is not a “result of ignorance [. . .] or

chance” but rather an “effect of prior knowledge

that was relevant and had its success, but which

now proves to be false, or simply inadequate”

(Brousseau 1983). Among the obstacles to learn-

ing, Brousseau distinguishes indeed the

ontogenic obstacles, related to the genetic devel-

opment of intelligence, the didactical obstacles,

that seem to only depend on the choice of

a didactic system, and the epistemological

obstacles from which there is no escape due to

the fact that they play a constitutive role in

the construction of knowledge. At one and the

same time, the concept of epistemological

obstacle extends to the didactics of experimental

science (Giordan et al. 1983).

The pioneering works in didactics deal with,

among others, obstacles related to extensions to

sets of numbers – relative numbers in Glaeser

(1981), rational and decimal numbers in

Brousseau (1983) – with obstacles related to the

absolute value in the research from Duroux

(1983), with those that tend to hide the concept

of limit, as studied by Cornu (1983) and

Sierpinska (1985), with obstacles related to

learning the laws of classical mechanics

according to Viennot (1979) and with those

arising from a sequential reasoning in solving

electrical circuits, of which Closset (1983)

shows the excessive strength. From these works

and others, Artigue (1991) conducts an analysis
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in which several questions arise, that are subject

to debate when trying to characterize the concept

of epistemological obstacle: can we talk about

epistemological obstacles when there is no

identification of errors and but simply of difficul-

ties? Should we look for their appearance and

their resistance in the history of mathematics?

Look for their unavoidable character in the

students’ learning process?What does their status

of knowledge consist of, having its domain of

validity? Can we talk, in certain cases, about

a reinforcement of epistemological obstacles

due to didactical obstacles?

Other studies also ask the question of the scale

at which it is appropriate to look at the epistemo-

logical obstacles, as well as that of their cultural

character. The works of Schneider (1988) raise

these two questions in an articulated manner by

showing that the same epistemological position,

namely, empirical positivism, can account for

multiple difficulties in the learning of calculus:

errors when calculating areas and volumes in

relation with misleading subdivisions of surfaces

into lines and of solid surfaces into surface slices,

a “geometric” conception of limits leading

students to think of segments as being “limits”

of rectangles, and of the tangent line as being

“limit” of secants without reference to any

topology whatsoever, and their reluctance to

accept that the concept of derivative will provide

the exact value for an instantaneous velocity.

This empirical positivism which, mutatis

mutandis, converges with the primary experience

from Bachelard in the sense of “experience

placed before and above criticism” goes well

beyond learning calculus (Schneider 2011). This

example illustrates indeed, on the one hand, an

obstacle considered at a large scale, with its

interpretive scope covering errors or multiple

difficulties and, on the other hand, its cultural

aspect which can be considered as a pure

product of Western modernity. It also shows

that, despite the opinion of Bachelard, the notion

of epistemological obstacle applies to mathemat-

ical thinking, at least on a first level.

The debate on the scope and cultural

character of epistemological obstacles, of which

the examples above illustrate the probable

dependence, is animated and most probably not

closed. Regarding the first aspect, Artigue insists

on the interest in considering what she

calls “obstacle-generating processes,” including

“undue formal regularization” that, as an exam-

ple, leads students to the misapplication of line-

arization processes such as “distributing” an

exponent on the terms of a sum, or “fixing on

a familiar contextualization or modeling,” such

as the excessive attachment to the additive model

of losses and gains when considering relative

numbers. About the second aspect, Sierpinska

(1989) puts back in a theory of culture some

sayings of Bachelard who thinks that, if empirical

knowledge of reality is an obstacle to scientific

knowledge, it is because the first acts as an

unquestioned “preconception” or as an “opinion”

based on the authority of the person who

professes it. Johsua (1996) continues to believe

that some spontaneous reasonings, like those

transgressing the laws of classical mechanics,

have a cross-cultural character, while Radford

(1997) argues that the so-called epistemological

obstacle refers more to local and cultural concep-

tions that one develops on mathematics and

science in general. And presumably, we cannot

settle this debate without specifying it, example

after example, as cautiously proposed by

Brousseau 20 years earlier: “The notion of obsta-

cle itself is beginning to diversify: it is not that

easy to propose relevant generalizations on this

topic, it is better to perform studies on a case by

case basis.” All this without yielding to the

temptation of qualifying as epistemological

obstacle whatever is related to recurring errors

for which we did not analyze the origins

(Schneider 2011).

The identification of epistemological obsta-

cles brings forward the question of their

didactical treatment: should we have students to

bypass them or, on the contrary, should we let

them clear the obstacle and what does that mean?

Let us first turn to “educator” Bachelard (as

described by Fabre 1995). It is the intellectual

distancing that Bachelard emphasizes as major

learning issue, when he writes that “an educator

will always think of detaching the observer from

his object, to defend the student against the mass
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of affectivity which focuses on certain phenom-

ena being too quickly symbolized [. . .]” (1949).

An echo hereof is the psychological shift of

perspective (“décentration”) of Piaget that,

among children, the interpretation of an experi-

ence assumes: as such, it “does not obviously

make sense” that sugar dissolved in water has

disappeared on the account that one cannot see

it anymore! One of the primary goals of educa-

tion would thus be to promote, among students,

the detachment from “false empirical objects”

born from the illusion that the facts and observa-

tions are given things, and not constructed, that is

to say to get them to pass fromworld 1 of physical

realities, in the sense of Popper (1973), to world 2

of states of consciousness and to world 3 of con-

cepts that contain “more than what we did put in

them.” It is presumably those connections that

lead Astolfi and Develay (1989) to place Piaget,

Bachelard, and Vygotski at the origin of the

constructivist movement in didactics of science,

the first explaining “how it works,”, the second

“why it resists,” and the third pointing out “how

far one can go.” Brousseau (1983), as for him,

provides clear-cut answers to the questions

above: “an epistemological obstacle is constitu-

tive of achieved knowledge in the sense that

its rejection must ultimately be mandatorily

justified.” There resides, according to him,

the interest of “adidactical situations” whose fun-

damental nature with respect to the target

knowledge will allow invalidating an old knowl-

edge that proves to be an obstacle to new

knowledge, by highlighting the limits of the

scope of operation of the former. Martinand

(1986) goes further by making obstacles – be

these from the works of Bachelard, Piaget, or

Wallon – a selection mode for objectives: the

concept of “objective-obstacle” appears then in

opposition to the usual idea of blocking point.

One can think today, together with Sierpinska

(1997), that an equivalent coupling may have

been too systematic or even normative at

a given time in didactics of mathematics, but it

is probably advisable that the teacher should

manage, at least by a vigorous heuristic dis-

course, the epistemological obstacles identified

on a large scale (Schneider 2011).

The notion of epistemological obstacle has

some kinship with that of conception or more

precisely that of misconception, but also with

that of cognitive or socio-cognitive conflict

as illustrated in the acts of an international

symposium on knowledge construction (Bednarz

and Garnier 1989). The concept of misconception

itself may be related to the mental object from

Freudenthal (1973) or to the image-concept in

Tall and Vinner (1981) who, despite some

differences, indicate that the mind of students

being taught is not in a virgin state but is

a host of intuitions keen to facilitate learning

but also to hinder it. In some examples,

misconceptions converge with epistemological

obstacles in an obvious manner. As such,

some of the probabilistic misconceptions iden-

tified by Lecoutre and Fischbein (1988) are

explained by causal and chronologist concep-

tions of the notion of conditional probability

which, according to Gras and Totohasina

(1995), are obstacles of epistemological

nature. As for the concepts of cognitive or

socio-cognitive conflicts that underpin the

Piagetian and Vygotskian theories, they also

rely on the assumption that learning is

motivated, on the one hand, by an imbalance

between the reality and the image that an

individual makes up of it and, on the other

hand, by confronting his opinion with that of

others or with a contradictory social represen-

tation. The transfer of the concept of

epistemological obstacle to the didactics of

mathematics is then bringing a new contribu-

tion to the theories mentioned above, in terms

of close dependency between the evolution of

conceptions among students and the didactical

situations they are confronted with: “[. . .] the

crossing of an obstacle barrier requires work

of the same nature as the setting up of knowl-

edge, that is to say, repeated interactions,

dialectics of the student with the object of

his knowledge. This remark is fundamental to

distinguish what a real problem is; it is

a situation that allows this dialectic and that

motivates it” (Brousseau 1983). And this is

indeed what makes the link between didactics

and epistemology to be so tight.

E 216 Epistemological Obstacles in Mathematics Education



References

Artigue M (1991) Epistémologie et didactique. Rech
Didact Math 10(2.3):241–286

Astolfi J-P, Develay M (1989) La didactique des sciences.
Presses universitaires de France, Paris

Bachelard G (1938) La formation de l’esprit scientifique.
J Vrin, Paris

Bachelard G (1949) Le rationalisme appliqué. PUF, Paris
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Definition

Social class background – social class is best

understood through a Marxist orientation as

the groupings people fall into as a result of

explicit economic forces within society. These

groupings are a direct result of similarities

with and differences between people, particu-

larly through the resources to which they have

access, but also to their tastes and dispositions,

which ultimately position them within educa-

tional systems.
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Characteristics

Usually an encyclopedia entry will begin

with some definitions. With both “equity” and

“access,” that’s not possible. Each of these

terms is politically loaded and reflects political

and ideological dispositions both in the pedagog-

ical arena of the classroom and in the intellectual

arena of the academy. One problem of defining

equity is due to it being assumed to be a universal

good; surely everyone wants equity? Actually

that’s far from the case, and at least there will

be little agreement on how we define and more

importantly operationalize the terms. Equity is

not a key driving force for those who sit on the

political right. There, meritocracy and individual

endeavor are markers of a democratic society,

providing a way out of poverty for those who

work hard. For those on the political left, the

economic superstructure itself, and the education

system which serves that system, hides structural

inequality and merely perpetuates that structural

inequality based on accumulated wealth. For

the left, equity itself is a key feature of

a democratic society.

One cannot therefore assume a single perspec-

tive on equity and access but needs to look for the

relationship to political orientation (Gates and

Jorgensen 2009). A first, moderate or conserva-

tive, stance on equity focuses on individual

responsibility. Here there is a recognition of

unfairness but a rejection of the social structural

underpinnings of that unfairness. A second, more

liberal, stance does recognize structural inequal-

ities but locates itself largely within the class-

room looking at what classroom practices might

alleviate the disparities between pupils. Finally

there is a radical stance that recognizes structural

inequality but goes further and examines how

social inequality is built into existing classroom

practices. This stance sees groups of individuals

as subject to vastly different sets of experiences

and opportunities such that many choices are

restricted. But furthermore, these arbitrary bar-

riers become internalized through school and

subject cultures. Consequently pupils develop

identities which accept their location in the

hierarchy.

Mathematics therefore plays a significant, if

often hidden part in the politics of education as

the sociologist Pierre Bourdieu claims:

Often with a psychological brutality that nothing
can attenuate, the school institution lays down its
final judgements and its verdicts, from which there
is no appeal, ranking all students in a unique hier-
archy of all forms of excellence, nowadays domi-
nated by a single discipline, mathematics.
(Bourdieu 1998, p. 28)

Indeed if equity was not an important issue,

this encyclopedia entry would not have been

written. The philosopher of mathematics educa-

tion Paul Ernest takes this a step further by

suggesting mathematics as a social filter:

Mathematics has been remarked upon as playing
a special role in sorting out students and preparing
them for and directing them to different
social stations. . . .. Thus, the teaching and learning
of mathematics seems to occupy a special place
in the provision of social justice—or its
obstruction—within the education system. (Ernest
2007, p. 3)

Here is the argument that if mathematics

serves a purpose of filtering and directing people

into diverse levels in society, equity – how it does

this – ought to be a key concern for those charged

with teaching mathematics, the schools. The first

question then is can schools help foster equity or

can they only perpetuate existing inequality.

This is a central consideration and one which

differentiates academics.

In order to understand the place of equity in

mathematics education, one has to grasp the

divergence between individual accounts and

collective accounts; meritocracy and individual

endeavor contrasted with social influences and

restricted opportunities.

Of course it is not a coincidence, as evidence

from around the world indicates, that achieve-

ment and engagement in mathematics vary

according to the social class background of the

learners. One argument would suggest that social

class is the largest influence in pupil under-

achievement, whereas others would argue

schools can make a difference. Evidence for

these claims can be found in every school around

the world. Whereas it is well known that
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individual pupils can succeed against the odds,

the reality of many mathematics classrooms is

reflected in the following comment from

a teacher:

You know, a lot of my bottom group really struggle
with maths – and I’ve noticed they all come from
the same part of town, and they have got similar
family backgrounds. Surely that can’t be
a coincidence? (Cited in Gates 2006, p. 367)

There is now widespread focus in the

academic literature on the systematic traditional

failure to educate students from disenfranchised

groups (Secada 1989), and attempts to understand

the “systematic” nature of the patterns of

achievement have looked at the schools

themselves as playing a fundamental role in the

furtherance of structured inequality.

The vast majority of schooling for children . . . of
poor and working class, girls and boys of colour
and so many others is not neutral, not its means and
certainly not its outcomes . . . but who controls the
economic, social and educational conditions that
make it so? Whose vision of schooling, whose
vision of what counts as real knowledge organises
the lives in classrooms? (Apple 1995, p. 330)

Historically, a focus on equity in mathematics

education developed out of concerns over the

achievement of girls (Burton 1990). While early

thinking looked at biological differences, this

approach soon became discredited, with

a recognition that “girls and boys make choices

throughout their education and professional

careers, and there are systematic differences in

these choices” (Herman et al. 2010, p. 3). The

previous relative underachievement of girls in

mathematics is structurally similar to achievement

differences resulting from other social characteris-

tics. For example, both ethnicity and social class

have a substantial research literature testifying to

the unrepresentative levels of underachievement

of young people from disadvantaged and working

class backgrounds and from ethnic minority

groups, including young people from black, Carib-

bean, indigenous, and Latino communities.

One of the arguments for a systemic under-

achievement by certain groups of young people in

mathematics is that they do not share the advan-

tages of dominant, more affluent groups. Their

culture and histories can be different, their

languages and relationships are different, and

their economic conditions force a rather

different set of priorities to those experienced

by more comfortable middle-class communities

(see Zevenbergen 2000). As a result, choices are

forced on families because they do not have cred-

ible alternatives and as a result “the social world

of school operates by different rules or norms

than the social world these children live in”

(Pellino 2007). The literature on the effects of

poverty draws our attention to some of the

characteristics of children in poverty. They

experience high mobility, hunger, repeated fail-

ure, low expectations, undeveloped language,

clinical depression, poor health, emotional inse-

curity, low self-esteem, poor relationships, diffi-

cult home environment, and a focus on survival.

A strand of research, often termed critical math-

ematics education, has examined the conditions

of such pupils whose backgrounds are obscured

and ignored by both schools and the academic

research community. For example, the hungry,

the homeless, and those children in care all

have particular needs – yet because they do

not fit the ideal are placed outside the norms

(Skovsmose 2011).

To claim there are systematic differences in the

choices individuals can make is fairly controver-

sial on two counts. First it assumes that we are free

to make choices. Second, there is the assumption

that schools, through the energizing of these

choices, can make a difference to outcomes. The

first of these assumptions overlooks the structural

accumulated history that young people carry with

them: expectations, identity, self-efficacy, lan-

guage fluency, etc., all of which place learners at

different starting points. One strand in the litera-

ture here assumes that if choices are influenced and

limited by misinformation and low expectations,

then it is entirely possible for schools to overcome

these barriers by providing an environment

that redresses those limitations – the second

assumption.

Between 1980 and 2010, research in mathe-

matics education has seen a noticeable shift in

what some have seen as a sociocultural turn in

research agendas (Lerman 2000), placing an
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emphasis on an understanding through the explo-

ration of sociocultural factors – recognizing the

importance of the social context upon one’s

action and choices. But this has also recognized

that we need to look and think beyond the indi-

vidual level of cognition to see how different

responses to mathematics might be explained.

How do we explain, for example, that earlier

comment by a teacher, that achievement at math-

ematics is very highly correlated to the pupils’

home background? Do we believe it is because

some people are not as intelligent as others? Or

do we believe some children are held back in

order for some others to progress? Where one

stands on that will largely influence how you

personally think about equity.

One way in which children can be held back is

through restriction of the curriculum and a further

strand in equity and access to mathematics

education is the access afforded by the school

curriculum to mathematics itself – and to the

powerful ideas it allows us to use. In mathematics

education in some – but not all – countries, access

to the curriculum is organized around structured

grouping usually claimed to be on some measure

of ability. In some countries (UK, USA, Austra-

lia, etc.), it is an almost universal practice, and

teachers seem to be unable to conceive of how it

might be otherwise given a claimed hierarchical

nature of mathematics. However, in other

countries (Denmark, Finland, etc.) the practice

of ability discrimination is outlawed.

In the literature, group placement is a highly

controversial and contested practice, and much

research has indicated the effect it has upon

young people who do not fit an ideal model of

successful learner – usually pupils from working

class homes and some ethnic minorities. Such

pupils are systematically more likely to be placed

in lower groups than others even when perfor-

mance is taken into account (Zevenbergen 2003).

Various studies have shown “that placement in

ability groups increases the gap between

students at different group levels” (Cahan et al.

1996, p. 37). In other words, the very placement

of pupils in a group influences their outcomes.

A lack of equitable practices leads to restricted

access by schools and teachers through the

provision of a restricted curriculum to lower

achieving pupils. The pedagogical jump here

made by teachers is to assume that pupils who are

doing less well are not (cap)able of higher-order

thinking. In a series of studies, this has been

explored (Zohar 1999; Zohar et al. 2001; Zohar

and Dori 2003) with the conclusion that teachers

do not really believe weak pupils (invariably pupils

from poor backgrounds) can think in higher-order

ways.

Studies of pupils’ mathematical experiences

that take account of social backgrounds (Lubienski

2000a, b, 2007) have found very specific differ-

ences in two main areas – whole class discussion

and open-ended problem solving – and these can

throw some light onto the way in which equitable

practices are compromised and access to big ideas

is restricted. These are two well-researched peda-

gogical strategies and classroom practices which

at least in professional discourse are held in some

esteem. Discussion-based activities were per-

ceived differently by pupils from different social

backgrounds. Pupils from high socioeconomic sta-

tus (SES) backgrounds thought discussion activi-

ties were for them to analyze different ideas while

those pupils from lower social groups thought it

was about getting right answers. The two groups

had different levels of confidence in their own type

of contributions with the low SES pupils wanting

more teacher direction. Higher SES pupils felt

they could sort things out for themselves – as

their parents do in life presumably.

The second area was that of open-ended

problem solving – a mainstay of recent reform

agendas in mathematics. The high level of ambi-

guity in such problems caused frustration in low

SES pupils which in turn caused them to give up.

High-SES pupils just thought harder and engaged

more deeply. It is well known that middle-class

pupils come to school armed with a set of dispo-

sitions and forms of language which gives them

an advantage because these dispositions and

language use are exactly the behaviors that

schools and teachers are expecting and prioritize

(Zevenbergen 2000). High-SES pupils have

a level of self-confidence very common in

middle-class discourses, while working class

discourses tend to be located in more subservient
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dependency modes, accepting conformity and

obedience (Jorgensen et al. 2013).

Equity and access then are both key issues in

the provision of mathematics education but are

both controversial and deeply political.

Cross-References

▶Cultural Diversity in Mathematics Education

▶Gender in Mathematics Education

▶ Immigrant Students in Mathematics Education

▶ Inclusive Mathematics Classrooms

▶ Indigenous Students in Mathematics

Education

▶Language Background in Mathematics

Education

▶ Political Perspectives in Mathematics

Education

▶ Socioeconomic Class in Mathematics

Education
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Introduction

In this entry, I will refer mainly to my views and

my participation in the emergence of this field as
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a research area and the benefits acquired in under-

standing and interpreting the cultural, political,

material, and even economic forces recognized in

building up these strategies. A basic reference is

my 1985 basilar paper in For the Learning of

Mathematics, which has been republished since

then in various handbooks (D’Ambrosio 1985).

I will discuss mainly the theoretical basis of

Ethnomathematics and its values as part of a cul-

ture. I present Ethnomathematics as a research

program in the History and Philosophy of

Mathematics with societal and pedagogical

implications (D’Ambrosio 1992). The program

depends on theories that explain human

knowledge and behavior.

In considering Ethnomathematics a research

program, it is recognized as a broader focus than

simply the recognition of mathematical ideas

and practices of different cultural groups. Of

course, the Ethnomathematics of different cul-

tural groups is the main source for this research

program. But the major objective of the Program

Ethnomathematics is to propose a broader vision

of knowledge and of human behavior, by making

sense of how different communities, societies,

and civilizations faced their struggle for survival

and transcendence in their environmental,

cultural, economic, and social contexts.

The concern with other cultures and with other

forms of knowledge has been always present in

the History of Ideas and goes back in history to all

civilizations. Others may have a different

approach and base their reflection on other sce-

narios, thus showing another picture of the field.

Throughout this entry, there are traces of many

different approaches to the theme, but there are

few explicit references to them.

A basilar question is the reason to look

into non-Western cultures and civilizations for

a research into the History and Philosophy of

Science and Mathematics, which are Western

constructs. I paraphrase Brian Fay in the

introductory essay in the issue of History and

Theory devoted to Unconventional History,

and claim that learning about other cultures

and civilizations is, at the very same time,

learning about our civilization, its strengths, and

limitations (Fay 2002).

Definition

The word Ethnomathematics may be misleading.

It is easily confused with ethnic-mathematics.

Although ethnic groups are contemplated, I con-

sider Ethnomathematics a much broader concept,

focusing on cultural and environmental identi-

ties. The name also suggests Mathematics.

Again, I use it in a much broader concept than

Mathematics, which is a late Western concept.

Indeed, in the sense we use the word “mathemat-

ics” today, it goes back to about the fifteenth

century. Former uses of the word mathematics

have a different meaning. Today, historians opt

for using the word “mathematics” also when they

refer to some practices and theories of the Antiq-

uity and the Middle Ages, which bare some com-

mon objectives, concepts, and techniques with

Mathematics. This option is convenient for his-

torical narratives. But it is misleading. A similar,

also misleading convenience is adopted by eth-

nographers and cultural anthropologists, when

describing and analyzing other cultures.

There is a very natural question: “Why to use

the word Ethnomathematics for my research on

the strategies developed by different communities,

societies, and civilizations to face the struggle for

survival and transcendence in their environmental,

cultural, economic, social contexts?” I will try to

explain my choice, which is indeed an etymolog-

ical construction. The word Ethnomathematics is

obviously, not new, and it has been used mainly

with an ethnographical focus for decades.

The main concern that guides my research is

to identify the ways, modes, styles, arts, and

techniques, generated and organized by different

cultural groups for learning, explaining, under-

standing, doing, and coping with their natural,

social, cultural, and imaginary environment.

This is a long explanation, and I tried to synthe-

size it with the resource of an etymological exer-

cise. I looked for words with meanings that

convey this long explanation and I found Greek

roots that can do it. The root techne means,

roughly, the arts and techniques, the ways and

modes, the styles; mathema is a difficult root,

which generally means learning, explaining,

understanding, doing, and coping with some
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reality; and ethno means a natural, social, cul-

tural, and imaginary environment. Thus, I may

synthesize the long phrase “ways, modes, styles,

arts and techniques to learn, explain, understand,

doing and coping with distinct natural, social,

cultural, imaginary environment” as the technes

of mathema in distinct ethnos. Thus, using tics as

a simplified spelling for techne, the long phrase

became tics of mathema in distinct ethnos, or

making an obvious rearrangement, ethno �
mathema � tics or ethnomathematics. Thus,

I started to use the word Ethnomathematics

as a result of this etymological exercise

(D’Ambrosio 1998, 2006).

It is noticeable that Mathematics diverted

from the concept of the mathema. In the

words of Oswald Spengler “The present-day

sign-language of mathematics perverts its real

content” (Spengler 1962). Ethnomathematics is

particularly concerned with real contents. For

educational purpose, the restoration of this

concept is the major support of my proposal

for a modern trivium in education: literacy,

matheracy, and technoracy (D’Ambrosio 1999).

It should not be surprising at all thatMathemat-

ics, as we know it, is a special Ethnomathematics,

the same as are the theories and practices of

Pharmacology, of Cardio-Surgery, of Dance, of

Algebra, and, indeed, any form of knowledge.

All these disciplines are the concern of specific

professional groups [ethno] to develop ways,

modes, styles, arts, and techniques [tics] for

learning, explaining, understanding, doing,

and coping with [mathema] with specific and

related facts, phenomena, and problems. They

rely on their natural, social, cultural, and

imaginary environments.

It is not surprising that the word

Ethnomathematics suggests Mathematics. After

all, Mathematics is the dorsal spine of Modern

Civilization. Indeed, throughout history,

Mathematics has been well integrated into the

technological, industrial, military, economic,

and political systems and Mathematics has been

relying on these systems for the material bases of

its continuing progress. The same for Science and

Technology and Philosophy as well. Hence for

models of society.

The issues are essentially political. There

has been reluctance among mathematicians, to

a certain extent among scientists in general, to

recognize the symbiotic development of mathe-

matical ideas andmodels of society. Mathematics

has grown parallel to the elaboration of what we

call Modern Civilization. Historians amply

recognize this.

Modern World Civilization sprang out of

Europe as the result of 500 years of conquest

and colonization. Modern Civilization is a body

supported by a dorsal spine, recognized by

philosophers, historians, scientists, and just

about everyone, as Mathematics.

Mathematics as the dorsal spine of Modern

Civilization, is beautiful, rigorous, and perfect,

so respected by everyone, even feared, particu-

larly by children and students. But, paradoxi-

cally, Modern Civilization, is ugly, plagued with

inequity, arrogance, and bigotry.

What went wrong with Modern Civilization?

How is it possible that a perfect dorsal spine

supports such an ugly body?

To understand this paradoxical discord

has been a guiding quest in my research and in

proposing the Program Ethnomathematics.

Knowledge, Behavior, and Culture

How did everything begin? The myths of creation

are present in every civilization. The founding

myths and traditions of Western civilization

leads to the history of monotheistic religions

(Judaism, Christianity, Islamism) and the emer-

gence of techniques and the arts and links to

understanding how Mathematics permeates all

this. A great insight is gained in trying to identify

and to understand what happened in the founding

myths and traditions of non-Western civilizations.

The main difficulty I encounter, and this is true

for every one doing cultural studies, is the diffi-

culty of understanding and interpreting other cul-

tures with the categories and analytic instruments

other than those that are part of my cultural her-

itage. I have been trying to avoid, at least to

minimize, this difficulty. We rely on informants,

and there is a difficulty in building up trust.
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The goal is to develop a generic comprehensive

theory of knowledge and behavior. I base my

research on universal forms of knowledge (com-

munications, languages, religions, arts, techniques,

explanations, or sciences) and in a theoretical/

methodological model of knowledge and behavior

that I call the “cycle of knowledge.”

The aim of research in the Program

Ethnomathematics is the recognition of practices

and its relation to theories. Thus, I focus history

of science (and, of course, of mathematics) trying

to understand the role of technology as

a consequence of science, but also as an essential

element for furthering scientific ideas and

theories. I guide my investigation on three basic

questions:

1. How do ad hoc practices and solution of

problems develop into methods?

2. How do methods develop into theories?

3. How do theories develop into scientific

invention?

Current Work in Ethnomathematics

The Program Ethnomathematics was initially

inspired by recognizing ideas and ways of doing

that reminds us ofWestern mathematics. What we

call mathematics in the academia is a Western

construct. Although dealing with space, time, clas-

sifying, and comparing, which are proper to the

human species, the codes and techniques to

express and communicate the reflections on these

behaviors are undeniably contextual. Thus came

my approach to Cultural Anthropology (curiously,

my first book on Ethnomathematics was placed by

the publishers in a collection of Anthropology).

Much work is going on in many countries.

Many national, regional, and international meet-

ings are held. An overall account of the progress

of the field is seen in the site of the International

Study group on Ethnomathematics/ISGEm, with

links to the most relevant works in the area.

Access the links at http://isgem.rpi.edu/pl/

ethnomathematics-web.

Although a new field, there are important

publications revealing the strength of the area of

Ethnomathematics. It would be difficult to

produce a bibliography. There are innumerous

pioneers and active researchers in this field. In

attempting to give a full bibliography I would

surely leave important references. I mention

three basic works:

• Native American Mathematics, Michael Closs

editor, University of Texas Press, Austin, 1986.

• Ethnomathematics. Challenging Eurocen-

trism in Mathematics Education, Arthur

B. Powell and Marilyn Frankenstein, editors,

State University of New York Press, Albany,

1997.

• Mathematics Across Cultures. The History of

Non-Western Mathematics, Helaine Selin

editor, Kluwer Academic Publishing,

Dordrecht, 2000.

Besides many references, after having put

together the bibliographies of each chapter, we

have a comprehensive relevant bibliography for

the area.

The International Conferences on

Ethnomathematics/ICEm are well attended

events. The Fourth ICEm took place in Towson,

Maryland, in 2011. Most of the papers presented

in this conference are published in the Journal of

Mathematics and Culture volume 6 Number 1

Focus Issue ICEM4, a free access publication

linked to the site of the ISGEm indicated above.

It is appropriate to say that the Program

Ethnomathematics is a promising emerging

research field.
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Characteristics

Much of the discussion about measurement in

education in the past half century has revolved

around the need to move beyond the application

of psychometrics to a broader model of educa-

tional assessment that supports learning (Flana-

gan 1951; Ebel 1962; Glaser 1963). Historically,

significant attention has been given to the differ-

ences between norm-referenced and criterion-

referenced tests (Glaser 1963; Hambleton 1994),

focusing on relative versus absolute standards of

quality that are more or less appropriate to mea-

sure abilities or achievements. However, briefly,

we will describe why neither of these approaches

to assessment allows us to assess higher-order

understandings in mathematics that the field is

mostly interested in studying nor do they consider

latest advancements in what we now know

about how students learn mathematics, as they

interact with teachers, schools, and curricular

innovations. Furthermore, we propose a new

challenge and purpose for assessment: How

can assessments of complex mathematical

achievements be achieved in a way that provides

useful information for relevant decision

makers? After presenting an overview of the

dichotomy between norm-referenced and crite-

rion-referenced approaches to assessment, we

describe the characteristics of assessment designs

that are needed to assess the complexity in the

continually adaptive development of high-order

mathematical thinking that mostly interests the

field of mathematics education.

Norm-referenced tests grow from the

psychometric tradition, based on the measurement

of general intelligence (g) as an inheritable

characteristic of an individual that is fixed over

time. This psychometric tradition has its roots in

the mid-1800s with the work of Galton and

Pearson and Spearman’s contributions in the

beginning of the 1900s (Gipps 1999; Gardner

et al. 1996). Usually associated with the measure-

ment of aptitude (as opposed to achievement),

norm-referenced tests are constructed with the

purpose of comparing respondents on attributes

which presumably (although seldom in reality)

do not depend on instruction. Thus, each item is

assumed to have a difficulty level relative to other

items; again, this level of difficulty is assumed to

be independent of individual’s experiences. So,

items are selected “to discriminate among those

tested in order to spread scores along the normal

distribution” (Gipps 2012, p. 70), and items that

have a low discrimination index are discarded

from the test (e.g., items in which most students

score correctly and items in which most students

score incorrectly). However, items were selected

to be those that are not influenced by learning

experiences are not likely to provide important

information about what students learned or didn’t

learn. Consequently, their elimination from the test

leads to one of the most noted limitations of norm-

referenced tests, which is their insensitivity to

instruction (Popham 1987; Carmona et al. 2011).

Rather than focusing on relative measures,

leading psychometricians have argued that

criterion referenced should be used which are

dependent upon an “absolute standard of quality”
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(Glaser 1963, p. 519) in relation to specific objec-

tives (Popham 1987). Thus, criterion-referenced

tests are considered to be more appropriate to

measure achievement and determine current

levels of student performance. These tests

assume a continuum of knowledge acquisition

from no proficiency to perfect performance, and

the reference criteria are expected to include

a representative sample of important achieve-

ments in relevant domains, regardless of their

discrimination index. So, scores are determined

by calculating the proportion of these tasks

to determine mastery or nonmastery for an

individual.

Supported in behaviorism (e.g., Skinner

1968), and as a rational approach to evaluation

through determining individual’s learning gains

after instruction, Glaser (1963) associates

criterion-referenced tests with measuring student

attainment of explicit criteria as indicators of

behavioral objectives (Popham 1987; Gardner

et al. 1996). This learning perspective views the

mind as inaccessible and, therefore, studies learn-

ing as the way behaviors, which are observable,

are acquired. All behaviors are considered to be

a result of chained reactions to events in the

environments called stimuli, and mental activity

is defined in terms of observable and measurable

stimuli-response patterns. Learning of complex

ideas is formulated as a partitioning into smaller

behaviors, or pieces, that are organized along

a one-dimensional continuum of increasing

level of difficulty, assuming mastery of a

lower-level behavior as a prerequisite to achieve

higher-level understanding. Behavioral objec-

tives are generally stated in the form of state-

ments as follows: Given situation S, the student

will be able to do D, to level of proficiency P.

However, in recently developed curriculum stan-

dard documents, it is clear that in fields such as

mathematics education, many of the most impor-

tant goals of instruction cannot be reduced to lists

of declarative statements (i.e., facts) or condition-

action rules (i.e., skills). To address these short-

comings, Lesh and Clarke (2000) present another

type of instructional goal defined as cognitive

objectives, which are found more relevant in

mathematics and science education than their

counterparts, because cognitive objectives focus

on students’ interpretations of situations, rather

than on their actions in these situations.

Examples of relevant cognitive objectives in

mathematics and science education include

models, metaphors, and complex conceptual sys-

tems, to mention a few. In order to operationally

define what it means to “understand” such

cognitive objectives, it is important to include

(a) situations that optimize the probability that

the targeted construct will be elicited in an

observable form, (b) observation tools that

allow observers to identify the construct from

other irrelevant information that might also be

elicited, and (c) quality assessment criteria

that allow for meaningful comparisons to be

made among alternative possible solutions.

Lesh, Lamon, Lester, and Behr (1992) argue

the need for an entire paradigm shift to rethink

assessment issues in mathematics education.

Rather than focusing on behavioral (or other

types of) objectives, they identify conceptual

objectives as those we are mostly interested in

assessing and which cannot be examined neither

from a norm reference nor criterion reference

perspectives. Lesh and Lamon (1992) highlight

the need to provide well-articulated operational

definitions that focus less on value judgments

about students (good/bad) and instead focus

on providing useful documentation for the

decision makers to be able to make a better-

informed decision based on specific purposes

(Carmona 2012).

This paradigm shift evidences significant

changes on assessment-related topics such as

data collection, data interpretation, data analysis,

and the nature of reports. It involves “new deci-

sion makers, new decision-making issues, new

sources of assessment information and new

understandings about the nature of mathematics,

mathematics instruction, and mathematics learn-

ing and problem solving” (p. 380). In addition,

this new perspective requires a revision on

what it means for assessments to be valid, reli-

able, and generalizable (Pellegrino, Chudowsky,

and Glaser 2001), focusing assessment on an

increased authenticity of tests and an increase

on the credibility and fairness of the inferences
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made based on test results (Messick 1994).

Consistent with these views, Chudowsky and

Pellegrino (2003) emphasize the need to generate

new situations in a way in which assessments

are designed to support and measure learning

and elicit student thinking in its complexity

(Lesh et al. 2000). The following section provides

an overview outlining the main components of

this new perspective into assessment design we

call design-based assessment.

Design-Based Assessment

During the past 30 years, mathematics educators

have pioneered a new class of research method-

ologies, which have become known as design

research studies. These design research studies

have been proposed to encourage the relevance of

research to practice (Brown 1992) and to high-

light the importance of incorporating practi-

tioners’ wisdom to theory development (Collins

1992; Collins et al. 2004). But, most of all, in

mathematics education, where most researchers

are also practitioners (e.g., teachers, teacher edu-

cators, curriculum developers), the main reasons

why design research methodologies have been

useful are because (a) like engineers, mathemat-

ics education researchers tend to be trying to

design and develop the same “subjects” that

they are trying to understand and explain and

(b) like engineers, the kinds of complex and

continually adapting subjects that mathematics

educators are trying to understand usually cannot

be explained by drawing on only a single theory.

Instead, it should be expected that useful concep-

tual frameworks (or models) will need to

integrate ideas and procedures drawn from

a variety of relevant theories (and disciplines).

One reason why single-theory ways of thinking

seldom work is that solutions to realistically

complex problems usually involve competing

and partly conflicting factors and trade-offs –

such as those involving high quality and low costs.

When design research methodologies empha-

size the measurement of complex and continually

adapting subjects, they can be called design-

based assessment methodologies. And, assessing

curriculum innovations can be thought of as

being similar to the methodologies that are

needed to assess complex artifacts such as space

shuttles or transportation systems. Some relevant

assumptions include the following.

• For the kinds of complex and continually

adapting systems and situations that need to

be understood and explained, it generally must

be assumed that no two situations are ever

exactly alike – and that the exact same thing

never happens twice. Furthermore, for most

such systems, many of their most important

attributes can only be “observed” by

documenting their effects on other things,

and (like neutrinos or other subatomic

particles in physics) to measure them often

involves changing them.

• In general, complex systems and complex

achievements cannot be understood by break-

ing them into tiny pieces – and additively

combining measurements of the pieces. For

example, even if it is true that developing

some higher-order conceptual understanding

(C) implies that a list of lower-order behav-

ioral objectives (B1, B2, B3, . . . Bn) should have

been mastered, it does not follow that master-

ing each, B1, B2, B3, . . . Bn, implies that C has

been achieved. Yet, this fragmentation fallacy

is an assumption underlying psychometric

conceptions of knowledge development. One

of the many things that mathematics educators

can learn from engineers and other design

scientists is that as the complexity of designed

constructs (such as space shuttles) increases,

a far greater percentage of assessment

activities need to focus on relationships and

connections among parts and relatively less

time focuses on assessments of isolated pieces.

• Why is it impossible to assess most conceptual

understandings using tests that are based on

psychometric theory? As stated above, psy-

chometric theory was developed originally to

measure aptitude (i.e., general intelligence –

where performance is not influenced by teach-

ing and learning). Whereas, tests that are

designed to measure the results of learning

and instruction are called achievement tests.

In particular, in intelligence testing, items are

discarded as being “unreliable” if student

performance increases in the course of
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responding to them. That is, to be reliable,

a students’ performance should not change

for a sequence of tasks which are all designed

to test the same attribute.

Design-based assessment focuses on three

interacting and continually adapting “subjects”

of assessment studies – students, teachers, and

curriculum innovations (i.e., programs). Space

limitations preclude considering other important

“subjects” – such as administrators, home envi-

ronments, or classroom learning environments –

even though it is well known that these latter

factors often strongly influence the ways that

students and teachers interact and adapt in

response to curriculum innovations. For example,

the impact of a curriculum innovation may vary

significantly if the classroom norms that govern

student-teacher and student-student discussions

emphasize the practice of requiring students to

accept procedures and claims based on appeals to

authority – rather than requiring them to justify

and explain things based on students’ mathemat-

ical sense making. By focusing on students,

teachers, and programs, we hope that readers

will find it easy to generalize to other

relevant subjects.

Notice that, in our descriptions of assessment

practices, we also emphasize the importance of

documenting and assessing two-way interactions

among “subjects” – rather than restricting attention

to one-way/cause-and-effect relationships. For

example, teachers don’t just influence students’

thinking about the meanings of the mathematical

concepts and processes that they are expected to

develop, but, students also influence teachers’

thinking about what it means to “understand”

these concepts and processes. So, even in situa-

tions where a single teacher teaches two groups of

students with comparable abilities, the personae

that an excellent teacher adopts for one group of

students may need to be significantly different than

for another group of students. This is because

groups as a whole often develop significantly

different group personalities.

Next, notice that our descriptions of assess-

ment practices also emphasize developmental

perspectives about “subjects” who are assumed

to be complex and dynamically adaptive

systems – not at all like widgets being created

using machine-like processes. Consequently,

regardless whether attention focuses on the con-

tinually adapting conceptual systems that are

developed by students or teachers or whether

attention focuses on the systems of learning expe-

riences that are intended to promote student and

teacher development, we recognize that when

these systems are acted on, they react. Further-

more, based on results from research involving

very simple aptitude-treatment interaction stud-

ies, we know that, when such feedback loops

occur, second- and third-order effects are often

far more significant that first-order effects.

So, for realistically large and complex curriculum

innovations, entry-level teachers’ first-year

implementations generally should be expected

to be significantly different than second-, third-,

or fourth-year implementations (when increas-

ingly more experienced teachers are likely to be

available).

Finally, notice that our attention focuses

on assessment rather than simply evaluation.

Whereas evaluation only involves assigning

a value to various subjects, assessment involves

generating useful descriptions of where various

“subjects” are, and where they need to develop in

some landscape of possibilities. In general, both

assessment and evaluation are intended to

provide useful information for decision makers –

who may range from students, to teachers, to

administrators. So, to assess the quality of

a given assessment or evaluation, it is important

to consider the following questions: Who are the

intended decision makers? (because the informa-

tion that is useful to a teacher may be quite

different than the information that is useful to an

administrator or politician). What decisions are

priorities for these decision makers to make?

What kind of information is most useful for

these decision-making purposes?

For example, low-stakes-but-rapid-turn-

around assessments that are intended to help

teachers provide individualized attention to

students tend to be quite different than high-

stakes-and-slow-turn-around assessments that

are intended to screen students or limit future

opportunities. Sometimes, the former types of

E 228 External Assessment in Mathematics Education



assessments are referred to as summative assess-

ments, and the latter are referred to as formative

assessments. But, these summative and formative

functions often get muddled when (a) summative

assessments are used explicitly to change the

nature of what is taught and how it is taught and

(b) modern statistical procedures often make it

possible to use patterns or trends to generate

highly reliable summaries of achievement based

on collections of documentation.

When analyses of assessment practices begin

by asking who the decision makers are and what

decisions are priorities for them to make, then it

tends to become clear that in modern technology-

based societies, most decision makers tend to

have ready access to computer-based tools

which are capable of easily generating interactive

graphics-based displays of information that are

both simple to understand and easy to customize

to fit the purposes and prejudices of individual

decision makers and decision-making issues.

For nearly any of the “subjects” that are impor-

tant in educational decision making, single num-

ber characterizations are virtually useless and

essentially remove decision makers from the

decision-making process – by proclaiming, for

example, that subject #1 is better than subject

#2 regardless of what decisions are being made

or what factors are important to consider.

Answers may be different for different

decision makers.

In educational research and assessment, there

is no such thing as a tool or methodology that is

“most scientific” (for all subjects, for all decision

makers, and for all decision-making issues).

Every assessment tool is based on assumptions

which may or may not be appropriate for the

subjects or purposes of a given study. And,

a “scientific methodology” or a “scientific tool”

is one whose assumptions are, insofar as possible,

consistent with those associated with the

subjects, decision makers, and decision-making

purposes of the study. For example, when

assessing the achievements of students, teachers,

or curriculum innovations, the following kinds of

questions are important to ask:

• Do the tools or methodologies emphasize

achievements that are well-aligned with the

goals of the project, teacher, or students?

For example, even the most recently

developed curriculum standards documents,

such as the USA’s Common Core State Stan-

dards, none of the higher-order achievements

are operationally defined in ways that are mea-

surable. Furthermore, when tests such as the

Educational Testing Services’ Scholastic

Achievement Test were originally designed

to be Scholastic Aptitude Tests, then the entire

psychometric theory, which was created to

provide development standards, can be

expected to emphasize student attributes

intended to be unchangeable due to instruc-

tion. Can tests which are explicitly being used

to change what is taught and how it is taught

be thought of as not being among the

most powerful parts of the educational

“treatments” being assessed?

• Do methodologies which claim to randomly

assign students to “treatment groups” and

“control groups” really succeed in creating

situations which factor out the influences of all

but a small number of variables? (Notice that

similar methods have failed even in the case of

very small and simple aptitude-treatment inter-

action studies.) Can the most important factors

really be thought of as being “controlled” when

the parallel development of students, teachers,

and program implementations interact in ways

that usually lead to second-order effects which

are as powerful as first-order effects – andwhen

influences due to factors such as administrators,

classroom learning environments, and students’

home environments tend to be ignored?

• Are mixed-methods methodologies adequate

to assess students’ and teachers’ knowledge

or content of curriculum innovations?

Quantitative research produces quantitative

statements or quantitative answers to ques-

tions, whereas qualitative research produces

qualitative statements or qualitative answers

to questions. But, design-based assessment

research is about knowledge development,

and very little of what we are studying consists

of declarative statements (i.e., facts) or

answered questions (i.e., rules). For example,

some of the most important kinds of
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knowledge that we develop consist of models

for describing, explaining, designing, or

developing complex systems. So, models

(often embedded in purposeful artifacts or

tools) are among the most important kinds of

knowledge that we need to develop and assess.

Consequently, the question we must ask is as

follows:How do we validate models?And, the

answer is that both qualitative and quantitative

methods are useful for validating models. But

the product isn’t simply a quantitative or qual-

itative claim. It’s a validated model – and

trends and patterns involving development.

• Is the unbiased objectivity of an assessment

really assured by using “outside” specialists

whose only familiarity with the relevant

subjects come from pre-fabricated off-the-

shelf tests, questionnaires, interviews, and

observation protocols which are not modified

to emphasize the distinctive characteristics

of the subjects and their interactions? And,

if these “outside measures” are used for

purposes of accountability, can they really

avoid having powerful influences on the

treatments themselves?

• Can comparability of treatments really be

guaranteed by taking strong steps aimed at

trying to ensure that all teachers and all

students do exactly the same things, in exactly

the same ways, and at exactly the same times?

Notice that, in the literature on the diffusion of

innovations, complex systems tend to evolve

best when measurable goals are clear to all

relevant subjects – and when strong steps are

taken to encourage diversity (of interactions),

selection (of successful interactions), commu-

nication (about successful interactions), and

accumulation (of successful interactions).

In mathematics education, many of the most

important and powerful types of conceptual

understandings occur in one of two closely related

forms. The first focuses on students’ abilities

to mathematize (e.g., quantify, dimensionalize,

coordinate) situations which do not occur in

pre-mathematized forms and the second focuses

on representational fluency – or abilities that are

needed to translate from one type of description

to another. For example, in the case of represen-

tational fluency, Kaput’s (1989) research on early

algebra and calculus concepts emphasized the

importance of translations within and among the

three types of representations which are desig-

nated in the three ovals shown at the top of

Fig. 1 (i.e., equations, tables, and graphs), and in

a series of research studies known collectively as

The Rational Number Project, Lesh, Post, and

Behr (1987) emphasized the importance of trans-

lations within and among the five types of repre-

sentations which are designated in the five ovals

shown at the bottom of Fig. 1 (i.e., written
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symbols, spoken language, pictures or

diagrams, concrete models, and experience-

based metaphors).

From the perspective of psychometric theory,

two of the main difficulties with test items that

involve representational fluency result from the

fact that when tasks involve description of

situations (a) there always exist a variety of dif-

ferent levels and types of descriptions and (b)

responding to one such task often leads to

improvements of similar tasks. So, according to

psychometric theory, where tasks are considered

to have a single-level of difficulty which is

unaffected by instruction and where the relative

difficulty of two tasks also is considered to be

unaffected by instruction, such tasks are

discarded as being unreliable. Similarly, when

tasks focus on students’ abilities to conceptualize

situations mathematically, there once again

exist a variety of different levels and types

of mathematical descriptions, explanations, or

interpretations that can be given. So, once again,

the same two difficulties occur as for representa-

tional fluency.

Especially when tests are used for accountabil-

ity purposes and teachers are pressured to teach to

these tests, it is important for such tests to include

tasks that involve actual work samples of desired

outcomes of learning – instead of restricting atten-

tion to indirect indicators of desired achieve-

ments. For example, if the development of

a given concept implies that a student should be

able to do skill-level tasks T1, T2, . . . Tn, then

tasks T1, T2, . . . Tn tend to be indicators similar

to wrist watches or thermometers – in the sense

that it is possible to change the readings on wrist

watches or thermometers without in any way

influencing the time or the weather. But, how

can assessments of complex achievements be

achieved inexpensively, during brief periods of

time, and in a timely fashion that provides useful

information for relevant decision makers? In

modern businesses where continuous adaption is

necessary, and especially in knowledge industries

or in academic institutions, decision makers sel-

dom use multiple-choice tests or questionnaires to

assess the quality of the kinds of complex work

that constitute the most important activities of

their employees. So, how do specialists (or

teams of specialists) get recognized and rewarded

for the quality of their work? For example, how do

professors validate their work? Or, how do doc-

toral students validate the work on their Ph.D.

dissertations? Answers to these questions should

provide guidelines for the assessment of develop-

ment related to students, teachers, curriculum

innovations, and other “subjects” in mathematics

education research. Space limitations do not allow

detailed answers to such questions to be given

here. But, when attention focuses on the systems

of knowledge being developed by students,

teachers, and curriculum innovations, (a) it’s

important to focus on the half-dozen-to-a-dozen

“big ideas” which the subjects are intended to

develop, (b) it’s often useful to recognize that

a large part of what it means to “understand”

these big ideas tends to involve the development

of models (or interpretation systems) for making

sense of relevant experiences, (c) these models

often are embodied and function within purpose-

ful tools and artifacts, and (d) these tools and

artifacts often can be assessed in ways that simul-

taneously allow the underlying models to be

assessed. Procedures for achieving these goals

have been described in a variety of recent publi-

cations about design research (e.g., Lesh and

Kelly 2000; Lesh et al. 2007; Kelly et al. 2008),

and it is straightforward to adapt most of these

procedures to apply to assessment purposes.
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Definition

The practicum, teaching practice, or field experi-

ence refer to that component of those preservice

(or initial) teacher education programs which

place student teachers in schools for a stipulated

period of time, for the purposes of classroom

observation and/or the teaching of lessons,

usually under supervision.

Features

Preservice mathematics teacher education

programs offered by high education institutions

internationally vary greatly in composition across

countries (see Comiti and Loewenberg Ball 1996;

Guyton and McIntyre 1990) but commonly com-

prise three components:

• A university or college-based curriculum,

usually involving theoretical foundation courses

(educational psychology, philosophy and soci-

ology of education, historical approaches and

policy etc.)

• “Method” or “didactics” courses (devoted

specifically to the teaching of a specific

subject, such as mathematics)

• A school teaching experience, termed

“teaching practice,” “field experience,” or

“practicum,” during which student teachers

are placed in schools

The organization of the field experience

component varies considerably, (McIntyre et al.

1996; Knowles and Cole 1996) including in the

following ways:

• The contractual arrangement with schools – in

some countries universities are required to pay

schools to provide for field experience, in

others this is not the case; in some countries

schools are obliged by regulation to accept

student teachers, in others not

• Who undertakes the supervision of student

teachers in schools (school teachers, inspec-

tors, educational advisors)

• The length of the field experience, which can

range from a few weeks to a whole year and

can be organized in discrete in blocks or

continuously throughout the year

• The nature of the partnership between the

university-based and school-based supervisors

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
# Springer Science+Business Media Dordrecht 2014



• The choice of school settings and the degree to

which classroom practice in these schools

aligns with “good practice” as espoused by

the teacher education provider

• The degree of teaching responsibility given to

student teachers

• How explicitly requirements for the field

experience are set out in advance and how

decisions about these requirements are made

• The degree of alignment between the vision

and values of the teacher education provider

and the schools in which student teachers are

located

Research on the Field Experience

As indicated, initial teacher education involves

two distinct sites of learning and practice, each

with specialized identities, practices, forms of

knowledge and relationships, and preferred

modes of pedagogy: the university or college

teacher education provider on the one hand and

the schools involved in the practicum on the

other. (These in turn are oriented towards a third

site: the schools into which student teachers will

move after graduation to take on their duties as

beginning teachers.) The practicum constitutes

a potential bridge between these two sites.

Research on the practicum within mathemat-

ics education and within education studies more

generally is not extensive and focuses in the main

on issues such as the degree of change in student

teachers’ knowledge, beliefs, decision-making

strategies, reflectiveness, and teaching practices

as a result of the practicum experience (Bergsten

et al. 2009). Some research evaluates interven-

tions aimed at reducing the insulation between

teacher educator provider and school, in order to

align school experiences more closely with the

goals of initial teacher education.

Three research areas which contribute towards

inquiry in initial teacher education, and the

practicum in particular, are:

• Teacher socialization (and in particular, the

degree to which the field experience reinforces

or alters the predispositions towards teaching

of student teachers) (Zeichner and Gore 1990).

• The issue of the relationship between “theory

and practice” which informs the study of the

interaction between foundational disciplines

and “methods” courses within initial teacher

education programs, between these programs

and the practicum, and between initial teacher

education provision and the classroom prac-

tice of beginning teachers (see Dewey 1904,

Hirst 1990, and McIntyre 1995). Jaworski and

Gellert (2003) suggest a four-model contin-

uum to describe the level of integration or

insulation of the theoretical and practical

aspects of initial teacher education.

• The tacit, or craft dimension in the professional

development of teachers, or “professional craft

knowledge” (forms of knowledge which are not

realizable in language and which are acquired

via modeling and mentoring in the site of

practice (see Polanyi 1983 and Shön 1983)).

Cross-References

▶Mathematics Teacher Education Organization,

Curriculum, and Outcomes
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Introduction

Discussion of the relationship between knowledge

and the profession of teaching is particularly con-

voluted because knowledge is itself the commodity

at the heart of education and the very goal of

teaching. For a starting point in theorizing knowl-

edge and teaching, one can turn to Aristotle’s

(384–322 BC) aphorism “it is a sign of the man

who knows, that he can teach” (Metaphysics,

Book 1). This can be interpreted that “really”

knowing something is best evidenced in the perfor-

mance of teaching. The Oxford philosopher John

Wilson (1975) endorsed and extended Aristotle’s

position on teacher knowledge with the argument

that comprehension of the logic of concepts offered

guidance on how to teach them. In other words, not

only dowe need to knowwhatwe teach in the sense

of understanding it, but such a profound quality of

knowing actually acts as a guide to the pedagogy,

i.e., the “how to teach,” of subjects such as mathe-

matics. This position has recently been developed

by Watson and Barton (2011) in terms of pedagog-

ical application of “mathematicalmodes of inquiry.”

However, the seminal work of Lee Shulman and his

colleagues in the 1980s underpins the dominant

frameworks currently in use for conceptualizing

mathematics teacher knowledge.

Lee Shulman

In a presidential address to the American Educa-

tional Research Association, Shulman argued

that in recent (American) research on teaching,

insufficient emphasis had been placed on the

subject matter under consideration: he called

this omission “the missing paradigm.” Shulman’s

highly influential perspective on teacher

knowledge arose from empirical research, the

Knowledge Growth in a Profession project,

conducted at Stanford University in the mid-

1980s. His tripartite conception of teachers’

knowledge of the content that they teach includes

not only knowledge of subject matter but

also pedagogical content knowledge, as well

as knowledge of curriculum. Subject matter

knowledge (SMK) refers to the “amount and

organization of the knowledge per se in the

mind of the teacher” (Shulman 1986, p. 9) and

is later (Grossman et al. 1989) further analyzed

into substantive knowledge (the key facts,

concepts, principles, and explanatory frame-

works in a discipline) and syntactic knowledge.

The latter is knowledge about the nature of

inquiry in the field and the mechanisms through

which new knowledge is introduced and accepted

in that community; in the case of mathematics,

it includes knowledge about inductive and
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deductive reasoning, the affordances and limita-

tions of exemplification, and problem-solving

heuristics and proof. Pedagogical content knowl-

edge consists of “ways of representing the subject

which makes it comprehensible to others. . .[it]

also includes an understanding of what makes

the learning of specific topics easy or difficult

. . .” (Shulman 1986, p. 9).

In addition to his taxonomy of kinds of teacher

knowledge, Shulman (1986) also draws out three

forms of such knowledge. These are propositional

knowledge, consisting of statements about what is

known about teaching and learning; case knowl-

edge, being salient instances of theoretical con-

structs which serve to illuminate them; and

strategic knowledge, where propositional and

case knowledge are applied in the exercise of

judgment and wise action. Shulman’s analysis

remains the starting point for most subsequent

analyses of, and further investigation into, the pro-

fessional knowledge base ofmathematics teachers,

particularly in the Anglo-American research orbit.

Mathematical Knowledge for Teaching

Deborah Ball entered the research field on the

cusp of Shulman’s work at Stanford, and

her contribution to research in the field of

mathematics teacher knowledge has been exten-

sive and far reaching. Videotapes and other records

of her own elementary classroom teaching have

been an important source of data in the investiga-

tions of her research group at the University

of Michigan. The “practice-based theory of

knowledge for teaching” (Ball and Bass 2003)

that emerges from the Michigan studies unpicks,

refines, and reconfigures the three kinds of content

knowledge – subject matter, pedagogical, and

curricular – identified by Shulman (1986). This

Mathematical Knowledge for Teaching (MKfT)

framework (Ball et al. 2008) has been adopted by

many researchers as a theoretical framework for

interpreting their own classroom data, as well as

a language for articulating their findings.

In the MKfT deconstruction of Shulman, SMK

is separated into “common content knowledge”

(CCK), “specialized content knowledge” (SCK),

and “horizon content knowledge” (HCK). CCK is

essentially “school mathematics,” applicable in

a range of everyday and professional contexts

demanding the ability to calculate and to solve

mathematics problems. SCK, on the other hand,

is knowledge of mathematics content that mathe-

matics teachers need in their work, but others do

not. This would include, for example, knowing

why standard calculation routines work, such as

“invert and multiply” for fraction division. Exam-

ples of SCK offered by Ball et al. (2008) include

the evaluation of various student responses to col-

umn subtraction problems, claiming that the kinds

of knowledge required to diagnose incorrect strat-

egies or to understand correct but nonstandard

ones are essentially mathematical rather than ped-

agogical. On the other hand, they suggest that

knowing about typical errors in advance, thereby

enabling them to be anticipated, is a type of ped-

agogical content knowledge which they call

“knowledge of content and students” (KCS).

Thus, the argument goes as follows: SCK is acces-

sible to the competent mathematician, by refer-

ence to their knowledge of mathematics (see also

Watson and Barton 2011). KCS, on the other hand,

is conceived as a body of knowledge deriving from

empirical research in the behavioral and social

sciences, including mathematics education.

Note that the MKfT model is not a simple

elaboration of Shulman’s three content

categories, since curriculum knowledge is no

longer a separate category. In effect, it has been

partitioned into two: horizon content knowledge,

which becomes the third component of SMK, and

knowledge of content and curriculum, which is

now one of three components of PCK. In fact,

Ball et al. (2008, p. 391) draw out two aspects of

curriculum knowledge, as conceived by

Shulman, that are often overlooked. The first,

lateral curriculum knowledge, relates to cross-

curricular mathematical connections, invoking

conceptions and applications that enrich stu-

dents’ experience and appreciation. The second,

vertical curriculum knowledge, entails knowing

what mathematical experiences precede those in

a given grade level and what will follow in the

next, and subsequent, grades. Ball et al. then

relabel vertical knowledge as horizon content
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knowledge and include it within SMK. The

importance of this Janus-like quality in mathe-

matics teachers is clear. On the one hand, they

need to know what knowledge their students

can be expected to bring with them as a result

of previous instruction, including restricted

conceptions and even misconceptions. On the

other hand, Dewey (1903, p. 217) cautioned

teachers against fostering “mental habits and

preconceptions which have later on to be bodily

displaced or rooted up in order to secure a proper

comprehension of the subject,” thereby impeding

progress in the later grades.

The Knowledge Quartet

In a study of London-based graduate trainee pri-

mary teachers, Rowland,Martyn, Barber, andHeal

(2000) found a positive statistical connection

between scores on a 16-item audit of content

knowledge and competence in mathematics teach-

ing on school-based placements. A team at the

University of Cambridge then surmised that if

superior content knowledge really does make

a difference when teaching elementary mathemat-

ics, it ought somehow to be observable in

the practice of the knowledgeable teacher. The

Cambridge team therefore set out to identify, and

to understand better, the ways in which elementary

teachers’ mathematics content knowledge, or the

lack of it, is made visible in their teaching.

The Knowledge Quartet (KQ) was the

outcome of research in which 24 lessons taught

by elementary school trainee teachers were

videotaped and scrutinized. The research team

identified aspects of trainees’ actions in the

classroom that could be construed as being

informed by their mathematics subject matter

knowledge or pedagogical content knowledge.

This inductive process initially generated a set

of 18 codes (later expanded to 20), subsequently

grouped into four broad, superordinate categories

or dimensions – the “Quartet.”

The first dimension of the Knowledge Quartet,

foundation, consists of teachers’ mathematics-

related knowledge, beliefs, and understanding,

incorporating Shulman’s classic 3-way taxonomy

of kinds of knowledge without undue concern for

the boundaries between them. The second dimen-

sion, transformation, concerns knowledge in action

as demonstrated both in planning to teach and in

the act of teaching itself. A central focus is on the

representation of ideas to learners in the form of

analogies, examples, explanations, and demonstra-

tions. The third dimension, connection, concerns

the ways by which the teacher achieves coherence

within and between lessons: it includes the

sequencing of material for instruction and an

awareness of the relative cognitive demands of

different topics and tasks. The final dimension,

contingency, is witnessed in classroom events that

were not envisaged in the teachers’ planning. In

commonplace language, it is the ability to “think

on one’s feet.” Rowland, Huckstep, and Thwaites

(2005) include a more detailed conceptual account

of these four dimensions and of the “grounded

theory” approach to analyzing the video recordings

of the 24 lessons.

The Knowledge Quartet is a lens through which

the observer “sees” classroommathematics instruc-

tion. It is a theoretical tool for observing, analyzing,

and reflecting on actual mathematics teaching.

Devised first with researchers in mind, it has sub-

sequently been applied to support and facilitate the

improvement of mathematics teaching. In particu-

lar, it offers a four-dimensional framework against

which mathematics lessons can be discussed,

with a focus on their subject matter content

and the teacher’s related knowledge and beliefs.

A book aimed at mathematics teachers and teacher

educators (Rowland et al. 2009) explains how

to analyze and give feedback on mathematics

teaching, using the Knowledge Quartet.

Both the Mathematical Knowledge for

Teaching framework and the Knowledge Quartet

are practice-based theories of knowledge for

teaching. However, while parallels can be

drawn between the origins of the two frame-

works, the two theories look very different. In

particular, the theory that emerges from the

Michigan studies aims to unpick and clarify the

formerly somewhat elusive and theoretically

undeveloped notions of SMK and PCK. In the

Knowledge Quartet, however, the distinction

between different kinds of mathematical
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knowledge is of lesser significance than the

classification of the situations in which math-

ematical knowledge surfaces in teaching. In

this sense, the two theories are complemen-

tary, so that each has useful perspectives to

offer to the other. A more extended compari-

son and critique is to be found in the chapter

by Petrou and Goulding in Rowland and

Ruthven (2011).

Culture: A Caveat

Notwithstanding the influence of the frameworks

for mathematics teachers outlined in this article,

it is important to bear in mind that they represent

perspectives on the topic originating in Anglo-

American culture. This is not to say that they

cannot, indeed have not, been found relevant

and useful far beyond their geographical origins.

However, other cultural influences and emphases

can be seen, especially in parts of Europe and in

the Far East (in particular China and Japan).

While these influences do not usually address

mathematics teacher knowledge explicitly, they

significantly shape ways of thinking about how

teachers develop as professionals. In France, for

example, the didactique which draws upon fun-

damental theoretical approaches due to

Brousseau (didactical situations), Chevallard

(didactical transposition), and Vergnaud (con-

ceptual fields) is the mold in which thinking

about mathematics teaching is set. The German

stoffdidactik is an approach to analyzing

mathematical content with a view to making it

accessible to learners – an endeavor at the heart of

Shulman’s PCK, in fact. The Chinese didactical

method of bianshi focuses on subtle but

significant shifts to achieve variation in problem

types. According to Ma (1999), Chinese elemen-

tary teachers demonstrate not only personal

mathematical competence but a high level of

what the MKfT framework would call special-

ized content knowledge. As yet, however, the

teacher-knowledge discourse of each culture

tends to have its own vocabulary, although

conceptual connections between these separate

discourses can be discerned.
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Definition and Brief History

The notion of function has three different, yet inter-

related, aspects. Firstly, a function is a purely
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mathematical entity in its own right. Depending on

the level of abstraction, that entity can be intro-

duced, for example, as either a correspondence that

links every element in a given domain to one and

only one element in another domain, called the co-

domain, or as a certain kind of relation, i.e., a class

of ordered pairs (in a Cartesian product of two

classes), which may be represented as a graph, or

as a process – sometimes expressed by way of an

explicit formula – that specifies how the dependent

(output) variable is determined, given an indepen-

dent (input) variable, or as defined implicitly as

a parametrized solution to some equation (alge-

braic, transcendental, differential). Secondly, func-

tions have crucial roles as lenses through which

other mathematical objects or theories can be

viewed or connected, for instance, when perceiving

arithmetic operations as functions of two variables;

when a sequence can be viewed as a function

whose domain is the set of natural numbers; when

maximizing the area of a rectangle given a constant

perimeter or perceiving reflections, rotations,

and similarities of plane geometrical figures as

resulting from transformations of the plane; or

when Euler’s j-function (for a natural number n,

j(n) is the number of natural numbers 1,2,. . .,

n that are co-prime with n) allows us to capture

and state fundamental results in number theory and

cryptography, etc. Thirdly, functions play crucial

parts in the application of mathematics to

and modelling of extra-mathematical situations

and contexts, e.g., when the development of

a biological population is phrased in terms of

a nonnegative function of time, when competing

coach company tariff schemes are compared by

way of their functional representations,, or when

the best straight line approximating a set of exper-

imental data points is determined by minimizing

the sum-of-squares function.

These aspects of the notion of function make

this notion one of the most fundamental and sig-

nificant ones in mathematics, and hence in math-

ematics education. This is reflected both in the

history of mathematics (the term “function”

going back at least to Leibniz (Boyer (1985/

1698), p. 444) and in the history of mathematics

education, where the notion of function as

a unifying concept in mathematics was

introduced in the curricula of many countries

from the late nineteenth century onwards,

following the reform program proposed by Felix

Klein (NCTM 1970/2002), p. 41; Schubring

1989, p. 188). Today, some version of the notion

of function permeates mathematics curricula in

most countries. However, the different aspects of

the notion of function also make it highly diverse,

multifaceted, and complex, which introduces

challenges to the conceptualization as well as to

the teaching and learning of functions.

Against this background, the concept of function

in mathematics education has given rise to a huge

body of research. The origins of this research seem

to date back to debates in the 1960s about the right

(or wrong) way to define a function. Thus, Nicholas

(1966, p. 763) compares and contrasts three defini-

tions (which he labels “variable,” “set,” and “rule”),

which, in his view, generate a dilemma, because

they are not logically equivalent. The first empirical

studies also seem to stem from the late 1960s.

Empirical studies focused on the formation of the

concept of function, which has also preoccupied the

far majority of subsequent research, as is reflected

by the seminal volume on this topic edited by

Dubinsky and Harel (1992) and in the relatively

recent overview of significant research offered by

Carlson and Oehrtman (2005).

Challenges to the Teaching and Learning

of Function

The reason why the concept of function itself

has attracted massive attention from researchers

is that students (and many pre- or in-service

teachers, see Even 1993) have experienced,

and continue to experience, severe difficulties

at coming to grips with the most significant

aspect of this concept in both intra- and

extra-mathematical contexts. More specifically,

researchers have focused on identifying and

analyzing the learning difficulties encountered

with the concept of function; on explaining

these difficulties in historical, philosophical, and

cognitive terms; and on proposing effective

means to counteract them in teaching. In so

doing, researchers have introduced a number of

terms and distinctions (e.g., between “action” and

“process” (Dubinsky and Harel 1992b)).
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One important issue that arises in this

context is the fact that functions can be given

several different representations (e.g., verbal,

formal, symbolic (including algebraic), diagram-

matic, graphic, tabular), each of which captures

certain, but usually not all, aspects of the concept.

This may obscure the underlying commonality –

the core – of the concept across its different

representations, especially as translating from

one representation to another may imply loss of

information. If, as often happens in teaching,

learners equate the concept of function with just

one or two of its representations (e.g., a graph or

a formula), they miss fundamental features of the

concept itself. This is also true of the many dif-

ferent equivalent symbolic notations for the very

same function (e.g., y¼ x2� 1/x, f: x1x2� 1/x,

in both cases provided x 6¼ 0; f: Â\{0}

1Â defined by f(x) ¼ x2 � 1/x;

f(x) ¼ (x � 1)(x2 + x + 1)/x, x ÎÂ\ {0}; f ¼ {(x,

x2 � 1/x)| x ÎÂ\ {0}}; (x,y) Îf Ûy ¼ x2 � 1/x Ùx

ÎÂÙx 6¼ 0; x¼ y2� 1/y, y ÎÂ\ {0}, just to indicate

a few). Interpreting and translating between func-

tion representations in intra- or extra-mathe-

matical settings proves to be demanding for

learners. Of particular significance here is the

translation between visual and formal represen-

tations of the same function, which for some

learners are difficult to reconcile.

Functions come in a huge variety of sorts,

types, and cases, ranging from familiar ones

(such as linear or quadratic functions of one

variable) to abstract and complex ones (such as

the integral as a real-valued functional operating

on the space of Riemann-integrable functions of n

variables). The plethora of functions of very

different kinds means that students’ concept of

function is also delineated by the set of function

specimens and examples of which the students

have gained experience. This is an instance of

the well-known distinction between concept

definition and concept image playing out in

a very manifest manner in the context of function

(Vinner 1983), in particular in teaching and

learning that focuses on abstract functions. This

distinction also proves important when zooming

in on special classes of functions (such as

linear or affine functions, exponential functions,

recursively defined functions, and above all the

real and complex functions that appear in calcu-

lus and analysis), which have been the subject of

study in an immense body of research.

Another demanding facet of the concept of

function is the process-object duality (cf., e.g.,

several chapters in Dubinsky and Harel (1992a))

that is characteristic of many functions, espe-

cially the ones that students encounter in second-

ary and undergraduate mathematics teaching. In

its process aspect, a function yields outputs as

a result of inputs. In its object aspect, a function

is just a mathematical entity which may engage in

relationships with other objects, or be subjected

to various sorts of treatment (e.g., differentiation

at a point). Oftentimes the transition from a pro-

cess view to an object view of function is a severe

challenge to students.

Overcoming Learning Difficulties

In response to the observed learning difficulties

attached to functions and analyses of these diffi-

culties, mathematics educators have invested

efforts in proposing, designing, and implementing

intervention measures so as to address and coun-

teract these difficulties specifically. The overarch-

ing result is that it is possible to counteract the

learning difficulties at issue, but this requires

intentional and focused work on designing rich

and multifaceted learning environments and

teaching-learning activities that are typically

extensive and time-consuming. In other words,

the desired outcomes are not likely to occur by

default with most students, they have to be aimed

at, and they come at a price: time and effort.

A few examples: One focal point has been to

help students develop a process conception of

function (in contrast to an action conception), by

way of technology (Goldenberg et al. 1992). Tech-

nology has also been used to consolidate students’

concept images so as not to “overgeneralize” the

prototypical function examples that initially

underpinned their conception. Helping students to

develop an object conception of function (by way

of reification) has preoccupied many researchers,

e.g., Sfard (1992).
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Future Research

While research in this area in the past has focused

on the learning (and teaching) of the concept of

function in contexts when functions are already

meant to be present, or presented to students, very

little – if any – research has dealt with situations

in which students are requested or encouraged

to uncover or introduce, themselves, functions

or functional thinking into an intra- or

extra-mathematical context. Furthermore, there is

a need for future research that focuses on designing

teaching-learning environments that help generate

transfer of the notion of function from one setting

(e.g., real functions of one variable) to another

(e.g., functions defined on sets of functions).
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Issues of Definition

According to Haig (2004), it was the feminist

scholars of the 1970s who adopted gender “as

a way of distinguishing ‘socially constructed’

aspects of male–female differences (gender)

from ‘biologically determined’ aspects (sex)”

(p. 87). In the mathematics education literature,

the gradual shift from “sex differences” to

“gender differences” occurred during the period

from the late 1970s into the 1980s. Fennema’s

(1974) seminal work in the field was reported as

“sex” differences in mathematics achievement,

and in the renowned Fennema and Sherman

studies on affective factors (e.g., Fennema and

Sherman 1977), the findings were also described

as “sex” differences. As noted by Haig (2004), in

more recent times, the “distinction is now only

fitfully respected and gender is often used as

a simple synonym of sex” (p. 97); this is also

evident in the mathematics education literature.

In this encyclopedia entry, the term “gender”

is used in the sense that Leder (1992) clarified

it with respect to mathematics learning. Gender

is considered a social construct, and gender

differences are considered to be contextually

bound and not fixed, that is, they are not geneti-

cally determined. Sex differences are only

described in this entry with respect to issues

associated with biological distinctions.

Historical Overview of Gender and
Mathematics Education Research

Research on gender issues in mathematics

education began in earnest during the 1970s. This

work was mainly situated in the English-speaking,

developed world (USA, UK, Australia), as well

as in some European countries. The common

research findings were the following: (i) on aver-

age, females’ achievement levels were lower than

males’, particularly when it came to challenging

problems (it should be noted that it was recognized

that the gender difference was small compared to

within sex variations), (ii) females’ participation

rates in mathematics were lower thanmales’ when

mathematics was no longer compulsory, and (iii)

on a range of affective/attitudinal measures with

respect to mathematics or to themselves as math-

ematics learners, females’ views were less “func-

tional” (leading to future success) than males’.

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
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The theoretical frameworks of this early

research were founded in those prevalent at the

time, that is, a positivist view that findings were

generalizable beyond the contexts in which the

research was conducted. Most of the research was

quantitative, although sometimes accompanied

by qualitative dimensions. The dominant femi-

nist perspective that could be inferred from the

stances adopted was that of “liberal” feminism,

that is, that females’ relative underperformance

in mathematics and their under-representation in

challenging mathematics offerings at the school

level, and in mathematics and science-related

courses of study at the tertiary level as well as

in related careers, had to be brought up to the

levels of those found for males.

In the west, the “Women’s Movement”

(second wave of feminism) was very active

across western societies in the 1970s and 1980s.

Within the broader context of women’s inferior

status in society, girls had been identified as edu-

cationally disadvantaged. Women’s legal rights

and roles in the family and the workplace, as well

as sexuality and reproductive rights, were all

under scrutiny. Legislation was enacted to

address women’s demands for a more equitable

society. Money was flowing for educational

research to address female disadvantage in math-

ematics (and science), and intervention programs

flourished – see Leder et al. (1996) for an over-

view of a range of these intervention programs,

their outcomes, and what was learned from them.

In the 1980s and 1990s, the “foundingmother”

in the field, Elizabeth Fennema, was joined by

a number of eminent scholars. Among them were

Gilah Leder and Leone Burton whose books (e.g.,

Fennema and Leder 1990; Burton 1990) and

other scholarly journal articles, handbook contri-

butions (e.g., Leder 1992), and conference papers

formed the building blocks for ongoing research

in the field. The history of women’s place in

mathematics (e.g., Henrion 1997), including

mathematics education (e.g., Morrow and Perl

1998), and the relationship to mathematics

curricula (e.g., Kaiser and Rogers 1995; Perl

1978) were also documented.

The International Commission on Mathemati-

cal Instruction [ICMI] had a significant role to play

in bringing the field of gender and mathematics

education to prominence. The International Orga-

nization for Women in Mathematics Education

[IOWME] sessions at the ICMI conferences in

Budapest (1988), Montreal (1992), and Seville

(1996) were watershed events. New scholarship

was brought to light, and there were several nota-

ble outcomes: Roger and Kaiser’s (1995) book

introduced various feminist perspectives on gender

issues in mathematics learning; Burton’s (1990)

book included important contributions to the field

by authors from a range of international settings;

and in Keitel’s (1998) book, gender was consid-

eredwithin the broader framework of social justice

and equity. ICMI’s support for a study on gender

and mathematics learning (Höör, Sweden, 1993)

was also significant. Ironically, it was at the Höör

conference that the all-male leadership of ICMI,

the organization representing the field of mathe-

matics education internationally, was openly chal-

lenged; this may well have been the catalyst for

change. In subsequent years, women in mathemat-

ics education have played significant and active

roles in the leadership of ICMI.

The “golden era” of research on gender and

mathematics education appears to have ended in

the mid-1990s. In theWest, there was a sense that

the “female problem” in society had been solved.

For gender and mathematics education, research

and intervention funding dried up; governments

had other considerations at the top of their

agendas. Arguably, too, there was a backlash to

the focus on girls’ education, and attention

switched to boys’ educational needs.

One positive and lasting outcome of the

era was the mandating of statistical data on

educational outcomes emanating from many

government sources to be reported by sex. At

the international level, there is also easy access

to the Trends inMathematics and Science Studies

[TIMSS] data and the Program for International

Student Assessment [PISA] data. These data

provide researchers with the capacity to examine

achievement and participation in mathematics

for gender differences, both within and across

nations, for the age cohorts taking these tests. It

should be noted that affective data are also

included in the TIMSS and PISA databases.
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The ability to refine investigations for achieve-

ment by mathematics content domain and/or by

various other equity factors (e.g., socioeconomic

background, race, ethnicity, and religious

affiliation) is possible from some large-scale

international data sources, as well as those avail-

able within nations, for example, national testing

and competition data. It was the reporting of

gender differences from large-scale data sources

that provided the initial impetus for research in

the field; this must continue. In the contemporary

world of the twenty-first century, it is these kinds

of data that have sparked concerns and interest

in research on gender issues in mathematics

learning in the developing world and in Asia.

Theoretical Considerations

In seeking explanations for observed gender

differences in mathematics learning outcomes,

a number of explanatory models were postulated

in the early period of research in the field. Several

focused on explanations for specific aspects

of mathematics education including differential

elective course enrolments (Eccles et al. 1985),

mathematics achievement (Ethington 1992),

achievement on cognitively demanding tasks

(Fennema and Peterson 1985), and explanations

for the relationships between race, socioeconomic

background, and gender differences in levels of

performance on standardized tests (Reyes and

Stanic 1988). Leder’s (1990) model was more

general. Two groups of factors – student-related

and environmental – were identified as interacting

contributors to patterns of gender difference in

achievement and participation. The postulated

models shared several common elements: social

environment, significant others, learning context,

cultural and personal values, affect, and cognition

(Leder 1992).

A major critique of the liberal feminist para-

digm framing the early research on gender and

mathematics education was that it positioned

females as “deficit.” In the pursuit of expanding

knowledge of gender issues in mathematics

education, the explanatory models described

above were supplanted by a range of feminist

perspectives (e.g., feminismof difference, embrac-

ing the ways in which women are different from

men; radical feminism, targeting the power/politi-

cal system that oppresses women; feminist

standpoints, founded in the lives and experience

of women) and theoretical frameworks from other

disciplines to underpin subsequent research

endeavors (e.g., postmodernism, rejection of the

homogeneity of groups such as girls/boys, instead

focusing on the relative truths of individuals;

poststructuralism, gender is socially and culturally

created through discourse; queer theory, gender is

not fixed and does not define the individual;

postcolonialism, identifies parallels between

women in a patriarchy and recently decolonized

countries; racism is implicated).

Fennema (1995) explained that feminist

scholars had convincingly argued that male

perspectives dominated traditional research

approaches and interpretations and that this view

was incomplete as female perspectives were omit-

ted. To progress towards gender equity in mathe-

matics education, she urged researchers to embrace

“new types of scholarship focused on new ques-

tions and carried out with new methodologies”

(p. 35) including feminist methodologies, through

which the world is viewed and interpreted from

a female perspective.

Following the lead of feminist science

educators, Burton (1995) challenged the mathe-

matics establishment in questioning the objectivity

of the discipline. She argued that mathematics was

contextually bound and that from this perspective

could be viewed in more human terms; this, she

contended, would challenge traditional pedagogi-

cal approaches to the teaching of mathematics as

well as the content taught. The stages of women’s

way of knowing (more likely to be “connected”) as

different frommen’s (more likely to be “separate”)

were identified by Belenky, Clinchy, Goldberger,

and Tarrule (1986). Becker (1995) adapted

Belenky et al.’s model to the learning of mathe-

matics. Kaiser and Rogers (1995) applied

McIntosh’s evolution of the curriculum model to

women and the mathematics curriculum. They

identified five phases: womanless mathematics,

women in mathematics, women as a problem in

mathematics, women as central to mathematics,

and mathematics reconstructed. In line with

Burton’s challenge of a feminist epistemology of
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mathematics, Belenky et al.’s gender-related

distinction between “connected” and “separate”

knowing, and Kaiser and Rogers’ curriculum

model, research on feminist pedagogies was to

follow.

In recent years, there does not appear to

be extensive scholarly writing on theoretical

developments in the field.

Methodological Considerations

As noted above, positivism underpinned early

research studies on gender and mathematics

learning. Although often not acknowledged by

the researchers, post-positivism, in which context

is recognized as relevant in pursuit of the truth, is

identifiable as the epistemological basis of many

more recent large- and smaller-scale quantitative

studies. Mixed methods research, in which quan-

titative data are complemented or supplemented

by qualitative data, or vice-versa, has been

embraced in educational research more broadly

and in the field of gender and mathematics

learning more specifically. With the advent of

cheaper, more reliable, digital technologies in

recent times, innovative data-gathering instru-

ments (e.g., mobile devices) and data-gathering

sources (e.g., Facebook) have been employed.

Recent Developments

The advent and pervasive presence, both outside

and within mathematics classrooms, of calcula-

tors, computers, and ICTs and the mobile devices

to access them has introduced a new strand of

research into gender issues andmathematics learn-

ing.As evidenced by course participation rates and

workforce figures, male dominance in the field of

computer science and in the world of ICTs is even

stronger than in mathematics and the physical

sciences. Surrounded by the high expectation

that technological advancements will enhance

mathematics learning for all and recognizing

that another male domain was being introduced

into the preexisting male domain of mathematics

education, researchers began questioning whether

the widespread implementation of these technolo-

gies into mathematics classrooms and assessment

regimes would challenge or exacerbate gender

differences in mathematics learning outcomes

(e.g., Forgasz, Vale, and Ursini 2010). Some

evidence suggests that females may be disadvan-

taged by computers and the mandated use of

CAS calculators in high-stakes examinations;

research is ongoing with respect to the impact of

technologies such as the iPad.

Another exciting development is the entry of

researchers from Asian, South American, and

developing countries including African nations

into the field (see Forgasz, Rossi Becker, Lee,

and Steinthorsdottir 2010). The common issues

highlighted – males’ superior mathematics

achievement, participation, and attitudes towards

mathematics – and the methodological and episte-

mological approaches adopted resonate with the

early research on gender andmathematics learning

undertaken in western, English-speaking nations.

UNESCO’s emphasis on gender mainstreaming

(see Vale 2010) has contributed strongly to the

efforts being made to the more general goal of

achieving equity for women in many societies.

Interestingly, the more recent PISA and TIMSS

results from several Islamic nations (recent

entrants into these international comparative

studies) reveal generally low overall achieve-

ment levels, with a trend for girls to outperform

boys. Clearly factors other than gender per se

contribute to these patterns; further research is

clearly needed.

Finally, Fennema’s (1995) prognostication of

the importance of combining neuroscientific

research with gender equity considerations has

begun but within the framework of broader equity

considerations including diversity and special

needs (see Forgasz and Rivera 2012). The research

has been conducted scientifically and not from

feminist perspectives, however. Yet, these intrigu-

ing interdisciplinary research findings with respect

to sex differences invite further exploration.
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Definition

Mathematical giftedness is an extremely

complex construct exhibited in mathematical

invention which is clearly exhibited in work

of professional mathematicians. Mathematical
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giftedness implies high mathematical abilities.

Nonetheless, often mathematical giftedness is per-

ceived as inborn personal characteristic, whereas

high abilities in mathematics are perceived as

a dynamic characteristic that can be developed.

The dynamic view of mathematical giftedness

assumes that it can be realized only if appropriate

opportunities are provided to a person with high

mathematical potential. Mathematical talent,

which is realized giftedness, is expressed in high-

level performance in mathematics that leads to

mathematical discoveries and, thus, is closely

connected with mathematical creativity.

There is no singular clear definition of

mathematical giftedness. Moreover, until recently,

the construct of mathematical giftedness was

overlooked in mathematics education research

for several decades. Thus, this entry synthesizes

accounts from two fields of educational psychol-

ogy: gifted education and mathematics education.

General Giftedness

In the field of gifted education, gifted students are

identified by qualified specialists by virtue of

outstanding abilities expressed in exceptional

performance. In the adult population, the criteria

for giftedness are restrictive, like in the case

of Nobel Prize laureates. General giftedness is

often measured by means of IQ tests, while

a number of theorists have developed broad,

multidimensional formulations of giftedness and

talent that are widely accepted (Gardner 2003;

Sternberg 2000). Gardner’s multiple intelligence

theory differentiates between not necessarily

connected dimensions including verbal-linguistic,

logical-mathematical, and visuospatial intelli-

gences. Sternberg claims that giftedness is

a function of analytical, practical, and creative abil-

ities accompanied with personal wisdom. Several

models postulated giftedness as being the result of

the complex interactions of cognitive, personal-

social, and sociocultural traits and environmental

conditions (e.g., Renzulli 2000; Milgram 1989).

In the field of gifted education, mathematical

giftedness is usually regarded as a special

type of specific giftedness which is opposed to

general giftedness. However, most models of

general giftedness can be applied to mathemati-

cal giftedness associated with mathematical

abilities and skills.

Mathematical Abilities and Skills

The precise acquisition of mathematical abilities

involves a broad range of different general cogni-

tive skills, including spatial perception, visuospatial

ability, visual perception, visuomotor perception,

attention, and memory. Together these skills enable

the acquisition, understanding, and performance of

various mathematical activities. Mathematical

activities deal with five main types of mathematical

objects: number and quantity, shape and space,

pattern and function, chance and data, and arrange-

ment, while successful mathematical performance

involves modeling and formulating, manipulating

and transforming, inferring and drawing conclu-

sions, argumentation, and communication.

During the past half century, only a small number

of systematic studies devoted to mathematical gift-

ednesswere performed.Krutetskii’s (1976) study on

highmathematical abilities in schoolchildren is sem-

inal to the field and remained unique for several

decades. It introduced components of high mathe-

matical ability in schoolchildren which included the

abilities to grasp formal structures; think logically in

spatial, numeric, and symbolic relationships; think

critically; generalize rapidly and broadly; and be

flexible with mental processes. According to

Krutetskii students with high mathematical abilities

are able to switch from direct to reverse trains of

thought and to memorize mathematical objects,

schemes, principles, and relationships. These stu-

dents appreciate clarity, simplicity, and rationality

and can be characterized by the general synthetic

component called mathematical cast of mind.

Mathematical Giftedness and Creativity

At times mathematical abilities are measured

using the nonverbal portions of psychometric

tests like SAT-M. The main criticism of these

tools is that they do not test creativity since
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creativity is fundamental to the work of

a professional mathematician, while the ability

to discover mathematical objectives and find

inherent relationships among them requires

mathematical creativity.

The connection between mathematical

giftedness and creativity leads to an eight-tiered

(from 0 to 7) hierarchy of mathematical gift

(Usiskin 2000) assuming that the abilities of

professional mathematicians are at levels 5, 6,

and 7. The most creative mathematicians that

discover new mathematical theorems and invent

new mathematical concepts are at the highest

(7th) by virtue of their creative ability. This

hierarchy implies that while mathematical

creativity implies mathematical giftedness, the

reverse is not necessarily true (Sriraman 2005).

The notion of mathematical giftedness and its

relationship to mathematical creativity is quite

clear with respect to research mathematicians;

however, it is rather vague with respect to high

school students. This duality reflects the

distinction between absolute and relative creativ-

ity (Leikin 2009, cf. Big C and Little c defined by

Csikszentmihalyi 1996). Absolute creativity is

associated with mathematical discoveries at

a global level. Relative creativity refers to

discoveries of a specific person within a specific

reference group.

When connecting between high mathematical

abilities and mathematical creativity, researchers

express a diversity of views. Some researchers

argue that creativity is a specific type of

giftedness; others feel that creativity is an

essential component of giftedness, while others

suggest that these are two independent human

characteristics. Thus, analysis of the relationships

between mathematical creativity and giftedness

is an important question for future research.

Mathematical Giftedness, Problem
Solving, and Insight

High-level problem-solving expertise (e.g., success

in solving Olympiad problems) often serves

as an indicator of mathematical giftedness in

schoolchildren. High achievements in school

mathematics usually reflect students’ problem-

solving proficiency on the topics that they have

studied in school; however, they are not an indicator

ofmathematical giftedness, since they do not reflect

students’ independent mathematical reasoning.

Mathematical invention, which is an integral

part of the activities of research mathematicians,

consists of four stages: initiation, incubation,

illumination, and verification (Hadamard 1945).

Special attention is given to illumination which

involves a large measure of intuitive thinking that

leads to mathematical insight. Insight exists when

a person acts adequately in a new situation, and as

such, insight is closely related to creative ability.

Thus, success in insight-based problem solving

can serve as an indication of mathematical

giftedness among school students.

Insight is viewed as a trait central to the

construct of general giftedness, in which gifted

children outperform their average-achieving

peers in problem solving because of their

increased tendency towards insight. Accordingly,

students with high ability in mathematics have

been found to understand an insight-based

problem immediately and to solve it quickly.

Development of Mathematical Ability

Better understanding of the nature of mathemat-

ical giftedness at the relative (e.g., school) level

can inform mathematics educators of the ways in

which school mathematics should be taught to

students who can become research mathemati-

cians. This understanding can lead to a special

instructional design and mathematical curricula

that can be suitable for these students including

the choice of mathematical problems for

MG students.

The construct of mathematical potential

accepts the dynamic perspective onmathematical

giftedness (Leikin 2009; Sheffield 1999).

The mathematical potential of a student includes

abilities (analytical and creative), affective

factors (including motivation), and personal

characteristics (including commitment). These

factors can be advanced and developed if

a student is provided with challenging learning
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opportunities that take into consideration his/her

ability, personality, and affect. These leaning

opportunities help a mathematically gifted stu-

dent to realize his/her mathematical potential

and become a talented mathematician. Some

insight on learning opportunities provided to

mathematically gifted students can be learned

from nearly five decades of experience of

Kolomgorov’s mathematical schools in Russia

(Vogeli 1997).

Research on Mathematical Giftedness

In the past, giftedness, creativity and high abilities

in mathematics did not receive sufficient research

attention in the fields of gifted education and

mathematics education. Fortunately, during the

last decade, attention to the nature and nurture

of mathematical giftedness and creativity has

increased (Leikin et al. 2009); as a result, the Inter-

national Group for Mathematical Creativity and

Giftedness was established (http://igmcg.org/).

Several directions can be traced in the research

conducted on mathematical giftedness.

The relationship between mathematical

creativity and mathematical giftedness is at the

focus of attention of several research groups

nowadays (Leikin and Pitta, accepted). Some

studies demonstrate that mathematical creativity

is a subcomponent of mathematical ability,

whereas others show that differences in creativity

in gifted students and in those who are not

identified as gifted are task dependent: the higher

the mathematical insight required for the prob-

lem’s solution, the stronger between-group dif-

ferences in the students’ mathematical creativity.

Study of professional mathematicians is a rich

source for understanding of the relationship

between mathematical creativity and mathemati-

cal giftedness. Starting from Hadamard (1945)

these studies demonstrate special qualities of

their reasoning in terms of the inventiveness

of their mathematical mind, as expressed in

illuminations, mathematical imagery, and inner

need for rigorous proof.

While differences between the research

findings can be related to the differences in

study populations and study methodologies, the

question of the relationship between creativity

and giftedness in mathematics remains open

for future systematic investigation. One of

the more challenging questions for research

in mathematics education is the relationship

between creativity and expertise, as expressed in

solving Olympiad problems.

Some studies have explored problem-solving

strategies used by mathematically advanced

students as compared to strategies employed by

those who are not identified as being advanced in

mathematics. These studies demonstrate that stu-

dents with higher abilities are more successful in

solving complex mathematical problems and that

their heuristics in solving mathematical problems

lead to this success. Still, the underlying

mechanisms for their success can be the focus

of mathematics educational researchers. Special

qualities of mathematical understanding of

mathematical concepts in mathematically gifted

students can be seen as an additional promising

and fascinating direction for future research.

Brain research is another direction in

educational research that has been gaining the

attention of mathematics education researchers. In

the field of general giftedness, several studies have

demonstrated neuro-efficiency effect (lower brain

electrophysiological activity associated with solv-

ing problems) in the gifted population. Following

advances in brain research, a research group at the

University of Haifa has revealed/demonstrated that

the nature of general giftedness differs from that of

excellence in mathematics (Waisman et al. 2012).

The group hypothesizes that excellence in school

mathematics is a necessary but not sufficient

condition for mathematical giftedness and that

generally gifted students who excel in schoolmath-

ematics have high potential to become talented

research mathematicians.

To conclude, research on mathematical

giftedness is a relatively new field in mathematics

education. This fascinating field calls on mathe-

maticians and mathematics educators to gain

a better understanding of the nature and structure

of high mathematical abilities, of the ways in

which future talented mathematicians can be

identified in school and in which ways they can
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and should be educated in order to fulfill their

mathematical potential and to further develop

mathematics as a scientific field.

Cross-References
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▶Critical Thinking in Mathematics Education

▶Logic in Mathematics Education

▶Mathematical Ability
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Definition

In this entry we examine Polya’s contribution to

the role of heuristics in problem solving, in

attempting to propose a model for enhancing

students’ problem-solving skills in mathematics

and its implications in the mathematics education.

Characteristics

Research studies in the area of problem solving,

a central issue inmathematics education during the

past four decades, have placed amajor focus on the

role of heuristics and its impact on students’

abilities in problem solving. The groundwork for

explorations in heuristics was established by the

Hungarian Jewish mathematician George Polya in

his famous book “How to Solve It” (1945) and was

given a much more extended treatment in his

Mathematical Discovery books (1962, 1965).

In “How to Solve It,” Polya (1945) initiated the

discussion on heuristics by tracing their study back

to Pappus, one of the commentators of Euclid, and

other great mathematicians and philosophers like

Descartes and Leibniz, who attempted to build

a system of heuristics. His book also included

advice for teaching students of mathematics and

a mini-encyclopedia of heuristic terms. The role of

heuristics and his 4-step model for problem

solving impacted enormously on the teaching of

problem solving in schools.

The term “Heuristic” comes from the Greek

word “Evriskein,” which means “Discover.”

According to the definition originally coined by

Polya in 1945, heuristics is the “study of means

and methods of problem solving” (Polya 1962,

p. x) and refers to experience-based techniques for

problem solving, learning, and discovery that

would enhance one’s ability to solve problems.

A heuristic is a generic rule that often helps in

solving a range of non-routine problems. Heuris-

tics, such as Think of a Similar Problem, Draw

a Diagram or a Picture, Working Backward, and

Guess and Check, can serve different purposes

such as helping the student to understand and rep-

resent the problem, simplify the problem, identify

similarities with other problems, and to identify

possible solutions. These heuristics, often used in

combinations, can be used to solve different types

of problems, though there is no guarantee that

applying these heuristics will be successful.

Heuristics are an important aspect of mathe-

matical problem solving, especially if we refer to

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
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them as the capabilities for mathematical reason-

ing that enable insightful problem solving.

Beyond those proposed by Polya, the appropriate

inclusion of more general heuristics like spatial

visualization, diagrammatic and symbolic repre-

sentations in complex novel problems, and the

recognition of mathematical structures in the

teaching and learning of problem solving might

result in enhanced student problem-solving

behavior (Goldin 2010).

Based on Polya’s contribution, extended and

more refined lists of heuristics have often been

proposed by researchers, and quite often they

have been included in official documents and

mathematics curricula around the world. Among

others, students should be exposed to and know

when to use the following heuristics: (a) Try it

out; take the role of other people and try to do

what they would do. Make use of objects and

other (electronic) media to represent the situation

or problem. (b) Use a diagram and/or a model of

the problem to create a diagrammatic description

of the problem and to visualize the problem data.

(c) Organize data in systematic lists and look for

patterns might help the solver to identify how

data is related to the problem question and to

perceive patterns in the data. (d) Work back-

wards; looking at the required end result and

working backwards can be especially useful in

problems involving a series of steps. (e) Use

before after concept; compare the situation

before and after the problem is solved. This com-

parison can shed light on the cause and lead to

a possible solution. (f) Use guess and check;

make an educated guess of the answer and

check its correctness. Use the outcome to

improve the next guess and look for patterns in

the guesses. (g) Make suppositions; studying

the problem data and make suppositions

(assumptions without proof) to form the basis

for further and better thinking will reduce the

number of possible solutions. (h) Restate the

problem to better understanding the problem

and identifying important factors of the prob-

lem. (i) Simplify the problem; try to make

a difficult problem simpler, by changing

complex numbers to simple or by reducing the

number of factors in the problem. The solution

to the simplified problem may help in solving

the original problem.

While theories of mathematics problem

solving have placed a focus on the role of teach-

ing heuristics for an enhanced problem-solving

performance, research from Begle (1979) to

Schoenfeld (1992) has a consistent outcome

that classroom teaching of problem-solving heu-

ristics does little to improve students’ problem-

solving abilities. There is, of course, a number of

constraints related to the teaching and learning

of heuristics. First, in a number of problem-

solving approaches, problem solving is taught

through textbook sections in which students

are presented with a strategy (e.g., finding

a pattern), then are given practice exercises

using the strategy, and finally they are tested

on the strategy. When the strategies are taught

in this way, they are no longer heuristics, in the

sense described by Polya.

A second constraint is related to the nature

of heuristics. Despite their long history and

although heuristics have descriptive power in

describing experts’ problem-solving behaviors,

there is little evidence that these heuristics could

also serve well as prescriptions to guide novices’

next steps during ongoing problem solving.

This problem lies, according to Begle (1979,

p. 145–146), in the fact that heuristics are “both

problem- and student-specific often enough to

suggest that finding one (or few) strategies

which should be taught to all (or most) students

are far too simplistic.” In line with Begle (1979),

Schoenfeld (1992) concluded that a better

“understanding” of heuristics is needed, since

most heuristics are really just names for large

categories of processes rather than being

well-defined processes in themselves. To over-

come this constrain, Sriraman and English (2010)

contended that “understanding” heuristics

means to knowing when, where, why, and how

to use heuristics and other tools, including

metacognitive, emotional (e.g., beliefs), and

social (e.g., group-mediated) tools.

A third constraint related to the appropriate

teaching of heuristics for enhanced problem-

solving skills is related to teachers’ skills. As

Burkhardt (1988) identified, the task of teaching
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heuristics is harder for teachers, because

(a) mathematically, teachers should provide con-

structive and formative feedback to students’

different approaches in solving problems; (b)

pedagogically, teachers should carefully plan

their interventions and feedback and assist

students using the least possible help; and (c)

personally, teachers should be equipped with

experience, confidence, and self-awareness, in

order to work well with problems without

knowing all the answers requires.

How to overcome the above constrains? In his

review on heuristics, Schoenfeld (1992) concluded

that better results could be obtained by (a) teaching

specific (rather than general) problem-solving heu-

ristics that better link to structurally similar prob-

lems, (b) teaching metacognitive strategies that

could help students in effectively deploying their

problem-solving heuristics, and (c) improving stu-

dents’ views of the nature of problem solving in

mathematics, by enhancing their productive

beliefs, while eliminating their counterproductive

beliefs. Further, as English and Sriraman (2010)

noted, next research steps in the area of heuristics

in problem solving need to develop operational

definitions that enable the mathematics education

community to answer more prescriptive, than

descriptive, questions like the following: “What

does it mean to “understand” problem-solving

heuristics and other tools?” “How, and in what

ways, do these understandings develop and how

can we foster this development?” “How can we

reliably observe, document, and measure such

development?”

The legacy of Polya’s contribution to heuris-

tics in problem solving is not restricted to a list of

strategies used by experts or novices when

solving problems, but rather implies for the sig-

nificance of problem solving in mathematics and

the necessity to find appropriate teaching and

self-regulated methods to enhance students’

problem-solving skills.
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▶ Problem Solving in Mathematics Education
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History and Epistemology for
Mathematics Education:
An Ever-Increasing Interest

In the last 30 years or so, integrating history of

mathematics (HM) in mathematics education

(ME) has emerged as a worldwide intensively

studied area of new pedagogical practices and

specific research activities. However, the interest

on the HM in the context of ME dates back to the

second half of the nineteenth century. Mathema-

ticians like F. Klein and A. De Morgan and

historians like P. Tannery and G. Loria showed

an active interest on the role of the HM in educa-

tion. Already at that time, history enters into

textbooks, e.g., in France in Rouché and

Comberousse (Barbin et al. 2008, ch. 2.2.).

At the beginning of the twentieth century, this

interest was revived as a consequence of the

discourse and the related debates on the founda-

tions of mathematics. Poincaré criticized

Hilbert’s axiomatic approach and declared that

the history of science should be the “principal

guide for the educator.” Later, history became

a resource for the various epistemological

approaches, like Bachelard’s historical episte-

mology (Bachelard 1938), Piaget’s genetic

epistemology (Piaget and Garcia 1989), and

Freudenthal’s phenomenological epistemology

(Freudenthal 1983), at the same time stimulating

the formulation of specific ideas and conclusions

on the learning process (Lakatos 1976; Brousseau

1997; Ernest 1994) (see ▶Learning Study in

Mathematics Education).

The interest on the history and epistemology

of mathematics became stronger and more

competitive in the 1960s and 1970s in response

to the “New Math” reform. Those supporting the

reform were strongly against “a historical con-

ception of education” (“à bas Euclide” declares

Dieudonné), whereas, for its critics, history

appeared like a “therapy against dogmatism,”

conceiving mathematics not only as a language

but also as a human activity.

Since 1968 ME has constituted a standard

subject in regularly organized international

meetings. In 1972 a working group on the

“History and Pedagogy of Mathematics” was

organized by Ph.S. Jones during the 2nd Interna-

tional Congress on Mathematics Education

(ICME 2), and in 1976 the International Study

Group on the relations between the History and

Pedagogy of Mathematics (known afterwards as

the HPM Group) was created as an international

study group affiliated to the International

Commission on Mathematical Instruction

(ICMI). For the history and the activities of this

group, which has been playing a leading role in

this area, see Fasanelli and Fauvel (2006).

In fact, the eight points which constituted the

original focus and aim of the HPM Group and to

some extent achieved so far, are still pertinent

today (see Fasanelli and Fauvel 2006) to promote

international contacts and exchange information

in this area, to promote and stimulate interdisci-

plinary investigation, to further a deeper

understanding of mathematics’ evolution, to

assist in improving instruction and curricula by

relating mathematics teaching and its history to

the development of mathematics, to produce

relevant material for the teachers’ benefit, to

facilitate access to this material and to historical

sources, and to promote awareness of the rele-

vance of the HM for mathematics teaching and its

significance for the development of cultures.

In the mid 1980s, the French network

of the IREMs (Instituts de Recherche sur

l’Enseignement des Mathématiques) began to

organize every 2 years a Summer University on

the History and Epistemology in Mathematics

Education. Since 1993, this was extended on

a European scale constituting the European

Summer University on the History and Episte-

mology in Mathematics Education (ESU), which

gradually has become a major international

activity in the spirit of the HPM Group (Barbin

et al. 2010). This spirit goes beyond the use of

history in teaching mathematics and conceives

mathematics as a living science with a long

history, a vivid present and an unforeseen future,

together with the conviction that this conception

of mathematics should be not only the core of its

teaching but also its image spread out to the

outside world.

The gradually increasing interest of mathema-

ticians, historians and mathematics teachers and
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educators in this area, has led to various research

activities and didactical experiments, which were

analyzed, and their results were disseminated in

the context of regularly organized local and

international meetings and were presented in

numerous publications in international journals,

collective volumes, and conference proceedings.

Some standard works in chronological order

(with detailed extensive bibliography therein)

are NCTM 1969/1989, Commission Inter-IREM

(1997), Swetz et al. (1995), Calinger (1996),

Fauvel and van Maanen (2000), Katz (2000),

Bekken and Mosvold (2003), Katz and

Michalowicz (2004), Barbin and Benard (2007),

Knoebel et al. (2007), Barbin et al. (2010), and

Katz and Tzanakis (2011).

There are three different – though interrelated –

types of contributions of didactical/educational

research and the associated experimental work

on the role of HM in ME in the last 30 years,

epistemological, cultural, and didactical.

Epistemological Contributions

Bachelard and Lakatos’ influence clearly appears

in the research conducted on the role of problems

and on constructing and rectifying concepts and

theories. This research should be placed both in

the context of pedagogical constructivism of the

1980s and 1990s, as well as, in the area of

“problem solving” (see ▶ Problem Solving in

Mathematics Education). Here, history plays

a crucial role, since it provides specific pertinent

examples of problems on the basis of which

concepts were invented and/or transformed (see,

e.g., Commission Inter-IREM 1997; Fauvel and

van Maanen 2000, section 7.4.7; Katz and

Michalowicz 2004).

More generally, history allows for a deeper

analysis of mathematical activities, thus motivat-

ing and stimulating research in relation to

“activity-based teaching,” promoted in the

1990s. A lot of research work in this context

consists of determining the issues at stake and

the practices adopted concerning mathematical

reasoning. They show that rigor and the evalua-

tion of mathematical proof have been subjected

to debate and controversy among mathemati-

cians. Actually, fundamental notions like rigor,

evidence, and proof have been different in differ-

ent historical periods; that is, (meta) ideas and

(meta) concepts that today are taken for granted

in their present form are actually the product of

a historical development; there is a historicity

inherent to them andmaybe it is more appropriate

to use plural number when referring to them

(Barbin and Benard 2007). This fact gave rise to

ideas about learning processes of school mathe-

matics. From this point of view, history has what

has been called a “replacement role” (“rôle vicar-

iant” in French) by offering to teachers the

possibility to approach and explore pieces of

mathematics, which are not included in the offi-

cial school curricula, and in this way to often

replace what is usual with something different

and/or unusual.

Since the 1990s, a lot of research has

been conducted on number systems, equations,

geometrical constructions, the role of technical

instruments in mathematics, the history of proof,

etc. (Calinger 1996). In addition, the historical

study of the range of applicability of concepts has

led to a critical analysis of school programs (e.g.,

on the history of probability and statistics; see

Barbin 2010; Katz and Tzanakis 2011, ch. 16).

More recently, many works propose to con-

nect history and semiotics in order to analyze the

role of script and figures in the evolution of math-

ematics, concerning both invention of concepts

and the mode of reasoning (see ▶Mathematical

Proof, Argumentation, and Reasoning). There are

several international meetings and publication in

this context (see, e.g., Hanna et al. 2010).

Cultural Contributions

In many works it is claimed that the main cultural

aspect of history is to provide a different image of

mathematics both to teachers and – more

importantly – to students, on which their more

positive relation with mathematical knowledge

can be founded. In fact, history allows placing

mathematics in the philosophical, artistic, liter-

ary, and social context of a certain period.
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Thus, teachers could link mathematics to

philosophy, or history; e.g., the history of the

concept of perspective, which is also interesting

for the teachers of plastic arts, stimulated many

works (e.g., Commission inter-IREM 1997).

Similarly, the relation between mathematics

and literature leads to cultural insights if seen in

a historical perspective. This could consist of the

intrusion of mathematics into a roman through

this roman’s human characters, but mathematics

could also inspire the subject or the structure of

a roman.

Other research activities have shown the way

HM leads to the history of science. In particular,

reading a text often requires placing it in relation

to the author’s scientific preoccupations, preju-

dices, and concerns. Sometimes, the solution of

a problem requires establishing passages or

developing analogies among different disci-

plines. It is interesting for ME to study the circu-

lation of problems, concepts, methods, or modes

of writing (scripts) between mathematics and

other sciences (e.g., see the work on vectors

Barbin 2010).

Research on the history of complex numbers

constitutes a privileged domain to unfold the dif-

ferent aspects of cultural or interdisciplinary

development (see ▶ Interdisciplinary approaches

in Mathematics Education). This case articulates

and connects mathematics to physics and philoso-

phy; additionally, it questionsmathematical inven-

tion and the link between reality and the status of

mathematical truth (Fauvel 1990; Barbin 2010).

In the last few years, the relation between

mathematics and other disciplines has been

subsumed in education by the concept of

modelization. On this issue, proposals have

been put forward that seem to be incompatible

with each other if one ignores the different

conventions adopted for this concept in its short

history. The conception of mathematics as an

“experimental science” – also used in education –

has given rise to historical reflections, e.g., on the

comparison between mathematical and physical

experiments.

This multifaceted aspect of the character of

mathematical notions and concepts revealed

through the work done on the HM supports the

idea for an interdisciplinary teaching that has

been promoted since 2000. The movement for

interdisciplinarity has been officially incorpo-

rated in curricula through pedagogical innova-

tions in secondary education, and in this context

the interest in the history of science has been

stimulated (Barbin et al. 2010).

There are two areas which have been recently

developed on the intersection among mathemat-

ics, culture, and societies: on the one hand, the

history of ME, which forms part of the HM in

general, has contributed to research in education

proper and has led to several international meet-

ings (see▶History ofMathematics Teaching and

Learning); on the other hand, the research on

ethnomathematics initiated by U. d’Ambrosio

makes appeal on history, given that the investi-

gated methods and practices can be traced back to

old ones that were transmitted to the present era

(see ▶Ethnomathematics).

History of Mathematics in the Classroom

There is a gradually increasing number of works

introducing a historical aspect in the mathematics

classroom (Fauvel 1990); as a consequence,

the activities and publications in the context

of the HPM Group have been enriched.

A comprehensive presentation is given by Fauvel

and van Maanen (2000); for subsequent develop-

ments, see Katz (2000), Katz and Michalowicz

(2004), Shell-Gellasch and Jardine (2005),

Knoebel et al. (2007), and Katz and Tzanakis

(2011). This does not mean that the research

conducted concerns a line of approach of teach-

ing history to students as an independent subject,

but rather, to orient the teacher towards enriching

his/her teaching by taking into account ideas

based on epistemology and history or directly

introducing historical elements. The aim of

“introducing a historical perspective in mathe-

matics teaching” is not to approach a subject in

the classroom or at home in a way completely

detached from conventional teaching. Rather, it

should be meant as the stimulation of historical or

epistemological reflections of the teacher in

connection with his/her teaching (Barbin 2010)
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to give important dates for a concept, to explain

its historical significance, to refer and/or read

original texts, to solve “historical problems,” etc.

Reading original texts allows for a “cultural

shock” by directly immersing mathematics into

history. Therefore, the majority of researches

insist on the necessity to read original texts, not

in relation to our present knowledge and under-

standing, but in the context where they were

written. It is this line of approach which becomes

a source of “epistemological astonishment” by

questioning knowledge and procedures that

“have been taken for granted” so far. Thus,

reading original texts has a strong virtue of

“reorientation” (“vertu dépaysante” in French).

A lot of works in the last 20 years present numer-

ous resources for reading original texts and the

variety of activities related to this reading. It

gives the opportunity to introduce methods that

may not be taught today and/or to compare

different methods of solution (e.g., Fauvel and

van Maanen 2000; Knoebel et al. 2007; several

chapters especially in Swetz et al. 1995; Barbin

et al. 2010; Katz and Tzanakis 2011).

The introduction of a historical dimension in

ME requires appropriate teacher training, how-

ever (Fauvel and van Maanen 2000, ch. 4). Since

the creation of the HPM Group, a large number of

studies have been devoted on the conditions of such

preservice and in-service training. To this end,

a large number of monographs and anthologies

addressed to students and teachers have appeared

in the last 30 years. A direct approach in this con-

text – though not the only one – is to give under-

graduate courses based on historical material (e.g.,

Katz and Tzanakis 2011; Knoebel et al. 2007).

The analysis of numerous teaching experi-

ments has led to specific pedagogical and

didactical questions. On one hand, such

experiments – like any other pedagogical innova-

tion – aim to have a value by themselves.

But, they are not easily reproducible since they

depend on the teacher’s culture and the resources

at his/her disposal. On the other hand, these

experiments should be evaluated/assessed in rela-

tion to their own objectives, which do not often

correspond to the conventional conceptions of

evaluation and assessment. These two issues

constitute the starting point of new ideas and

trends on developing further a historically

inspired and epistemologically driven approach

to teach specific pieces of mathematics and/or to

design mathematics curricula.

Cross-References

▶Ethnomathematics

▶History of Mathematics Teaching and Learning

▶ Interdisciplinary Approaches in Mathematics

Education

▶Learning Study in Mathematics Education

▶Mathematical Proof, Argumentation, and

Reasoning

▶ Problem Solving in Mathematics Education

References

Bachelard G (1938) La formation de l’esprit scientifique.
Vrin, Paris

Barbin E (ed) (2010) Des défis mathématiques d’Euclide à
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General Education and Professional
Training in Mathematics

The first known systematic teaching of mathemat-

ics started in the Third Millennium in states of

Mesopotamia, where scribal schools – edubba,

the houses of tablets – prepared the scribes

who had to work for the state administration and

were required to master writing and accounting

techniques. Similar processes are observed in

Ancient Egypt. Thus, for a long period, the goal

of teaching was professional training.

Mathematics became a subject of general

education for the first time in the city states of

Greece, when a new class of free citizens

governing their state emerged. This form of

general education practiced two distinct patterns:

(1) rhetoric and dialectic as qualifications for

political activity and (2) mathematics as

a certain complement. This two-sided general

education became later conceptualized as the

trivium and the quadrivium, together constituting

the septem artes liberales, which became

a characteristic of general education in Europe.

Professional training, as related to manual work,

turned to be practiced by the lower social

strata. In countries of Islamic civilization, insti-

tutionalized education was limited to basic

teaching of reading. Acquiring practical knowl-

edge or studying for a learned profession

depended on an individual’s decisions.

In European states, two parallel systems were

institutionalized yet in premodern times – general

education and vocational training provided in

private or corporate forms (guilds). Gradually

these were transformed into parallel forms of

classical secondary schools and socially lower-

ranking schools that provided training for

commercial and technical professions (their

curriculum assigned an important role to applied

mathematics). Largely by the end of the

nineteenth century, these schools rose in

social status and quality and began to rival the

classical schools. Internationally, the situation

was addressed in a variety of ways. One way

was to run parallel types of schools, differing in

the degree of teaching languages and sciences.

Another way was to integrate both parallel types
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into one “middle” school but organizing the

tracking of students according to their supposedly

better abilities or professional expectations.

With the enormous expansion of the

educational system from the 1960s in industrial-

ized countries because of social changes and

technological advances in the professions,

“Mathematics for All” became the goal for the

entire pre-college education. Likewise, from

the 1980s onward, “Mathematics for All” became

a popular conception in developing countries,

calling for equal access to quality teaching of

mathematics for everybody (Schubring 2012).

Mathematics in Primary Schooling

Primary schools were often the last to be institu-

tionalized within educational systems, and when

they began to be established in the seventeenth–

eighteenth centuries, mathematics was not their

major focus. Eventually, arithmetic became one

of the “three Rs” (along with reading and

writing), providing basic education for daily

use, which included rudimentary techniques of

calculating. The rule of three, with its various

applications in converting measures, indicated

the highest level of teaching for a long time.

Typically, primary school teachers for this

subject were poorly prepared.

The situation began to improve in the second

half of the eighteenth century, because of the

Enlightenment. Significantly, teacher education

first became a concern for state initiatives. The

term “normal school,” predominantly used in

many countries from the nineteenth century on,

first referred to such state-run teacher education

institutions in Austria, in Naples, and from 1795

in France. From the 1780s, teacher seminaries

were analogous institutions in various German

states. The ideas of the Swiss pedagogue

J. H. Pestalozzi (1746–1827) had an enormous

influence in Europe, from the early nineteenth

century onward; he called to transform dull drill

and rote learning into approaches for active

methods and to convert the practice of reckoning

into a deeper understanding of elementary

mathematics.

In the same vein, arithmetic had to be

complemented by basic notions of geometry.

The German pedagogue F. W. A. Fröbel

(1782–1852) developed didactic materials for

such geometry teaching. Yet, including geometry

into primary school teaching remained highly

controversial throughout the nineteenth century;

governments feared that pupils – and their

teachers – would be too highly educated. There-

fore, the initiatives of F. A. W. Diesterweg

(1790–1866) for including geometry into teacher

training at Prussian seminaries were interrupted.

This strict confinement was due to the social

status of primary schools: nearly everywhere,

they constituted a separate school system for the

lower social classes, with schools, curriculum,

and teacher education all a world apart from

secondary schools. Yet, it was in institutions for

teacher training that pedagogical and methodo-

logical approaches for teaching (elementary)

mathematics first began to be developed.

Only during the twentieth century did primary

schools become the first step in a consecutive

system, which all students had to pass to continue

on in secondary schooling. In this process, the

syllabus was reformed, and basic arithmetic was

replaced by fundamental concepts of school

mathematics. In large measure owing to the

NewMath and Modern Mathematics Movements

in the 1960s, the primary school syllabus became

an integral part of the entire school mathematics

coursework.

Mathematics in Secondary Schooling

Secondary schools differentiated from the uni-

versities by the first half of the sixteenth century

and thus shared with them the same social and

professional orientations: to prepare upper social

strata for university studies and hence for learned

professions. As a consequence, classical lan-

guages dominated the secondary schools – of

both the Catholic and Protestant educational sys-

tems inWestern Europe – that were rivalling each

other. In the Jesuit colleges, mathematics was

reduced – according to their general curriculum,

the Ratio Studiorum of 1599 – to brief teaching in
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the last grade (the philosophy grade); the

Protestant gymnasia at first taught mathematics

as arithmetic in the lower grades and slowly

introduced geometry in the upper grades. Since

school attendance was not compulsory, the

parents were left to decide when their sons

would enter the Gymnasium (or college) and

which preparation they would get before enter-

ing. Sources for France, for example, show that

most students left the colleges before the philos-

ophy grade, thus without having experienced any

teaching of mathematics.

During the eighteenth century, various

developments led to establishing more teachings

of mathematics, generally in somewhat rivalling

and parallel types of schools, like the Realschulen

for the middle classes and the Ritterakademien

for the nobility in various German states, or

in colleges as in several Catholic states (by

attaching engineer training to existing colleges).

As a consequence, mathematics achieved

a stronger status in the Gymnasia. Some non-

Jesuit orders such as the Oratoire in France also

taught more mathematics. The next critical step

came mid-eighteenth century with the foundation

in France of military schools to prepare

engineers; there – based on concepts of the

Enlightenment – mathematics became the

principal teaching subject.

One of the impacts of the French Revolution

was the establishment of the first system of public

education. Latin and mathematics became the two

pillars of general education in French secondary

schools. Other countries followed this pattern. In

particular, Prussia offered three components of

neo-humanist general education: classical lan-

guages, history and geography, and mathematics

and the sciences. Yet, this strong role of mathemat-

ics was not permanently assured: during the nine-

teenth century, France almost returned to the Jesuit

model, while in Germany, only Prussia continued

with mathematics as a major teaching subject, and

the classical languages dominated other German

states (Schubring 1991). Italy, after its unification

in 1861, basically assigned mathematics a

secondary role.

Characteristic of the various functions that

mathematics can assume in a school curriculum

was the threefold type of secondary schooling in

Germany: the humanistisches Gymnasium, with

Greek and Latin; the Realgymnasium, with only

Latin; and the Oberrealschule, with no classical

language but modern languages. Mathematics

was a major subject in all three types but had

their different profiles.

In the second half of the twentieth century,

the lower and middle grades of the secondary

schools typically provided a common curriculum

in mathematics for all students. The upper

grades, however, often differentiated according

to curricular profiles (there, mathematics could

be optional or a certain course of mathematics

was obligatory).

Curriculum

It is often believed that the mathematics curricu-

lum has essentially been the same in all countries

over the centuries. This belief is based on the

similarity of some superficially descriptive

terms, like algebra and geometry. In reality,

history shows enormous differences in the curric-

ulum among countries, particularly because of

diverse epistemological conceptions of school

mathematics and methodological approaches to

the subject.

From the beginning of a somewhat broadly

organized teaching in premodern times, there

was already a clear difference between

a Euclidean approach to geometry and an

anti-Euclidean one, first propagated by Petrus

Ramus (1515–1572); later, influenced by him,

algebraizing approaches appeared and, even

later, during the French Revolution, the analytic

ones. The opposition between geometric and

algebraic-analytic approaches characterizes the

spectrum of school mathematics curricula at the

secondary level.

Since secondary schools used to be dominated

by classical languages, at least until the end of the

nineteenth century, mathematics followed this

pattern and likewise emphasized classical

geometry – in some countries (England, Italy)

even by directly using Euclid’s Elements. The

analytic approach was in general short lived,
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appearing only at the beginning of the nineteenth

century.

Overcoming a static curriculum, which uti-

lized the synthetic methodology of geometry

and was unconnected to scientific progress,

became the motto of the reform movement, first

in Germany and France, and then, directed by

Felix Klein and the IMUK (ICMI), of the first

international reform movement in the early twen-

tieth century. The reformers wanted functional

thinking to permeate the entire curriculum.

The introduction of the function concept and the

elements of calculus became the characteristics

of this reform movement.

From then on, school mathematics tried to

keep up a better pace with the progress of math-

ematics. The main goal of the second interna-

tional reform movement, from 1959, which

was known as the New Math or the Modern

Mathematics Movement, was to align school

and modern mathematics even more tightly,

constructing the curriculum on the basic struc-

tures of mathematics. Although later many ideas

of this movement were rejected, school mathe-

matics finally became structured, from the

primary grades, according to fundamental con-

cepts of mathematics in arithmetic, algebra,

geometry, calculus, and, as a recent innovation,

probability theory and statistics.

Textbooks for Mathematics

Throughout the millennia, textbooks constituted

the main resource for the teaching of mathemat-

ics. In the epochs before the invention of the

printing press, the uniqueness of the manuscript,

not being reproducible, led to teaching practice

consisting of its oral reading to the students. In

fact, a genuine qualification for teaching was not

even desired: knowledge was regarded as

“classic” and canonical; its static character was

enhanced by the few existing educational institu-

tions. Striving for new knowledge was even

considered suspect, and original productivity

appeared primarily in the form of commentaries

on canonical textbooks. Moreover, the overall

culture of orality enforced the leading role of

the textbook and compelled teachers to function

as the “organ” of the textbook.

In fact, for extended periods, only two text-

books were broadly used for teaching: Euclid’s

Elements of Geometry (about �300) in Europe

and parts of the Islamic civilization and the Jiu

Zhang Suan Shu, the Nine Chapters of Arithmetic

Technique (about �200) in China and East Asia.

Although both were likely not been composed as

textbooks for teaching, they were used as such.

Euclid’s text or an uncountable number of diverse

adaptations of it constituted the standard material

for secondary schools in many European coun-

tries, particularly in Catholic colleges where at

least its Book I was required.

The printing press stimulated the publication

of an enormous number of arithmetic textbooks

for practitioners in the vernacular as well as

new textbooks for the university and secondary

school level. Noteworthy were textbooks

algebraizing mathematics, such as Antoine

Arnauld’s Nouveaux Élémens de géométrie

(1667) and subsequent works by members of the

Oratoire in France (Prestet, Reynaud, Lamy).

Another trend was textbooks for a mundane

public (Clairaut 1741 and 1746).

The establishment of systems of public

instruction created new dimensions (Schubring

2003). Following its centralistic policy, France

first assigned only one and then later a very lim-

ited number of textbooks for the entire country.

Few authors, like S. -F. Lacroix, became entre-

preneurs, dominating the schoolbook market.

Other countries, like neo-humanist Prussia,

emphasized the autonomy of the teacher with

regard to method and let him choose his textbook.

Textbook writing was provided according to the

respective values of education either mostly by

university mathematicians (France, Italy, and

in some periods Russia) or mostly by school

teachers (Germany). In a few cases, some text-

books, like Legendre’s book on geometry,

continued to be used internationally. Predomi-

nantly, however, textbooks were now published

exclusively for use in their respective countries.

The former type of single book for a teacher and

his students gave way to more differentiated sets

including schoolbooks for students, methodical
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guides for teachers, collection of problems and

exercises, and booklet with solutions.

Mathematics Learning for Girls

Even when primary education was available for

girls, they were for a long time excluded from

attending public secondary schools. The feminist

movement in the second half of the nineteenth

century was instrumental in establishing eventu-

ally separate schools for girls. The history of such

schools in various countries has been poorly stud-

ied. These first schools offered fewer career

opportunities for girls than for boys; in particular,

mathematics only played a minor role, given the

persistently strong prejudices negating women’s

ability to understand mathematics. At best, they

were attributed intuition instead of abstract

thinking. The curriculum for these schools thus

focused on intuitively accessible geometric

concepts. Secondary schools created for girls in

Italy in 1923 featured “drawing” as the only

subject with some remote mathematical kinship.

In Nazi Germany, the curriculum for girls

became reduced even further, focusing only on

those geometric forms which might be of use in

the household.

By the social reforms of the 1960s and the

expansion of the secondary schools, the girls’

schools merged with the boys’ schools almost

everywhere, and both girls and boys were

taught the same curriculum. No longer did

the curriculum maintain a female inferiority in

mathematical thinking.

Teachers of Mathematics

The professionalization and special training of

mathematics teachers are recent developments.

For a long time, teachers used to be self-taught

persons, practitioners, or generalists. The first

time teacher training became institutionalized in

primary schools (see Section “Mathematics in

Primary Schooling”). For Catholic secondary

schools, the various religious orders practiced

rudimentary forms of training for their novices;

for Protestant schools, largely the graduates of

the Theology Faculty came teaching to the

schools when they could not find a parish (then

they taught mainly classical languages). For

teaching arithmetic, Gymnasia used to hire

a practitioner. The first specialized teachers of

mathematics at the Gymnasia are known in the

early eighteenth century only (in the kingdom of

Saxony).

France did not establish teacher education

even after the Revolution and left it to the

individual’s preparation for a concours. Later

on, the École normale supérieure prepared

candidates for this concours, the agrégation. It

was Prussia that reformed its Philosophy Faculty

from 1810 by charging it with the scientific

formation of teachers, particularly in mathe-

matics. From the 1820s, this education was

complemented by a subsequent probationary

year for training in the teaching practice

(Schubring 1991). While various profiles of scien-

tific formation emerged for future mathematics

teachers in different countries, the basic problem

remained: How would qualification in mathematics

be complemented by qualification in teaching prac-

tice? A good overview of the situation during the

first half of the twentieth century is provided by the

international reports of the IMUK/CIEMat the 1932

Congress of Mathematicians (see L’Enseignement

Mathématique vol. 32, 1933, 5–22).

Only during the 1970s did a broader concept

of professional qualifications become established

in numerous countries, now including pedagogi-

cal qualifications and studies in mathematics edu-

cation in the university, followed by probationary

training in schools. In some countries, the educa-

tion of teachers for the primary grades was ele-

vated to university level; yet, it remained largely

unspecialized for mathematics and included

preparation for teaching various subjects.

Mathematics in the Global World

Mathematics has been created and developed

around the world, and each culture made its

own distinctive contribution to its development

(D’Ambrosio 2006). The modern system of
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mathematics education, however, for all the

variety that it exhibits across different countries,

owes a great deal to structures and conceptions

that emerged during the first half of the sixteenth

century in Western Europe due to specific

economic, social, and cultural developments and

were decisively shaped later, during the time of

the Enlightenment. The manner in which West-

ern Europe’s influence spread and took root

around the world varied from country to country.

In Japan, the Meiji Restoration (officially

announced in 1868) led to Westernization and

ushered in the broad use of foreign textbooks and

the recruitment of foreign teachers (Ueno 2012).

In China, as has been noted, the development of

mathematics and of the teaching of mathematics

has a history that is many centuries long, and at

certain stages China was far ahead of the countries

of Europe. By the nineteenth century, however,

China was clearly and appreciably falling behind

in science and technology, which led to its defeat

in a number of wars. The response to these defeats

was modernization, which may be to a certain

extent equated with Westernization: new educa-

tional institutions began to appear and new pro-

grams and methods of teaching, borrowed from

the West, began to be used (Chan and Siu 2012).

The Ottoman Empire’s system of mathematics

education developed in a largely similar way.

While in the countries that made up this empire

interest in astronomy and mathematics, and

consequently in an education in these subjects

based on Arab sources, was noted by travelers

as early as the eighteenth century, a crucial step

was taken with the establishment of national mil-

itary schools, in which the teaching of mathemat-

ics was conducted in accordance with European

models (Abdeljaouad 2012).

Another pattern is exemplified, for example,

by Tunisia, which at one time belonged to

the Ottoman Empire – European-type schools

were later set up here by French colonial author-

ities (Abdeljaouad 2014). Such a pattern was also

characteristic of many other countries in Africa,

Asia, andLatinAmerica: European colonial author-

ities established schools for European settlers, as

well as for a narrow segment of local elites, thereby

nonetheless introducing into these countries more

modern mathematics education practices – making

use of European textbooks, exams, methods of

teaching, and either European teachers or at least

teachers who had been trained in Europe.

Note that the process of borrowing from

other countries was not always unproblematic.

Researchers have pointed out that, for example,

“without the brutal intrusion of Western

powers, development of the Chinese culture in the

political, social and scientific arenas may have

achieved a totally different but harmonious exis-

tence” (Chan and Siu 2012, p. 471). Even inRussia,

where active employment of Western European

teaching materials and teachers began as early as

the first half of the eighteenth century, foreign

influences in education were not infrequently later

perceived as hostile (Karp 2006). Mathematics

education was often part of political discussions.

The complicated process in which national

systems of mathematics education were formed

in developing countries is part of more recent

history. Only very gradually did a national work

force of teachers and centers for their prepara-

tions began to appear in these countries, along

with textbooks and teaching materials. The colo-

nial powers left these countries largely illiterate

and mathematically illiterate. The development

and often even the establishment of an education

system based on practices available in the world

and aimed not at an elite, but at all students, was

and in many instances remains a crucial problem.

Such international organizations as UNESCO, as

well as separate countries, including countries

belonging to hostile political blocs, have

provided assistance with the development of

education, including mathematics education. In

the process, distinctive local features were quite

frequently ignored (Karp 2013). Meanwhile, the

preservation of indigenous and culturally specific

features is particularly important in the context of

increasing tendencies toward globalization.

Research into History of Mathematics
Education as a Field

The history of mathematics education as

a scholarly field is still in the process of
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formation. To be sure, many significant

studies were conducted as early as the nineteenth

or early twentieth centuries (see International

Bibliography); for example, the first doctoral dis-

sertations in mathematics education in the United

States completed in 1906 under the supervision of

David Eugene Smith were devoted precisely to

the history of mathematics education.

In recent decades, the development of

mathematics education as a scientific discipline

(Kilpatrick 1992) has led to a growing interest in

its history. This is attested to by the creation of

special ICME Topic Study Groups, the appear-

ance of a special journal devoted to the history of

mathematics education, the organization of spe-

cial scientific conferences, etc. (Furringhetti

2009). All such activity facilitates the formation

of shared standards of research and methodology.

The history of mathematics education, like

any historical discipline, is based first and fore-

most on the analysis of primary sources. It is

important, however, to conceive of these sources

in a sufficiently broad manner, not limiting

research to “administrative history” (Schubring

1988) – that is, the history of decrees concerning

education or even standards and curricula.

Objects and sources of study include textbooks,

students’ notebooks, exam questions and

answers, complaints and their analysis, biograph-

ical documents, diaries, letters, memoirs, journal-

istic, and even imaginative writing.

Perhaps even more important is not stopping

at a purely descriptive approach: that is, to seek

not only to establish the events that have taken

place but also to understand their position in

the context of other events and social historical

processes. The very choice of what to teach or

offer on exams is evidently determined not only

by strictly mathematical but also by social

considerations, whose meaning and content

must be elucidated (Karp 2011). The role and

place of the mathematics teacher and of the

subject of mathematics itself; the interaction

between higher and secondary education; the

mutual influences among various cultures in

teaching; the causes of, attempts at, and outcomes

of reforms – these and other areas of research are

today the most worthy of study.

Special mention should be made of the impor-

tance of research in the history of mathematics

education in developing countries. Usually little

is known about education in these countries

during the pre-colonial period, yet mathematics

was in one way or another a part of culture

everywhere. Nor have interactions between

local cultures and various European cultures

been sufficiently studied, even though education

in the colonies of different European countries

was by nomeans identical. Nor was the formation

of mathematics education during the postcolonial

period in these countries everywhere alike.

Research in these directions must continue.
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Matemática. Notas de Aula. Editora Autores

Associados, Campinas

Schubring G (2012) From the few to the many: historical

perspectives on who should learn mathematics. In:

“Dig where you stand.” 2. Proceedings of the second

international conference on the history of mathematics

education. UIED, Lisbon, pp 443–462

Ueno K (2012) Mathematics teaching before and after the

Meiji Restoration. ZDM Int J Math Educ 44:473–481

History of Research in Mathematics
Education

Jeremy Kilpatrick

University of Georgia, Athens, GA, USA

Keywords

Research; Mathematics education; History;

Academic field; Psychology; Mathematics

Definition

An account of activities and events concerned with

the development of disciplined inquiry inmathemat-

ics education as a flourishing academic enterprise.

Main Text

Although mathematics has been taught and

learned for millennia, not until the past century

or so have the nature and quality of teaching and

learning mathematics been studied in any

a serious manner. Clay tablets from ancient

Babylonia (c 1900 BC to c 1600 BC), for

example, show that students in the scribal school

were expected to solve problems involving

quadratic polynomials (Høyrup 1994, pp. 4–9),

but no available evidence indicates how much

drill and practice either they received or their

instructors thought they needed. As of 1115 BC,

applicants to the Chinese civil service had to pass

an examination in arithmetic (Kilpatrick 1993,

p. 22), but as far as anyone knows, no one

ever investigated how well their examination

performance predicted their job performance. In

Plato’s Meno, he relates how, in the fifth century

BC, Socrates helped a slave boy discover that

doubling the side of a square apparently squares

its area. Plato does not, however, say how well

the boy fared with similar geometry problems

once his teacher was no longer around.

Mathematics education is a long-established

field of practice; research in mathematics educa-

tion, a relatively recent enterprise.

Over the centuries, teachers of mathematics in

various countries have offered reflective accounts

of their work, often writing textbooks constructed

around teaching techniques they developed

out of their own experience. Only during the

nineteenth century, however, as national educa-

tional systems were established and the training

of teachers moved into colleges and universities,

did people begin to identify themselves as math-

ematics educators and begin to conduct research

as part of their scholarly identity (Kilpatrick

1992, 2008). Not until 1906 were the first

doctorates in mathematics education granted –

to Lambert L. Jackson and Alva W. Stamper,

students of David Eugene Smith at Teachers

College, Columbia University (Donoghue

2001). Within the next few decades, research

in mathematics education gradually began to

be conducted in several countries as lectures

in mathematics education were offered and
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graduate programs in mathematics education

became established in universities.

Mathematics Education
as an Academic Field

The education of teachers, which had often been

a hit-or-miss affair, did not become a field of

professional studies until the nineteenth century.

Although teacher-training schools had begun in

France and Prussia late in the seventeenth century,

only in the eighteenth century were normal

schools – very much influenced by the ideas of

the Swiss pedagogue and reformer Johann

H. Pestalozzi – established in European countries

(Cubberley 1919). In 1829, the American

geographer William C. Woodbridge, who in the

previous 4 years in Europe had observed schools in

Prussia and Switzerland and had visited Pestalozzi,

tried unsuccessfully to establish in Hartford, Con-

necticut, a teachers seminary modeled after the

Prussian version. In 1831, he observed: “In those

of the countries of Europe where education has

taken its rank as a science, it is almost as singular

to question the importance of a preparatory semi-

nary for teachers, as of a medical school for phy-

sicians” (quoted by Cubberley 1919, p. 374).

Education in general had slowly been entering

the university since the eighteenth century, begin-

ning with a chair of education established at the

University of Halle in 1779, but not until the late

nineteenth and early twentieth centuries were such

chairs established elsewhere, and only then did

school mathematics start to become an object of

scholarly study (Kilpatrick 2008).

Many of the early researchers in mathematics

education were mathematicians who had become

interested in howmathematics is done. For exam-

ple, the editors of L’Enseignement Mathé

matique, Henri Fehr and Charles-Ange Laisant,

sent a questionnaire to over 100 mathematicians

to learn how they did mathematics. The report

of their survey, which was published in 11

installments in the journal from 1905 to 1908,

was essentially a list of verbatim responses to

their questions. In contrast, the French mathema-

tician Jacques Hadamard later undertook

a similar but less formal inquiry into the working

habits of mathematicians in America that

went somewhat deeper into the methods and

images they used (Kilpatrick 1992). Other

early researchers were psychologists who were

developing an interest in how children think

about and learn mathematical ideas. Beginning

in 1875, with Wilhelm Wundt’s establishment of

a laboratory in Leipzig and William James’s

establishment of one at Harvard, dozens of

psychological laboratories were established in

Europe, Asia, and North America (Kilpatrick

1992). Psychologists such as Alfred Binet,

his colleague Jean Piaget, Max Wertheimer,

Otto Selz, and Lev Vygotsky investigated

mental ability and productive thinking using

mathematical tasks. Psychology was becoming

the so-called master science of the school:

“Psychology . . . became the guiding science of

the school, and imparting to would-be teachers

the methodology of instruction, in the different

school subjects, the great work of the normal

school” (Cubberley 1919, p. 400). Together,

mathematicians and psychologists began the

efforts that would lead to research in mathematics

education.

Comparative Studies of School
Mathematics

In 1908, the International Commission on the

Teaching of Mathematics (ICTM) was formed

at the Fourth International Congress of

Mathematicians in Rome. Its purpose was “to

report on the state of mathematics teaching at

all levels of schooling around the world”

(Kilpatrick 1992, p. 6). In 1912, at the Fifth

International Congress in Cambridge, England,

some 17 countries presented reports, and by

1920, the countries active in the ICTM had

produced almost 300 reports (Schubring 1988;

Furinghetti 2008). The international comparisons

based on these reports, however, were essentially

restricted to descriptions by a handful of

mathematicians or educators in each country of

activities that they were aware of. They did not

engage in large-scale, systematic surveys of the
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school mathematics curriculum, nor did they

visit classrooms to record instructional practices.

Nonetheless, they had begun the process of

looking across countries to get a better perspec-

tive on mathematics education around the world.

In the last half century, researchers have

undertaken a variety of international comparative

assessments of students’ mathematical knowl-

edge and of teachers’ knowledge of pedagogy

and mathematics. They have also compared

mathematics teaching across countries using

video records of lessons. (For an analysis of the

levels at which these comparisons have been

made, see Artigue and Winsløw 2010). Consid-

erable progress has been made in both the

thoroughness with which such comparative

studies have been done and the sophistication of

the data collection and analyses. Although these

studies can be criticized for being too oriented

toward Western practice and inadequately sensi-

tive to Asia-Pacific cultures (Clements and

Ellerton 1996), they have had, in many countries,

considerable influence on curriculum, teaching,

and educational policy. For an account of the

development of international collaboration in

mathematics education during the past century,

see Karp (2013).

Becoming Scientific

In trying tomake their field scientific, educational

psychologists looked to the natural sciences for

models, and in much the same way, some

mathematics educators seeking to establish their

field as a science took those sciences as models.

They studied mathematics learning under con-

trolled laboratory conditions, testing hypotheses

about the effects of various “treatments,” and

making careful measurements of the learning

achieved. Influential examples were studies

by the psychologist Edward L. Thorndike in

the early years of the twentieth century. Using

a control group whose performance was

compared with that of an experimental group

(with students assigned randomly to one of the

two groups), Thorndike demonstrated that prac-

tice by the experimental group in performing

certain tasks such as judging the size of rectan-

gles did not improve their performance in – that

is, did not transfer to – judging the size of

triangles (Kilpatrick 1992). Thorndike’s research

studies dealt a major blow to arguments that

mathematics ought to be taught and learned

because the logical thinking it promoted trans-

ferred to other realms. He argued that his research

showed that transfer was much more limited than

mathematics teachers appeared to assume.

Thorndike not only published important books

on the psychology of arithmetic and the

psychology of algebra in which he promoted the

psychology he termed connectionism; he also

published a series of arithmetic textbooks that

was widely used in schools. Connectionism

became the forerunner of the behaviorism that

came to dominatemuch of research inmathematics

education in the United States from the 1930s

through the 1950s (Clements and Ellerton 1996).

Although other psychologists, such as Charles

H. Judd, Guy T. Buswell, and William A.

Brownell, performed research studies that called

Thorndike’s work into question, thereby develop-

ing a psychology of the school subjects that

mathematics educators found more congenial

(Kilpatrick 1992), connectionism and its successor

behaviorism exerted a much stronger influence on

research methodology in mathematics education

for many years and not just in the United States.

Elsewhere in the first decade of the twentieth

century, some psychologists were looking at errors

and difficulties that children were having in

arithmetic. Paul Ranschburg in Budapest,

in particular, began the study of differences in

calculation performance between normal children

and low achievers in arithmetic. In 1916, he coined

the term Rechenschw€ache (dyscalculia) for severe

inability to perform simple arithmetic calculations

(Schubring 2012). Like Thorndike, Ranschburg

attributed children’s successful performance to

their possession of Vorstellungsketten (chains of

association), but his research method relied more

on observation of differences between existing

groups (normal and low achieving) than on

experimentation.

Psychologists gradually stopped being so

concerned about emulating the natural sciences
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and began to develop their own techniques for

studying learning, and researchers in mathemat-

ics education followed. For example, in the

movement known as “child study” (Kilpatrick

1992), which had appeared in Germany and the

United States at the end of the nineteenth century,

researchers looked at the development of

concepts in young children using techniques of

observation and interview. Although mathemat-

ics was not often the focus of child study

research, it did give rise to a number of descrip-

tive, naturalistic studies. Less than a century later,

research on the learning of mathematics had

burgeoned. A survey in the 1970s, for example,

located some 3,000 published studies of

mathematics learning (Bauersfeld 1979).

Studying the Teaching of Mathematics

As mathematics educators began to study

children’s mathematics learning and thinking,

they increasingly recognized that laboratory

studies present a restricted view of those

processes; however, they are conceived. Children

do most of their learning of mathematics in

school classrooms along with other children,

and their thinking about mathematical concepts

and problems is much influenced by others,

including their teacher. The psychologist Ernst

Meumann, who had studied with Wundt in Leip-

zig, was one of the first to address what he called

“experimental pedagogy” and in 1914 published

a volume in which he looked at the didactics of

teaching specific school subjects (Schubring

2012). Meumann was the forerunner of

researchers who were later in the century to

establish a critically important field of research,

especially in Germany and France: the didactics

of mathematics (Artigue and Perrin-Glorian

1991; Biehler et al. 1993). Although the didactics

of mathematics began with a psychological

orientation, it came under the influence of

other fields – anthropology and philosophy, in

particular – as it was increasingly located in

university departments of mathematics and

began to become established as one of the

mathematical sciences.

Didactics of mathematics, however, was not

the only research effort to address mathematics

teaching. In a number of studies conducted in the

first half of the twentieth century, components

of teaching or characteristics of teachers were

linked to learners’ performance in efforts to

understand what might constitute effective

teaching. Researchers eventually moved from

such simple “process-product” models to more

sophisticated efforts that attempted to capture

more of the complexity of the teaching-learning

process, including the knowledge and beliefs

of the participants as well as their activities

during instruction. For an account of the

gradual elaboration of research models for study-

ing mathematics teaching, see Koehler and

Grouws (1992).

In later developments, researchers attempted

to go deeper into questions of what constitutes

classroom practice in mathematics and how that

is experienced by teachers and learners. In

particular, they studied how discourse is struc-

tured in mathematics classes, how norms are

established in classrooms for learning and doing

mathematics, and how teachers and learners build

relationships based on getting to know each other

(Franke et al. 2007). Research on teaching and

teachers has become a major strand of current

research in mathematics education, and those

studies now extend from preschool to tertiary

instruction.

An especially fertile development of recent

decades has been the growth of research on

technology and digital environments for

mathematics teaching and learning. Physical

tools have been used for centuries to assist the

teaching and learning of mathematics, and an

examination of how those tools have been used

can help put into perspective the use of comput-

ing technology today (Roberts et al. 2013).

In an early review of how electronic technologies

had been studied in mathematics education

research, Kaput and Thompson (1994) lamented

the paucity of technology-related research publi-

cations. That situation has changed dramatically

since that review, as numerous recent books (e.g.,

Guin et al. 2005; Hoyles and Lagrange 2010)

and journals (e.g., International Journal for
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Technology in Mathematics Education; Journal

of Computers in Mathematics and Science

Teaching) attest.

A Flourishing Academic Enterprise

The last half century has witnessed a growing

flood of research activity in mathematics

education that has been an integral part of its

growth and development:

Today an astonishing profusion of books,
handbooks, proceedings, articles, research reports,
newsletters, journals, meetings, and organizations is
devoted to mathematics education in all its aspects.
A search of the scholarly literature on the Web for
the phrase mathematics education yields 125,000
hits; a search of the entire Web yields almost 9
times that number. (Kilpatrick 2008, p. 38).

One measure of the maturation of the field of

mathematics education is that researchers have

begun to study its history. A major milestone was

the founding in 2006 of the International Journal

for the History of Mathematics Education.

The history of the field had been discussed at

various international conferences beginning in

2004, and a series of biennial conferences

devoted to the topic began in Iceland in 2009.

As the field of mathematics education has

grown, research in the field has grown even

faster. The subject matter of research studies has

broadened to include such topics as the school

mathematics curriculum, assessment in mathe-

matics, the education of mathematics teachers

and their professional development, the sociopo-

litical context of learning and teaching mathe-

matics, teaching mathematics to students in

special education programs, and the politics of

mathematics education. The methods used to

conduct research now go well beyond experimen-

tation to include case studies of teachers and

students, surveys of attitudes and beliefs, and

ethnographies of cultural practices.

Organizations of researchers have been formed

that range from those of international scope, such

as the International Group for the Psychology of

Mathematics Education (IGPME, or PME), to

organizations within one or several countries,

such as the Canadian Mathematics Education

Study Group (CMESG), the French Association

pour la Recherche en Didactique des Mathé

matiques (ARDM), and the Mathematics Educa-

tion Research Group of Australasia (MERGA).

For a comprehensive survey of international

or multinational organizations in mathematics

education, see Hodgson et al. (2013). Many of

these organizations hold regular conferences on

research and publish research journals. Main-

stream journals that have been publishing research

for more than four decades, such as Educational

Studies in Mathematics and the Journal for

Research in Mathematics Education, have lately

been joined by more specialized research journals

such as the Journal of Mathematics and Culture,

started in 2006, and the Journal of Urban Mathe-

matics Education, started in 2008. For an account

of the growth of journals and research conferences

in mathematics education, see Furinghetti et al.

(2013). The sheer volume of research activity

being reported in these journals and at these

conferences is staggering. A comprehensive

portrayal of research activity in mathematics

education today is no longer possible; the terrain

is simply too extensive and diverse to be

captured in toto.
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Definition

Hypothetical learning trajectory is a theoretical

model for the design of mathematics instruction.
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It consists of three components, a learning goal,

a set of learning tasks, and a hypothesized

learning process. The construct can be

applied to instructional units of various lengths

(e.g., one lesson, a series of lessons, the learning

of a concept over an extended period of time).

Explanation of the Construct

Simon (1995) postulated the construct hypothet-

ical learning trajectory. Simon’s goal in this

heavily cited article was to provide an empirically

based model of pedagogical thinking based on

constructivist ideas. (Pedagogical refers to

all contributions to an instructional intervention

including those made by the curriculum devel-

opers, the materials developers, and the teacher.)

The construct has provided a theoretical frame for

researchers, teachers, and curriculum developers

as they plan instruction for conceptual learning.

Simon (1995. P. 136) explained the compo-

nents of the hypothetical learning trajectory:

The hypothetical learning trajectory is made up of
three components: the learning goal that defines the
direction, the learning activities, and the hypothet-
ical learning process – a prediction of how the
students’ thinking and understanding will evolve
in the context of the learning activities.

There are a number of implications of this

definition including the following:

• Good pedagogy begins with a clearly

articulated conceptual goal.

• Although students learn in idiosyncratic ways,

there is commonality in their ways of learning

that can be the basis for instruction. Therefore,

useful predictions about student learning can

be made.

• Instructional planning involves informed

prediction as to possible student learning

processes.

• Based on prediction of students’ learning

processes, instruction is designed to foster

learning.

• The trajectory of students’ learning is not

independent of the instructional intervention

used. Students’ learning is significantly

affected by the opportunities and constraints

that are provided by the structure and content

of the mathematics lessons.

To elaborate the last point, the second and

third components of the hypothetical learning

trajectory, the learning activities and the hypo-

thetical learning process, are interdependent and

co-emergent. The learning activities are based on

anticipated learning processes; however, the

learning processes are dependent on the nature

of the planned learning activities. Clement and

Sarama (2004a, p. 83) reaffirmed this point.

Although studying either psychological develop-
mental progressions or instructional sequences
separately can be valid research goals, and studies
of each can and should inform mathematics
education, the power and uniqueness of the learning
trajectories construct stems from the inextricable
interconnections between these two aspects.

They went on to define learning trajectories

as follows.

We conceptualize learning trajectories as descrip-
tions of children’s thinking and learning in a
specific mathematical domain and a related,
conjectured route through a set of instructional
tasks designed to engender those mental processes
or actions hypothesized to move children through a
developmental progression of levels of thinking,
created with the intent of supporting children’s
achievement of specific goals in that mathematical
domain (c.f. Clements 2002; Gravemeijer 1999;
Simon 1995) (p. 83).

According to Simon (1995), a hypothetical

learning trajectory was part of a mathematics

teaching cycle that connects the assessment of

student knowledge, the teacher’s knowledge,

and the hypothetical learning trajectory. The

cycle is meant to capture a progression in which

an instructional intervention is made based

on the hypothetical learning trajectory. Student

knowledge/thinking is monitored throughout.

This monitoring leads to new understandings of

student thinking and learning, which, in turn,

leads to modifications in the hypothetical

learning trajectory. The mathematics teaching

cycle also stresses that, in the context of teaching,

teachers develop additional knowledge of

mathematics and mathematical representations

and tasks. All modifications in teacher

knowledge contribute to changes in the revised

hypothetical learning trajectory. Thus, an

implication of the mathematics teaching cycle is
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that a big part of good teaching is the ability to

analyze student learning in order to revise the

instructional approach.

The mathematics education research commu-

nity picked up the hypothetical learning trajectory

construct, and 9 years after the original article,

Clements and Sarama (2004b) edited a special

issue of Mathematics Thinking and Learning on

hypothetical learning trajectories. Although the

hypothetical learning trajectory construct grew

out of constructivist ideas, it has been adapted for

use with social learning theories (e.g., McGatha

et al. 2002).

Two lines of research grew out of the original

work on hypothetical learning trajectories. The

first, conducted by Simon and his colleagues, is

an attempt to explicate the mechanisms of con-

ceptual learning, that is, to provide a framework

for generating hypothetical learning processes in

conjunction with learning activities. (See Tzur

and Lambert 2011; Simon et al. 2010; Tzur

2007; Simon et al. 2004; Simon and Tzur 2004;

Tzur and Simon 2004). Whereas research

grounded in constructivist ideas has a tradition

of modeling students’ thinking at various points

in their conceptual learning, postulation of the

hypothetical learning trajectory construct called

formodeling the learning process itself, themeans

by which the students’ thinking changes as they

interact with the instructional tasks and setting.

The second line of research, which grew out

of the original hypothetical learning trajectory

work, is research on learning trajectories in

mathematics (also referred to as “learning

progressions”; see discussion of learning progres-

sions in this volume). Learning progressions

research is an attempt to provide an empirical

basis for instructional planning.

Trajectories involve hypotheses both about the
order and nature of the steps in the growth of
students’ mathematical understandings and about
the nature of the instructional experience that
might support them in moving step-by-step toward
their goals of school mathematics (Daro et al.
2011, p 12).

Not only have a significant number of

researchers gotten involved in this line of

research, but the Common Core Standards

(CCSSO/NGA 2010) in the United States has

leaned heavily on the learning progressions work

to date. A key issue as research on learning pro-

gressions develops is whether a central idea in

Simon’s hypothetical learning trajectory will be

maintained. That is, will the learning process con-

tinue to be seen as interrelated with the instruc-

tional approach or will various stakeholders in

mathematics education seize on particular learning

progressions as the way that students learn. The

quote above from Daro et al. seems to imply that

there is a set of learning steps, and then instruction

is built to foster that sequence of steps. This stands

in contrast to a view that any particular sequence of

steps is in part a product of the instructional expe-

riences provided to the students. Clements and

Sarama pointed to an important implication of the

perspective based on Simon’s original definition:

Thus, a complete hypothetical learning trajectory
includes all three aspects. . . . Less obvious is that
their integration can produce novel results. . . . The
enactment of an effective, complete learning
trajectory can actually alter developmental pro-
gressions or expectations previously established
by psychological studies, because it opens up new
paths for learning and development.

Cross-References

▶Constructivism in Mathematics Education
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Definition

“Immigrant students” refers to the case when

students (or their parents) were born in

a country other than the one they are currently

living in and attending school.

Characteristics

The topic of the mathematics education of

immigrant students has become quite prominent

in different parts of the world. An indication of

this is that one of the survey teams at the 11th

International Congress on Mathematical Educa-

tion (ICME) in 2008 focused on mathematics

education in multicultural and multilingual

environments. One of the four themes under

this survey team was “the mathematics teaching

and learning of immigrant students.” This article

is largely based on the work undertaken

to address this theme for that survey team

(Civil 2012). The pressing need to address

the mathematics education of immigrant

students is reflected in the following quote by

Gates (2006):

In many parts of the world, teachers – mathematics
teachers – are facing the challenges of teaching in
multiethnic and multilingual classrooms
containing immigrant, indigenous, migrant, and
refugee children, and if research is to be useful it
has to address and help us understand such chal-
lenges. (p. 391)

This quote mentions four diverse groups –

immigrant, indigenous, migrant, and refugee

children. The research reviewed for this article

will focus on immigrant students. However, the

research with indigenous communities contains

much relevant information to the teaching and

learning of immigrant students. One example is

the work from an ethnomathematics perspective

that emphasizes engaging indigenous communi-

ties in the development of the teaching and

learning of mathematics, hence bringing in

the communities’ knowledge, experiences, and

approaches as valuable resources (Meaney 2004;

Lipka et al. 2005).

It is important to acknowledge that there

is large diversity among immigrant students.

This article focuses on some general charac-

teristics that are likely to impact the mathe-

matics teaching and learning of low-income,

immigrant students, whose first language is

different from the language of schooling in

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
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the receiving country. It is organized around

five themes: educational policy and immigra-

tion, different forms of mathematics, teacher

education in an immigration context, multilin-

gualism and mathematics teaching and learn-

ing, and immigrant parents’ perceptions of

mathematics education.

Educational Policy and Immigration

It is important to understand the educational

policies in place with regard to the education of

immigrant students. Whether those are grounded

on seeing immigrants as a resource or as

a problem is likely to affect the schooling expe-

riences of immigrant children. In their account of

the many faces of migration in the world, King,

Black, Collyer, Fielding, and Skeldon (2010)

discuss two prominent models of integration,

multiculturalism and assimilation. They note

that while multiculturalism may have been the

model in some European countries, more recently

“a swing back to assimilation has occurred, with

greater demands on immigrants to learn the host-

country language and subscribe to core national

values” (p. 92). The research addressing the

mathematics teaching and learning of immigrant

students underscores the potential negative

impact of some educational policies and of

a general public discourse that frames immigra-

tion as a problem (Civil 2012). Such a framing is

likely to affect teachers who may view the

diversity of approaches to doing mathematics

that immigrant students often bring (e.g., dif-

ferent algorithms) as problematic rather than as

an opportunity to learn. More research is

needed to examine the possible connections

among educational policies, public views on

immigration, and the mathematics education

of immigrant children. The complexity of the

situation calls for interdisciplinary teams,

where in addition to the expected expertise in

mathematics and mathematics education, there

is expertise on the political and policy (social,

educational, language, in particular with respect

to immigrant students) scene in the context

(country, region) of work.

Different Forms of Mathematics

The relationship between mathematics and

culture/context has been widely described (Bishop

1991; Nunes et al. 1993; DiME 2007; Presmeg

2007; Abreu 2008). This body of research stresses

that mathematics is not culture-free and illustrates

the complexity of the relationship between differ-

ent forms of mathematics, in particular between

in- and out-of-school mathematics. Immigrant

students are quite likely to bring with them differ-

ent ways of doing mathematics. These differences

may be obvious, such as using different algorithms

for arithmetic operations, or subtler, such as

emphasis of topics studied. Immigrant students

may have also experienced different pedagogical

approaches from those in the receiving country

(e.g., teacher lecturing vs. groupwork). Depending

on their context of immigration, they may bring

approaches that are more related to out-of-school

mathematical practices. Issues related to the gap

between in-school mathematics and out-of-school

mathematics and transitions across contexts are

well documented (de Abreu et al. 2002; Nasir

et al. 2008; Meaney and Lange, 2013).

The research surveyed in Civil (2012) from

different countries points to some general find-

ings concerning these different forms of mathe-

matics. One such finding is that schools and

teachers are often not familiar with the mathe-

matical knowledge that immigrant children may

bring with them. A belief that mathematics is

universal and culture-free may lead teachers to

not see these different forms and focus only on

the different languages at play (home and school)

as the main issue that affects immigrant students’

learning of mathematics. Another finding is

related to the concept of valorization of knowl-

edge (Abreu and Cline 2007). That is, different

forms of mathematics may be given different

valorization, and it is often the case that immi-

grant children’s mathematical knowledge may

not be valued as much as the “expected” mathe-

matical knowledge in the given school context.

Even in the cases in which teachers are aware of

these different forms of mathematics, they may

not have the appropriate background knowledge,

preparation, or support to develop learning
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experiences that reflect and build on these differ-

ent forms. Thus, this finding underscores the need

to make sure that teacher education programs

prepare teachers to not only acknowledge differ-

ent approaches to doing mathematics but also to

learn how to build on those in ways that are

inclusive for immigrant students.

Teacher Education in an Immigration
Context

The research surveyed on this topic addresses

teachers’ attitudes, beliefs, and knowledge with

respect to the teaching and learning of immigrant

students. Overall, teachers feel unprepared to

address the mathematical learning needs of

immigrant students (Favilli and Tintori 2002). As

mentioned earlier, language seems to be the main

factor of concern for teachers. However, in the

different studies surveyed, researchers point to

other areas that should be addressed when working

with teachers of immigrant students. One such area

is the need to pay more attention to the cultural

nature of learning (Abreu 2008). Another area is

the need to confront deficit views towards immi-

grant students. These views are often grounded on

public discourse about immigration rather than on

a direct knowledge of the students and their

families and can lead to teachers not valuing the

mathematical knowledge that immigrant students

bring with them (Alrø et al. 2005; Gorgorió and de

Abreu 2009; Planas and Civil 2009).

One approach to engaging teachers in learning

about their immigrant students and their families

is based on the concept of funds of knowledge

(González et al. 2005). Through ethnographic

home visits, teachers learn about their students’

and families’ experiences, knowledge, and back-

grounds. They can then build on this knowledge

in their classroom teaching. In Civil and Andrade

(2002), this approach is applied to the teaching

and learning of mathematics.

Although there is considerable research in

teacher education and diversity in general terms

(not necessarily specific to mathematics), still we

know little about how effective teachers for

diverse students developed their knowledge and

dispositions (Hollins and Torres Guzman 2005).

In mathematics teacher education, although there

is a large body of research addressing teachers’

mathematical knowledge and beliefs about

teaching and learning mathematics, there seems

to be little research about teachers’ beliefs about

equity, in particular in the areas that are likely

to apply to immigrant students (race, culture,

ethnicity, language, and socioeconomic back-

ground) (Forgasz and Leder 2008). Efforts in

mathematics teacher education need to empha-

size that mathematics is not culture-free and may

have to be more upfront in engaging teachers

to discuss topics that are likely to create discom-

fort and may lead to resistance to diversity

(Rodriguez and Kitchen 2005; Sowder 2007).

Multilingualism and Mathematics
Teaching and Learning

As mentioned before, for education policy-

makers and many teachers and school personnel,

limited knowledge of the language of instruction

seems to be themain (if not the only) obstacle that

immigrant students need to overcome. Thus,

different educational systems across a variety of

countries attempt to address “the language prob-

lem” through systems that segregate immigrant

students for all or part of the day to focus on

learning the language of instruction. Researchers

in the teaching and learning of mathematics with

immigrant students raise questions about the

implications of these language policies on the

learning of mathematics (Alrø et al. 2005; Civil

2011; Barwell 2012; Setati and Planas 2012).

Barwell (2012) provides an overview of some of

the key themes in multilingual mathematics

classrooms through a discussion of four tensions.

One such tension is around school language and

home languages. Researchers in mathematics

education in multilingual classrooms call for

a focus on the strengths that multilingualism

provides rather than on the fact that immigrant

students may lack proficiency in the language

of schooling (Moschkovich 2002; Barwell

2009; Clarkson 2009). Research shows the com-

plexity behind code-switching and language
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choice in mathematics classrooms (Adler 2001;

Moschkovich 2007; Planas and Setati 2009) and

how code-switching is actually a resource

towards students’ learning of mathematics rather

than a deficit. This body of research also points

to the need to develop models of teaching in

multilingual mathematics classrooms that are

not based on a monolingual view of teaching

and learning mathematics (Clarkson 2009).

A focus on language as an obstacle may prevent

teachers from seeing the mathematical knowledge

that immigrant students bring with them. An

important question to consider is to which extent

placement decisions in mathematics classes are

based on students’ knowledge of this subject or

on their level of proficiency in the language of

instruction (Civil 2011; Civil et al. 2012).

Immigrant Parents’ Perceptions of
Mathematics Education

Immigrant parents also concur in naming language

as themain obstacle towards their children’s learn-

ing of mathematics. A question to raise is whether

a focus on language as the main obstacle to over-

come may prevent parents from assessing their

children’s overall mathematical experience in

school (Civil 2011; Civil and Menéndez 2011).

The research reviewed in Civil (2012) with

immigrant parents in some European countries

and in the USA points to some common themes

despite the diversity in countries of origin. Three

related perceptions stand out (see also Abreu

2008 for some similar themes): (1) a lack of

emphasis on the “basics” (e.g., learning of the

multiplication facts) in the receiving country,

(2) a higher level of mathematics teaching in

their country of origin, and (3) schools as less

strict in the receiving country (i.e., discipline,

homework). Underlying these perceptions is the

concept of valorization of knowledge, which

affects teachers as well as parents.

These perceptions underscore the need for

schools and teachers to establish meaningful

communication with immigrant parents. Parents

tend to bring with them different ways to do

mathematics that are often not acknowledged by

the schools, and conversely, parents do not

always see the point in some of the school

approaches to teaching mathematics.

Some Implications

Based on the literature reviewed, here are some

key points to keep in mind when addressing the

mathematics teaching and learning of immigrant

students. Efforts should be made to focus on the

knowledge and experiences that immigrant

students and their families bring rather than on

what they lack (e.g., limited knowledge of the

language of instruction). Seeing diversity as

a resource rather than as a problem could enhance

the learning opportunities in mathematics for

all students in the classroom. Through a deeper

understanding of their students’ communities and

families (e.g., their funds of knowledge), teachers

can work towards using different forms of doing

mathematics as resources for learning.

The diversity of languages plays a prominent

role in the mathematics education of immigrant

students. Barwell’s (2012) four tensions can

serve as a document for discussion with teachers

to see multilingual classrooms as complex and

rich environments for the learning and teaching

of mathematics. This may call for the need for

mathematics teachers to seek the expertise of

language teachers and/or linguists to further

understand the strengths of multilingualism in

communicating about mathematics.

Finally, the research reviewed on the mathe-

matics education of immigrant students makes

clear the need for a holistic approach to their

education. Such an approach should include mul-

tiple voices and participants (parents, teachers,

school administrators, community representa-

tives, and the students themselves).

Cross-References

▶Ethnomathematics

▶ Indigenous Students in Mathematics

Education

▶Urban Mathematics Education
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The level of cross-border human movements –

temporary or permanent – in the current world

order is unprecedented. The transnational mobil-

ity of teachers – whether these are young and

newly qualified teachers looking for a different

lifestyle for a few years or teachers who migrate

permanently to a new nation – is thus a relatively

new phenomenon which challenges in many

countries traditional or authentic images of what

school teachers look like. At the same time, these

immigrant and foreign teachers alleviate to some

extent the problem of teacher shortage facing

many nations. In particular, there has been

a lack of teachers who are qualified to teach

mathematics in countries such as Australia, the

UK, and the USA.

Optimizing the professional socialization of

immigrant and foreign teachers in their respec-

tive host cultures has direct implications for the

pedagogical qualities of their practice. Yet,

research into this aspect of teachers’ lives

has been lacking in the mathematics education

research arena. This may be due to the fact that

the proportion of immigrant and foreign teachers

in any education system is still relatively small,

further masked by the illusion of similar skin

colors (e.g., white American teachers practicing

in Australia). Also, the acculturation experiences

of many of these teachers normally remain

silent, even when these teachers may leave

the education system and subsequently seek

employment in unrelated professions such as

taxi driving. Or, perhaps, researchers have

underestimated the potential for mathematics

teachers to encounter dissonance specific to con-

tent and its pedagogy during their respective

acculturation processes.

After all, compared to their peers teaching other

subjects, school teachers of mathematics them-

selves may be less prepared for these cultural

differences in their professional settings (Seah

2005b). There seems to be a widespread perspec-

tive in the society of a culture-neutral mathematics

discipline, one which believes that mathematical

knowledge constitutes absolute truth and that there

are standard ways of ‘doing mathematics.’

Yet, immigrant and foreign teachers of

mathematics do find it “different” teaching

mathematics in schools in a different culture

(Seah 2005b). After all, mathematics is socially

constructed knowledge (Bishop 1988). Even if

the same ‘Western’ mathematics is being taught

at school in the home and host cultures, there are

very likely different ways of finding the answers

to the same questions (e.g., using a computer

algebra system, or not) and/or different ways of
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organizing the student learning activities (e.g.,

group discussions vs. individual seatwork).

How then do immigrant and foreign teachers

of mathematics respond to perceived cultural dis-

sonance in their professional work? In some

instances, these teachers may be helpless, leading

or adding to the acculturation stress they may

already be experiencing. At other times, a range

of responses have been observed, ranging from

“status quo” on the one extreme (i.e., ignoring the

host culture’s norms and continuing to enact the

home culture’s) to accommodation on the other

extreme (i.e., embracing the host culture’s ways).

Relatively more empowering for the immigrant

teachers, however, was the adoption of respon-

sive strategies which strike a balance somewhat

between these two extremes, namely, assimila-

tion, amalgamation, and appropriation (Seah

2005b). In particular, the appropriation response

involves the interaction of the home and host

cultures in productive and empowering ways,

such that the pedagogical discourse of the indi-

vidual immigrant/foreign teacher develops and

extends beyond the current form associated with

the respective cultures. The crucial role of

cultural values is emphasized (see, e.g., Seah

2005a).

From a social ecological perspective, these

responses to cultural dissonance are influenced

by the immigrant/foreign teachers’ own life expe-

riences and personal characteristics as well as by

the increased ease in the maintenance of relations

with family and friends in the home countries

(facilitated by global connectedness and transna-

tional connectivity) (Bhattacharya 2011). The

range of the teacher responses can also be under-

stood in the context of great within-group diver-

sity, understandably so when so many ethnicities

and races are involved in the collective group of

immigrant and foreign teachers.

From the critical pedagogy perspective, the

acculturation experiences of immigrant/foreign

teachers are seen in terms of “the codification

of what counts as authentic culture to be stud-

ied as well as practiced in school [which]

negatively impacts students and teachers who

negotiate non-mainstream identities” (Subedi

2008, p. 57).

The range of responsive strategies which

immigrant teachers of mathematics use flexibly

to negotiate the differences in cultural values that

they perceived are also aligned with the

postcolonial theorists’ view (e.g., Bhabha 1997).

That is, in the face of minority practices, teachers

possess the capacity to resist, subvert, or

negotiate. Their situative cognition (Whitfield

et al. 2007) also serves to problematize teaching

across cultures in this regard. Furthermore,

given the similar SES status in the home and

host cultures, the subsequent portability of the

teachers’ respective social capital (Bhattacharya

2011) probably also facilitates teacher agency.

Research into how the pedagogical activities

of immigrant and foreign teachers of mathematics

needs to be ongoing, not just because we have

limited knowledge and understanding in this

aspect of mathematics education, but also

because such findings will have direct implica-

tions to the professional well-being of the immi-

grant/foreign teachers (of mathematics) and to the

quality of mathematics learning amongst their

students.
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Definition

The term “inclusive” has been widely adopted

within the special needs discourse and is

frequently associated with this field. However

a much expanded view of “inclusive” is used in

this entry. The term “inclusive” is used here to

refer to those students who traditionally have

been excluded from success in school mathe-

matics. This may be on the basis of gender,

social background, culture, race, and language.

The focus of the inclusivity can be directed at

any one or more of these target areas. The focus

of the work may include the practices within the

classroom through to policy at school or govern-

ment levels that shape the practices in the class-

room. Inclusivity may include innovations in

curriculum, pedagogy, and/or assessment. It

can be shaped by psychological discourses

aimed at developing characteristics within the

students such as motivation, self-esteem, confi-

dence, and resilience as well being shaped by

sociological discourses that consider the wider

social and political contexts of mathematics

classrooms.

Characteristics

Three key areas are evident in the research

associated with inclusive classrooms. These

include the practices within the classroom, the

ways in which language use is implicated in

gaining access (or not) to learning, and success

in school mathematics and the mathematics

itself. These are considered in the following

sections.

Classroom Practice

The focus of inclusive mathematics classrooms is

varied. Boaler (1997a) explored how practices

adopted by UK teachers shaped the learning of

students. She found that the use of group work in

heterogeneous classrooms produced significant

mathematical learning for those students. In

subsequent work in the USA, she (Boaler and

Staples 2008) found that schools adopting com-

plex instruction (Cohen and Lotan 1997)

improved their learning outcomes for some of

the most disadvantaged students in California.

The approach drew on a wide range of

research to develop inclusive practices (such

as group work, use of home language) to

enable all students’ access to deep mathemat-

ical learning. Both of these studies drew out

the importance of heterogeneous groupings in

classrooms in enhancing mathematics learning

for students who typically are at risk of failing

in schools.

Ability grouping is widely adopted in mathe-

matics classrooms with a wide range of interna-

tional studies (Boaler 1997b; Zevenbergen 2005)

indicating that it is far from inclusive. Studies

have shown that while top grouped students

are exposed to high levels of mathematics, the

pacing of the lessons and the pressure imposed

by the teaching may be detrimental to learn-

ing. Worse still are the experiences of those

students in the lower groups who frequently

reported poor teaching but also the internali-

zation of failure and a poor concept of self

as learner of mathematics. Mathematically and

psychologically, ability grouping can have

detrimental impact on learning, but the sociol-

ogy of ability grouping also indicates that

there is a strong correlation between social

background and the levels in which students

are placed in ability groups.

The use of pedagogical aids in classrooms also

relates to inclusion, or not, of students. In his

work with textbooks, Dowling (1998) illustrated
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the relationship between the types of textbooks

used in the UK and social background. In this

work, Dowling showed how students from work-

ing-class backgrounds were more likely to expe-

rience restricted mathematical texts than their

middle-class peers. Similarly, in their analysis

of wide-scale testing, Cooper and Dunne (1999)

showed how students interpreted and solvedmath-

ematical questions and how their responses were

shaped by the background of the students. Students

fromworking-class families were equally as likely

as middle-class students to solve esoteric prob-

lems, but the working-class students were more

likely to misinterpret contextual problems and

locate them in a nonmathematical discourse and

provide an incorrect response.

Language Use in Classrooms

Many students may be excluded from mathemat-

ics classrooms due to factors related to language.

Zevenbergen (2000) argued that success in math-

ematics classrooms was about “cracking the

code” of the linguistic practices within the class-

room. Migrant students (Planas and Setati 2009)

may come to class where their language is differ-

ent from that of the dominant culture. Classrooms

may have many languages, like in some contexts

such as South Africa (Setati and Adler 2000) or in

some parts of the USA (Moschkovich 1999),

where there are home languages but these are

not the language of instruction. In some contexts,

such as remote Australia (Watson 1988), New

Zealand (Meaney et al. 2012), or Canada (Borden

2013), where there are Indigenous people

attending mainstream schools, the language of

instruction may not be that of the home, and for

some of these students, the language of instruc-

tion is a foreign language as it is only spoken

in the school context. Collectively this diversity

in languages and their relationship to the

mathematics classroom creates challenges for

inclusive classrooms.

Mathematics

Being able to engage with mathematics is central

to inclusive mathematics classrooms. Providing

an impoverished mathematics further excludes

students from the study of mathematics, so

it is necessary for inclusive classrooms to

offer mathematics that enables deep learning.

Scaffolding learning is central to developing

strong mathematics. Some authors (Powell et al.

2009) have focused on developing deep mathe-

matics for all students, but most notably those

from diverse backgrounds. Others (Gutstein

2003) have argued strongly for a mathematics

that is located in a social and political context to

enable students to see the power of mathematics

to enable them to better understand their social

circumstances. In contexts, such as Canada

(Lipka 2009), where the First Nation people

have world views and ways of interacting that

may not be represented in and through the curric-

ulum, appropriate scaffolding has been devel-

oped while embracing aspects of the culture and

building mathematics around the cultural mathe-

matics. Cultural approaches may also favor the

validation of mathematics embedded in the cul-

ture (see entry on ethnomathematics) where the

students “unfreeze” the mathematics in cultural

activities such as basket weaving (Gerdes 1988)

or everyday mathematics of workplaces (Noss

1998; Zevenbergen and Zevenbergen 2009).

Countries and smaller jurisdictions will also

create policies to shape the ways in which schools

develop their practices. These policies vary con-

siderably from country to country. Results of

policies and international practices are widely

discussed by researchers working in studies

such as TIMMS and PISA and should be referred

to in these sections of this encyclopedia.

Cross-References

▶Ethnomathematics

▶ Indigenous Students in Mathematics

Education
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Definition

Definitions of Indigenous people differ, with

some countries acknowledging Indigenous

people, while other countries labelling similar

groups as tribal or minority nationalities (Sanders

1999). In mathematics education, a definition that

has been used in Australasia considers Indigenous

students to be those who belong to communities

who originally controlled the land and developed

distinctive cultures before the arrival of Europeans

but who are presently attending educational insti-

tutions which closely resemble those of industrial

countries (Meaney et al. 2012). It is important to

recognize that Indigenous cultures are heteroge-

neous and many sets of behaviors, understandings,

or cultures typify different groups of Indigenous

people, evenwhen different Indigenous groups live

in the same country.

In this entry, we describe some Indigenous

people’s mathematical activities prior to

colonization, how such activities have been used

in school mathematics, and the use of an Indige-

nous language as the language of instruction

in mathematics classrooms. The final section

considers issues which surround the underper-

formance of some Indigenous groups in mathe-

matics education and the approaches adopted

by government organizations and schools to

improve the situation.
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Traditional Mathematical Activities

Long before Indigenous people were recog-

nized by the United Nations (Sanders 1999),

anthropologists had recorded mathematical

practices of Indigenous people. However, not

all anthropologists were willing to accept the

information from Indigenous people because

of preconceptions about the type of knowledge

that mathematics was and the level of intellec-

tual sophistication that Indigenous people

could reach (Harris 1990).

An interest in cognitive development contrib-

uted in the 1970s to a number of cross-cultural

studies being undertaken which documented the

range of mathematical practices that Indigenous

people participated in. However comparisons

with children’s development in Western cultures

indicated that the outcomes of this mathematical

development could be quite different (Lancy

1983). This led to suggestions that Indigenous

communities should reproduce home lives simi-

lar to those of Western communities, an idea that

was resisted by Indigenous communities as it left

little opportunity for Indigenous children to

maintain their own culture (Cantoni 1991).

Use of Indigenous Mathematical
Activities in School

From their work with the Kpelle in Liberia,

Gay and Cole (1967) proposed the need for school

mathematics to recognize Indigenous mathematics.

Since the 1980s, the role of Indigenousmathematics

in supporting Indigenous cultures and contempo-

rary schooling was recognized by the emerging

research discipline of ethnomathematics (Denny

1986; Gerdes 1988; D’Ambrosio 1992). With the

inclusion of ethnomathematical perspectives, Indig-

enous students are expected to achieve better results

because they would feel that their backgrounds and

experiences are valued in the classroom,mathemat-

ics can be developed by others outside of Western

culture, andmathematics has relevance to their lives

outside the classroom. However, there is little

research which has documented such outcomes

(Meaney and Lange 2013).

In Papua New Guinea, a major reform was

undertaken to recognize the mathematics that

children came to school with. However, research

by Esmonde and Saxe (2004) in one remote com-

munity conducted in the first few years after the

reforms showed that Hindu-Arabic system was

the more dominant counting system known to

students. The local counting system was used in

a very restricted way. Students indicated that they

believed that the local system could not be used

for numbers greater than 27, even though many

adults could count to very large numbers in this

language. On the other hand, Matang (2005), also

in Papua New Guinea, found that students using

the counting systems in his home language, Kâte,

were better able to transfer their understandings

to the English counting system.

On the other side of the world, a program based

on ethnomathematics has reported good results

for Indigenous students. Lipka and colleagues

found that the use of culturally based mathematics

teaching with Yup’ik students in Alaska resulted

in significant improvement in standardized test

results (Kisker et al. 2012). The materials incorpo-

rated not just culturally-relevant contexts but

also participation structures. The development of

materials has been done over several decades in

collaboration with Yup’ik communities which

retain many of their traditional customs.

Indigenous Languages and the
Teaching of Mathematics

For many Indigenous groups, decisions about what

language should be used for teaching mathematics

are often political and not just about what is cogni-

tively appropriate. In the nineteenth century, some

Indigenous students were taught mathematics in

their native languages as a consequence of mission-

aries and governments’ assimilationist policies

(Meaney et al. 2011). However, over time a number

of overt and covert policies were introduced that

shifted schooling for Indigenous students to the

colonizers’ languages. In countries, such as Fiji

(Bakalevu 1999), policies about the language of

instruction are still in place even when indepen-

dence had been granted many years previously.
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There has also been much discussion about the

most appropriate language in which to learn

a Western knowledge area such as mathematics

because of the intimate relationship between cul-

ture, language, and mathematics. Berry (1985) in

his discussion of the teaching of mathematics in

Botswana emphasized the “distance” between the

language of the learner and the language of the

curriculum developer. In looking at the problems

Botswana children were having in learning school

mathematics, Berry suggested that even where

a mathematical register was developed in the Indig-

enous language, there could still be a clash between

the different underlying cognitive structures of the

mathematics register and the Indigenous language.

This could result in children failing to learn mathe-

matics. Research from the 1980s has focused on

issues to do with developing the mathematics regis-

ter in an Indigenous language (Meaney et al. 2011).

Similar issues were identified by Denny (1980)

in the translation of mathematics curriculummate-

rials from English into Inukitut, the Inuit language.

In contrast, Denny (1980) proposed using Inuktitut,

the Eastern Canada Inuit language, in a “learning-

from-language” approach where the development

of mathematical concepts could grow out of the

concepts children learnt through being Inuktitut

speakers.

Mendes (2005) reported on work in Brazil

where Indigenous teachers produced written

mathematics problems. Their languages had

been written down only recently and this allowed

for some experimentation. The format of the

problems often incorporated aspects of oral

culture and pictures so that the problems could

be considered as being different to those found in

Western mathematics classrooms.

In New Zealand, Māori communities’ push to

revitalize their language resulted in mathematics

classes inMāori-immersion schools being taught in

the Māori language (Meaney et al. 2011). This has

lead to many different challenges being overcome

in order to useMāori for the teaching of mathemat-

ics. However, research into how to overcome these

challenges has shown that aspects of the language,

such as the large number of logical connectives, are

very useful for students to discuss mathematics.

Current Issues Concerning Mathematics
Education for Indigenous Students

The rise of minority and Indigenous peoples’

movements usually has incorporated a strong

educational focus in order to produce political

and economic emancipation. As a consequence,

there has been a surge in interest in how to facil-

itate the teaching of mathematics to Indigenous

students.

Differences between Indigenous communities

and Western schools’ ways of valuing knowledge

often contribute to the non-Indigenous society and

its teachers labelling Indigenous communities as

being deficient and the contribution that these

communities may have to offer to the teaching

of mathematics ignored (Meaney et al. 2012).

National or international testing highlights the

underperformance of Indigenous students in school

mathematics. Although in places such as Australia

and New Zealand, these results have led to educa-

tion initiatives, the focus has been on the Western

mathematics needed for these students to become

economically sustainable adults. Unfortunately the

constant reiteration of how poorly Indigenous stu-

dents perform in these tests “is likely to produce in

teachers, policy makers, the general public and

Indigenous students themselves a belief that Indig-

enous students cannot learn or utilise mathematics

in their everyday lives” (Meaney et al. 2012, p. 68).

An alternative approach would be to investigate

what contributes to Indigenous students being suc-

cessful. For example, Lipka and his colleagues

(Kisker et al. 2012) continue to show that working

with Indigenous communities can result in students

gaining more from school mathematics experi-

ences as well as strengthening ties to their

Indigenous culture.
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Levels of conceptualization

Even though the characterization of “informal

learning in mathematics education,” as well as its

goals, is still problematic, the thematic has a clear

place within contemporary approaches to educa-

tion. Many of the questions examined by profes-

sional practitioners and researchers in education

lead to considerations about mathematical learning

outside of institutions. In any case, this area of

studies cannot be addressed by a single theory,

a single disciplinary field, or even a single research

topic. It must be studied from the perspective of

multiple theories, research methods, and data anal-

ysis. We hold that psychology, anthropology, and

educational sciences have all played a most
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important role in the history of ideas about informal

learning in mathematics education and in the area’s

research initiatives.

In keeping with Greenfield and Lave’s (1982)

conception of “Informal learning styles,” we

consider “informal learning” to be knowledge

and capabilities acquired and developed outside

of an established system, hence the opposite of

“formal learning” which means knowledge

gained from within a school framework.

Using a terminological approach as a starting

point does not simply lead to a discussion about

the proper use of terms. Instead, the very choice

of signifiers, such as “formal, informal,” to char-

acterize education and learning raises fundamen-

tal theoretical questions. By questioning the term

“informal learning in mathematics education” as

determined by its pragmatic use, it appears that

key concepts such as consciousness, status of

knowledge, transfer, and context are fundamental

in understanding the nature of “informal learn-

ing,” placing them in various relevant theoretical

frameworks. Are we talking about the context or

about the learning process?

Thus, if the term “informal” is problematic,

how does one conceptualize learning? It must

remain clear that here we consider the learning

process, not its product. Even though human

potential abilities are universal, their realization

and the form they take across multiple learning

opportunities depend on culture.

One of the goals of comparative cultural

psychology is the analysis of this variability of

human behavior (Bril and Lehalle 1988). The

diversity of behavior is not inconsistent with the

universality of the process. Learning is a field of

study that allows understanding both sides of

the issue – diversity and universality – through

the analysis of the construction process of these

behaviors (Bril 2004).

But can we speak of “informal learning”

as part of a formal discipline like mathematics?

This leads to different theoretical positions

with different educational implications. The

negative answer to that question considers math-

ematics as a formal discipline, universal and

decontextualized; the positive response considers

mathematics as a cultural product.

We believe that even though learning

processes are universal, they can express them-

selves in different ways depending on the context

in which they are manifested, taking different

“forms” or being “formalized” in different

ways. However, the formal/informal dichotomy

to account for the different forms of the actual

learning process seems inadequate. There is

every reason to believe that a model incorporat-

ing a dialectical relationship between formal and

informal and a gradient to situate learning

between the two poles would be better able to

account for the phenomenon we study.

The terminological ambiguity inevitably

compels us to reflect upon the characteristics of

learning. Research studies identified by Acioly-

Régnier (2004), as shown by the following issues,

have addressed:

• What concepts and ideas do researchers use to

address issues of learning?

• To what extent and by what criteria does

the research in this area hierarchically order

(or not) these kinds of learning?

• How can we investigate researchers’ concep-

tions in the study and analysis of learning

processes and their activation in specific

contexts?

These questions raise a number of dichotomies

that researchers are forced to confront in order to

clarify the theme: formal versus informal context;

context versus no context; explicit versus implicit;

conscious versus unconscious; concrete versus

abstract, etc. Consider, for example, the socio-

historical theory of Vygotsky which offers different

perspectives to address these binary opposites when

he examines, for example, the question of scientific

concepts versus everyday concepts, which are

central to the informal learning of mathematics.

From Terminology to
Conceptualization: Consciousness,
Status, and Knowledge Transfer

Vergnaud (1999) discusses the polarization of

these two types of concepts by Vygotsky. He

comments on this idea by considering a more

nuanced view found in other writings in which
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Vygotsky argues that the development of sponta-

neous concepts and scientific concepts are closely

linked processes that exert on one another

a constant influence (in Yves Clot 1999, p. 55).

Consciousness of Concepts Versus

Non-consciousness Concepts

For Vygotsky, the spontaneous or daily concept is

unconscious since it is always directed to the

object it represents, rather than to the very act of

thinking that grasps the object. Only when a daily

concept is integrated into a system can it become

conscious and voluntary. Thus, in the literature,

the features of a daily concept are designated as

“non-conscious,” “unsystematic,” or “spontane-

ous,” while those of a scientific concept are

described as “conscious” or “systematic.”

Therefore, the different research paradigms,

different theories, mobilized theories, and the var-

ious scientific disciplines which are interested in

this subject of study seem to agree at least on one

point: that learning can be non-intentional or

unconscious in informal situations. Even when

one consciously engages in a learning process, for

example, a craft, a game, or a task of everyday life,

he or she may not be aware that in his or her

subconscious, several concepts needed to conduct

the taskmay be hiding. Of course, this is also partly

true in academic learning when students are

expected to know they are there to learn specific

contents which arewell determined and verbalized.

Therefore, we argue that informal learning can take

place as much in formal educational settings as in

non-formal settings. We aim to enrich the original

definition of informal learning by relying on

a distinction between the concept of learning and

that of “learning context.” In other words, we do

not subordinate the qualification of learning to the

context where it takes place.

We are more concerned with the cognitive

processes implemented than in contexts, although

contexts clearly play a role in triggering these pro-

cesses. We recall here the Vygotskian perspective

where cognition and consciousness are not the

causes but the products of human activity.

The core concepts in the psychological

perspective I adopted (Acioly-Regnier 2004) in

analyzing research on informal learning are those

of consciousness and the focus of consciousness.

We adopt the psychological theory of conceptual

fields of Gerard Vergnaud to illuminate the

notion of both in-school and out-of-school con-

cepts. This theory of conceptualization of reality

incorporates aspects of the situation, the concept

itself, and the subject. This theoretical framework

allows us to identify and study knowledge in

terms of its conceptual content, to analyze the

relationship between concepts as explicit knowl-

edge and as operational invariants that are

implicit in one’s behavior in a situation, and to

deepen the analysis of relationships between sig-

nifiers and signified.

The theory defines the concept as a tripolar

system constituted by signifiers, situations, and

operative invariants. The set of signifiers allows

the representation, communication, and treat-

ment of the concept. The second set refers to

situations where the concept operates and the

idea of reference. The set of operational invari-

ants refers to the signifiers.

This model allows one to distinguish between

school and non-school situations from the perspec-

tive of the focus of consciousness. In schools, the

focus of consciousness seems to bemainly directed

to the bipolar relationship meaning ↔ invariant

procedure leaving aside the set of reference situa-

tions. The weakness of the learner appears in diffi-

culties to recognize situations, out of school or in

school, in which the concepts developed are rele-

vant. For example, the learners know their lessons

but do not know how to apply the definitions they

have learned. In contrast, in non-school education

settings, the focus of consciousness is directed to

the bipolar relationship situation ↔ invariant pro-

cedure, neglecting the resource provided by the

signifiers. In this case, the weakness of the learner

lies in the lack of symbolic resources that enable

him or her to further develop knowledge learned in

a specific situation (Frade et al. 2012).

Transfer of Knowledge and Abilities

Like the notion of consciousness, the notion of

knowledge transfer has been a key concept in the

theoretical framework of research on the relation-

ships between “formal learning” and “informal

learning.” The usual formulation of the problem
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often addresses concerns regarding the academic

failure of disadvantaged social groups or of cul-

tural minority groups.

Interest in informal mathematics increased

with research findings showing that children

who failed in schools displayed at work

mathematical abilities that required conceptual

understanding similar to those implicit in school

mathematics (Carraher et al. 1982, 1993). This

led to the development of what came to be known

as “Street mathematics” which aimed at identify-

ing the conceptual invariants underlying mathe-

matical procedures developed at work.

Carraher, Carraher, and Schliemann (1982), in

their study of street vendors in Recife, Brazil,

observed that they were able to perform arithmetic

operations in daily work activities without being

able to formalize the written arithmetic taught in

school. Similar conclusions about the ability to

generalize were drawn by Lave’s study (1979, cf.

Greenfield and Lave 1982) among tailors in Liberia

and by Greenfield and Childs (1977) on weavers.

Greenfield and Lave (1982) argue that when the

experimental task is similar to the taskwhere learn-

ing took place, tailors and weavers, just like school

subjects, are able to solve new problems. However,

neither school experience nor everyday experience

led to transfer when problems deviate significantly

from the circumstances in which learning initially

took place. Acioly (1985) and Schliemann and

Acioly (1989) demonstrated in a study with lottery

vendors in Recife, Brazil, that school experience

alone does not play a major role in mathematics

performance inwork situations. They observed that

the lottery vendors’ performances were composed

and hybrid, taken from learning at work as well as

years of schooling.

Among the educational contribution of these

results, we have witnessed the birth of work

aimed at implementing the learning approaches

found in out-of-school settings onto school

settings.

The Question of Context

Another central question common to all work on

informal versus formal learning refers to the

notion of context. One prevailing view connects

decontextualization to formal learning, and

informal learning to contextualization. We

believe that this association is insufficient to

account for properties of our object of study. As

Schliemann and Carraher (2004) propose, school

mathematics has a context that is neither concrete

nor tangible, but is as real as the sales context in

the markets. It is therefore necessary to consider

the characteristics of contexts.

Looking at the acquisition of certain forms of

knowledge, Jean Lave and Etienne Wenger

(1991) have tried to place it in social relationships

with situations of co-participation. This partici-

pation refers not just to local events that trigger

certain activities with certain people, but to

a larger process that progressively integrates the

active practices of social communities and leads

them to construct their identities in relation to

these communities. Learning, thus, is not seen

as mere acquisition of knowledge by individuals,

but as a process of social participation. The

nature of the situation plays a significant role in

determining the acquisition process. From this

viewpoint, differentiation formalized by the

notions of contextualization and decontextua-

lization has no relevance, because cognition can

be seen only as part of a process of social partic-

ipation in context.

Status of Knowledge

From the discussion of the three basic concepts

common to most studies, that is, consciousness,

transfer, and context, emerges the issue of the

status of knowledge and learning. We can already

distinguish two main research approaches.

The first approach prioritizes formal learning

and analyzes informal learning by taking formal

concepts as paradigms. The other considers that

informal learning has a similar status to that of

formal learning and suggests what is called

“informal mathematics” to be considered as part

of the curriculum.

Informal Learning in Mathematics
Education

Research on mathematical knowledge in infor-

mal work situations shows the limits of school
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learning and even proposes assigning a greater

role to life experience and outside of school

practices in the development of further knowl-

edge (Lave 1977; Greenfield and Lave 1982;

Reed and Lave 1979).

To consider the relationship between the

nature of the task and one’s more familiar type

of learning requires a prior discussion of some

important points. Problem solving, including

mathematical problem solving, is a formal edu-

cational activity, through written calculations and

the search for true and correct solutions. But it is

also an informal education activity, characterized

by frequent use of calculations performed often

mentally, using approximation and estimation to

reach results.

About the Paradigms of Research on
Informal Learning in Mathematics
Education

Ways of Approaching the Issue and Methods

The literature on informal learning in mathematics

education mainly deals with the description of the

importance of informal learning as a valid mode of

knowledge acquisition, with methods used by

learners in informal situations, and with ways to

support and assess informal learning, highlighting

the analysis of local procedures to resolve prob-

lems which, although far removed from those val-

idated by formal education, are recognized and

recommended by a specific social environment.

Current work is guided by the theory of action,

by a focus on “Culture and Cognition” and by the

study of ethno mathematics. The methods of data

collection, used in isolation or in a procedure of

cross-fertilization, include ethnographic observa-

tion, clinical interview of the Piagetian type, and

quasi-experimental methods. The differences in

theoretical frameworks and methodology of this

research replicate methodological biases repeat-

edly recognized in the history of research.

Most research in this area either engaged in so-

called conceptual aspects and neglected the

social factors, or focused on social aspects and

neglecti an in-depth analysis of the concepts

themselves.

Saxe and Posner (1983) consider the strengths

and weaknesses of cross-cultural research on the

development of number concepts, associated

with the Vygotskian or the Piagetian approach

and conclude that each of these theories contrib-

utes to the analysis of cultural universals and of

specific cultural aspects of number concept for-

mation in children. On the one hand, the Piaget-

ian approach provides a formulation of the

manner in which numerical operations grow, but

does not analyze the mechanisms by which social

factors contribute to the formation of numerical

thinking. On the other hand, the Vygotskian

approach, as taken by American psychologists

(Cole et al. 1971; Cole and Scribner 1974,

Wertsch 1979, cf. Saxe and Posner 1983), treats

the cultural experience as a differentiated theo-

retical construct and, even though they do not

deny the importance of concepts, they do not

provide a deep analysis of numerical concepts.

Models of Formal Knowledge and Informal

Learning in Mathematics

Among research studies taking a formal knowl-

edge model for analysis of informal learning, we

find those based on levels of conceptualization.

Conceptualization is built in stages. The important

thing is to identify the level rather than identifying

the absence or presence of a given concept. These

considerations provide a theoretical basis for

the idea that, to solve a mathematical problem,

individuals implement representations, and that

these representations tell us about their level of

conceptualization. Note however that, in the

psychological literature, problem solving is often

distinguished from concept formation. Problem

solving is viewed as a new combination of behav-

iors and procedures dependent on prior knowl-

edge, while the formation of concepts is taken as

the emergence of new categories, new ways of

conceptualizing the world, with new objects and

new properties of these objects.

However, for Vergnaud (1987), this distinc-

tion is invalid, because it underestimates two

things: the role of problem solving in concept

formation and the role of representation and con-

cepts in problem solving. We know that these

representations are based on a conceptual core,
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as well as on contextual characteristics of specific

situations. From this point of view, in what

is regarded as the conceptual core, the actions

and procedures individuals implement while

performing a task always refer to concepts. This

is true even if this knowledge is expressed in

terms of practical activities, and in the particular

context of their culture. Note that if these

concepts are not necessarily conscious for the

individual, the researcher must postulate their

existence to understand the actions and proce-

dures, and especially the systematic variations

that can be found. It is from a perspective similar

to that proposed by Vergnaud that the large

majority of studies by psychologists on the sub-

ject of informal learning, including the studies on

“street mathematics” by the Brazilian group from

Recife, have been developed.

Model of Daily Learning and Informal

Learning in Mathematics

Among those considering informal learning as

knowledge that has the same status as formal

knowledge, we find the ethnomathematics

approach. Ubiratan D’Ambrosio, one of its foun-

ders, proposed an “ethnomathematics curricu-

lum”. The idea of “program” is understood in

the sense given by Lakatos. The direction of

thought ethnomathematics seeks is the consider-

ation of past and present stories of different social

groups. This program of research on the history,

philosophy, and epistemology of mathematics

has pedagogical implications which provide in

no way a substitute for formal mathematics by

academic “math people.” The ethnomathematics

program is also presented as a theory of knowl-

edge. Research methods must assume an attitude

of respect for the mathematical abilities of the

learner. This involves a respect for the cultural

historical perspective to understand the develop-

ment of concepts in the field of informal

mathematics as well as in academic cultures.

The issue of cultural diversity is a central dis-

cussion issue. Indeed, this is in part to avoid the trap

of praising the exotic and also to find an appropriate

articulation of two movements from very different

sources: one that seeks integration of subcultures

marginalized in school curricula, and the other

seeking to give access to the students of dominated

subcultures to the knowledge of the dominant cul-

ture. This group also takes into consideration the

games of power relations implicit in this task, and

their implications in the development and imple-

mentation of curricula. It also aims to problematize

these issues in the very formation of teachers.

An Alternative Approach

Most of the research on informal learning and the

concepts studied are actually located within

a particular culture and also present in formal

education. This dual membership creates an

ambivalence that impedes their recognition and

identification by researchers. It does call for the

construction of analytical invariants, taking into

account the concept studied while controlling for

specific situations and contexts.

Informal learning is not reduced to the simple

acquisition of practical skills. It also relies on

a process of conceptualization. Levels of this

conceptualization are built, based on internal pro-

cesses actualized in a given social and cultural

context that imposes limitations as well as favor-

able conditions. As such, curricular and extracur-

ricular activities have the power to inhibit

the development of certain dimensions of the

concepts. This inhibition casts a shadow on the

concepts. In a significant proportion of research

on informal learning, anthropological variables

constructed from social and cultural factors

guide the interpretations of the cognitive func-

tioning of individuals. The use of these variables

to explain and understand what cognitive func-

tioning is influenced by the theoretical frame-

work and by the method of data collection.

It is therefore important to pay attention to levels

of conceptualization of different complexity that

can be triggered by specific contextual situations.

Problem-solving procedures should be considered

as being related to the culture in which it takes

place. This requires considering the fact that differ-

ent cultures solve the “same” problem by different

routes, although the results may appear similar. It

does not mean that there are no problems common

to many cultures, but that the specific
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characteristics of each culture, not always easy to

discern, determine specific practices. The theme of

“informal learning in mathematics education”

requires, obviously, research centred on issues

that include all the above features.
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Characteristics

Information has changed over the past 10 years.

Information can be thought of as a knowledge

base, and with advances in technology, access to

this knowledge is increasing on a daily basis.

Knowledge is growing and the impact of such

growth on education is wide and varied.

In addition to thinking of information as the

accumulation of knowledge, it can also be

thought of as how knowledge can be represented,

and in mathematics education, this has certainly

evolved rapidly over the past decade in terms

of the representational affordances of new

technologies both software and hardware.

Information is now embedded in representational

media. In mathematics education, this has

enabled a transformation of the mathematics

from static to dynamic symbolic systems through

which teachers and learners can access knowl-

edge and think. Representational media can be

both static and dynamic. Mathematical figures

can be inert pictures or images as well as

dynamic, constructible, and deformable objects.

Within these broad categories of interaction,

we can further describe such systems as

both discrete and continuous in terms of how

users can interact and navigate the concepts

represented. For example, a spreadsheet can

offer a discrete input system through the manip-

ulation of tables of data either statically formed or

dynamically formed through sliders or spinners

(see Fig. 1).

Similarly, certain software allows for contin-

uous input through dragging parts of a figure or

some controller to manipulate and change con-

structions in some mathematically meaningful

way. Consider the following example. The area

of a triangle is measured by its altitude and base

by a standard formula Area ¼ ½ * base * height.

The preservation of this relationship over a wide

range of similar triangles can be illustrated in

dynamic geometry environments (see Fig. 2).

Here vertex A is dragged across a line that is

defined as parallel to the line upon which base

BC is constructed. Since parallel lines preserve

perpendicular distance of separation and the

base BC is fixed, the trace of all triangles

ABC has equal area, but students often think

that the triangles are changing area as their

perception of the lateral shape, being stretched,

implies for them a change in area. The area

measurement tool (as a different notation) is used

to illustrate the resulting variation or invariance

under the action of dragging a particular vertex.

Dragging vertex A yields no change in area.

Information and Communication Technology (ICT) Affordances inMathematics Education, Fig. 1 Spinners in
spreadsheets

I 296 Information and Communication Technology (ICT) Affordances in Mathematics Education



While the measurement tool reports this invari-

ance, it does not prove why such an action yields

this result. It does allow an environment for the

learner to explore what changing properties of

a triangle are relevant in determining its area,

i.e., height and base.

In both examples, mathematical information

is mediated through interacting within the

environment. Changing values of a parameter, or

dragging a vertex, allows for information to pass

back and forth between the user and the environ-

ment. The environment can guide the user just

as the user guides what changes within the

environment. We refer to this as coaction

(Moreno-Armella et al. 2008). The representations

are linked so that information is tightly bound

across the representations. For example, changing

the parameter “a” simultaneously changes the

concavity of the quadratic in its graphical form.

Technology has offered and afforded represen-

tations and interactions between representations

for a long time. These have been in terms of

symbolic manipulators, where computational

duties are offloaded to the microprocessor and

new actions are linked to traditional notation sys-

tems. But in addition, there is now support for new

interactive notation systems. Specific examples of

such software environments in mathematics edu-

cation span various subject areas including data

analysis (Fathom, TinkerPlots®), geometry and

number sense (Geometer’s Sketchpad®, Cabri-

Geometre), and algebra (SimCalc MathWorlds®).

These modern affordances have been translated

into mathematics classrooms as a mode to enhance

access: offering students the ability to see through

abstract constructs or symbolic figures.

Essentially, information in mathematics

education is evolving within the representational

media bywhich people wish to use for the purposes

of learning and teaching. This is more broadly

referred to as a representational infrastructure

(Kaput et al. 2001; Kaput and Roschelle 1998;

Kaput and Schorr 2008) whose elements can be

used in huge varieties of combinations tuned to

specific curricular objectives, student needs, and

pedagogical approaches (Hegedus and Roschelle

2012).

Communication has been a critical aspect in

the evolution of mankind and in recent decades

the advancement of knowledge. As symbolic spe-

cies (Deacon 1997), language and the brain have

coevolved, and since the evolution of external sup-

ports of memory some 35,000 years ago (Donald

2001), language has been expressed through ever-

changing forms of media. We refer to communica-

tion as human actions in terms of speech or phys-

ical movement (e.g., gesture) or digital inscriptions

through modern-day interfaces.

Communication can be one or a combination of

several modalities of human expressiveness through

writing, talking, and physical action. It can also be

a technical infrastructure by which, and through

which, students and teachers can project their

personal work into a public workspace. Hence,

communication in a technological workspace can

also be thought of as an infrastructure with

various interacting elements (human and digital) to

produce affordances for mathematics education.

Mathematical work can be shared for the purposes

of comparison, extension, or accumulation of

ideas. Networks have been essential in allowing

various researchers to exploit such affordances by

connecting various small and robust technologies

togetherwirelessly for various educational purposes.

As more handheld devices become ever present

in the lives of children as well as adults, it is

Information and

Communication
Technology (ICT)

Affordances in

Mathematics Education,

Fig. 2 Dynamic areas of
triangles
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important to address how such a technological

boom advances or transforms communication

in mathematics education. Communication as

a transfer protocol is not sufficient to describe the

(mathematical) educational affordances of such

advances. Even in social networking, people

do not only share information in a traditional

sense presented above but can also be part of

a community where ideas are developed, thinking

evolves, and identities are formed. In mathematics

education, the student experience of “being

mathematical” (Nemirovsky et al. 1998) has

become a joint experience, shared in the social

space of the classroom in new ways as the

mathematical constructions of each student can be

aggregated in common representations (Roschelle

et al. 2010; Brady et al. 2013) and form participa-

tory simulations (Stroup 2003; Stroup et al.

2005; Wilensky and Stroup 1999, 2000).

Cognitive activity can now be distributed in the

socio-material space (Hutchins 1996). Similarly

changed are how students interact mathematically

with each other and their teacher and, critically,

how their personal identitymanifests in their shared

mathematical experience in the classroom.

Advances in mathematics education have

arisen where both information and communica-

tion have been treated as an integrated system.

Hegedus and Moreno (2009) have described how

the integration of representational and communi-

cational infrastructure yield forms representa-

tional expressivity – charged by the dynamic

affordances of the technologies and the

opportunities for social mediation of ideas – in

terms of physical (e.g., gestures) and verbal

forms of communication.

As technology becomes more “social,” we

should be aware of the enhanced forms of

mediation that emerge. These can exist through

the representational media as a result of the

technology in terms of graphical and computa-

tional affordances. They can also exist through

social mediation in how we share and transfer

ideas and use technology locally as well as

globally. For example, the portability of handheld

devices – such as iPads – allows students to pass

ideas around a table via the tablet or push ideas up

to a server for public display. New technologies

also offer multimodal affordances, which will

evolve over the next decade. Allowing students

and teachers to use various sensory modalities

(e.g., sight, touch, sound) in mathematics educa-

tion will transform the landscape of mathematical

discovery. And within modalities, there are new

affordances. Allowing users multi-touch offers

mathematical affordances. For example, each

touch can be an input. Such inputs can be

processed into one or more outputs thus

establishing a mapping of a set of inputs to

outputs with some well-defined rule or function –

a critical concept in mathematics still to be

fully utilized in mathematics classrooms today.

Figures 3 and 4 illustrate how such systems can

be integrated into elementary school classrooms

infusing social engagement from small groups to

whole class discussion via classroom networks.

Such forms of mediation have been broadly

described in mathematics education as semiotic

mediation which include embodied actions of

pointing, clicking, changing, grabbing, and drag-

ging parts of mathematical constructions (Falcade

et al. 2007). Such actions mediate between the

object and the user who is trying to make sense

of, or induce some particular attribute of, the dia-

gram or prove some theorem. In addition, such

mediation can be established within the social

setup of the classroom. Excellent summaries of

how theories of semiotic mediation have impacted

the design and implementation of certain technol-

ogies (e.g., computer algebra systems and dynamic

Information and Communication Technology (ICT)
Affordances in Mathematics Education,

Fig. 3 10-year-olds using iPads
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geometry) into mainstream classrooms can be

found in Drijvers et al. (2009) and more broadly

in Hoyles and Lagrange (2009).

In summary, information and communication

technology needs to be reconceptualized and

redefined in this digital era. Information and

communication need to be tightly integrated.

The affordances of such systems have been

described here in principle but need further inves-

tigation in terms of transforming the activity

domain and social landscape of the mathematics

classroom.

Cross-References

▶Technology and Curricula in Mathematics

Education
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Definition

Inquiry-based mathematics education (IBME)

refers to a student-centered paradigm of teaching

mathematics and science, in which students are

invited to work in ways similar to how mathema-

ticians and scientists work. This means they

have to observe phenomena, ask questions, look

for mathematical and scientific ways of how

to answer these questions (like carrying out exper-

iments, systematically controlling variables, draw-

ing diagrams, calculating, looking for patterns and

relationships, and making conjectures and general-

izations), interpret and evaluate their solutions,

and communicate and discuss their solutions

effectively.

The role of the teacher in such a setting is

different to traditional teaching approaches: peda-

gogies make a shift away from a “transmission”

orientation, in which teacher explanations, illustra-

tive examples, and exercises dominate, towards

a more collaborative orientation, in which students

work together on “interconnected,” “challenging”

tasks. Here, the teacher’s role includes making

constructive use of students’ prior knowledge,

challenging students through effective, probing

questions, managing small group and whole class

discussions, encouraging the discussion of alterna-

tive viewpoints, and helping students to make

connections between their ideas.

Sociopolitical Background

In recent years, IBME and generally IBE has met

a real success especially in educational policy

and curriculum documents but also in develop-

mental in-service and pre-service professional

development courses and projects. The reasons

for this wide popularity of IBE may be found in

the alarming decline in young people’s interest

for sciences and mathematics studies, attested in

most countries in the world, especially in Europe

and North America, as well as the poor results of

many countries in mathematics and science in

international evaluations like PISA. In Europe,

for instance, this led to political reactions at

various levels. A famous report known as

Rocard’s report (Rocard et al. 2007) incriminated

(among other causes) the “deductive approach,” in

which “the teacher present the concepts, their log-

ical – deductive – implications and gives example

of applications” resulting in students lacking inter-

est, considering science and mathematics to be

extremely difficult, and being not able to apply

their knowledge in bigger and maybe unfamiliar

contexts. Instead of this traditional education,

the experts advocate the promotion of IBE and

refer to Linn et al. (2004) to promote IBE:

“By definition, inquiry is the intentional process

of diagnosing problems, critiquing experiments,

and distinguishing alternatives, planning investiga-

tions, researching conjectures, searching for infor-

mation, constructing models, debating with peers,

and forming coherent arguments.” This led the EU

to invest a lot ofmoney to support research projects

to promote widespread dissemination of these

pedagogies in order to improve Europe’s capacity

for innovation. For more details on the different

European projects on the implementation of IBE,

see www.proconet-education.eu.
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Historical Background

Historically the importance of inquiry in educa-

tion is generally attributed to the American phi-

losopher and educator John Dewey (1859–1952).

In his book published in 1910, he acknowledged

the importance of inquiry in child’s attitude

towards science: “This scientific attitude of

mind might, conceivably, be quite irrelevant to

teaching children and youth. But this book also

represents the conviction that such is not the case;

that the native and unspoiled attitude of child-

hood, marked by ardent curiosity, fertile imagi-

nation, and love of experimental inquiry, is near,

very near, to the attitude of the scientific mind”

(Dewey 1910, p. iii).

Moreover Dewey insists on the process

through which inquiry develops: “There is conti-

nuity in inquiry. The conclusions reached in one

inquiry become means, material and procedural,

of carrying on further inquiries” (Dewey 1938,

p. 140). He also puts forward the importance of

action on objects, rather than language in scien-

tific thinking: “The authors of the classic logic

did not recognize that tools constitute a kind of

language which is in more compelling connection

with things of nature than are words [. . .] Genu-

ine scientific knowledge revived when inquiry

adopted as part of its own procedure and for

its own purpose the previously disregarded

instrumentalities and procedures of productive

workers” (Dewey 1938, p. 94).

Dewey’s perspective on education implies

a practice of teaching based on projects closely

linked to students’ life and interests and to

the development of inquiry habits of mind

considered as generic. However, the details of

Dewey’s work are usually diluted in more general

approaches, despite the relevance of his work for

contemporary reflection in education (Hickman

and Spadafora 2009). Historically, IBE at first

concerned sciences rather than mathematics. In

this sense, one major event was the publication of

the National Science Education Standards in the

USA in 1996. From there a wide spectrum of

IBSE approaches and practices emerged and

developed (Barrow 2006), with various defini-

tions that the 2000’s revised NSRS tried to sum-

marize in 5 points:

• Students create their own scientifically ori-

ented questions.

• Students give priority to evidence in

responding to questions.

• Students formulate explanations from evidence.

• Students connect explanations to scientific

knowledge.

• Students communicate and justify explanations.

In the PRIMAS project (www.primas.eu

2011) these are embedded in broader picture cap-

turing what could be meant by an inquiry-based

teaching practice in science and mathematics;

see Fig. 1.

IBME and Mathematics Education Research

The focus on inquiry in mathematics education is

more recent than in science. It is based on the

increasingly shared view that mathematics and

sciences education are closely connected, that

mathematics is not purely deductive, and that

mathematical concepts may be grasped through

some experimental practice. However, the migra-

tion in mathematics led to some specificities,

especially a strong connection with problem solv-

ing, a long tradition in mathematics education

(see, e.g., Rocard et al. pp. 9–10).

Although the term IBME has not been tradi-

tionally used, several research works and theories

in mathematics education can be linked to it.

Artigue and Blomhoej (Maass et al. in press)

have made an overview of these links offering

a well-documented and illustrated analysis. Even

if they do not claim of course to be exhaustive, they

reviewed several different trends and theories,

namely, problem-solving tradition, theory of

didactic situations, realistic mathematic education,

modeling perspectives, anthropological theory of

didactics, and dialogical and critical approaches.

These authors conclude this review by

a reflection on the possible conceptualization of

IBE in mathematics education. Such a theoretical

concern has been missing so far, due to the fairly

recent migration from science.

Evidences from Research of IBME Benefits

Considering the sociopolitical background, as

depicted above, the success of IBME as

a remedy to all problems is barely questioned.
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However, this issue is more complex when

approached from a research perspective. One

of the most extensive surveys was published

recently in the context of science (Minner et al.

2010), but it is also relevant for mathematics. It

took into account 138 studies (mostly in the USA)

published between 1984 and 2002 and tried to

evaluate the impact of IBL on students’ compe-

tencies in sciences. One of their first duties was to

develop a framework in order to measure the

level of IBL in the instructional intervention at

stake in each study. “In this framework, inquiry

science instruction can be characterized as hav-

ing three aspects: (1) the presence of science

content, (2) student engagement with science

content, (3) student responsibility for learning,

student active thinking or student motivation

within at least one component of instruction –

question, design data, conclusion or communica-

tion” (p. 478). Based on this framework, their

overall conclusion is that “the evidence of effects

of inquiry-based instruction from this synthesis is

not overwhelmingly positive, but there is a clear

and consistent trend indicating that [. . .] having

students actively think about and participate in

the investigation process increases their science

conceptual learning” (p. 493).

Concerning mathematics, there are also sev-

eral studies that point some various positive

effects of IBME on students’ achievements,

motivation, autonomy, flexibility, etc. There has

also been a concern on the type of students for

whom IBME could be more beneficial, but these

studies lead to a mosaic of evidences from which

it is not always easy to draw some general con-

clusions. Yet, an overview of these results with

references to several studies can be found in the

article by Bruder and Prescott in (Maass et al. in

press). Furthermore, the political pressure due to

the supposedly radically positive effects of IBME

on students’ achievements in and motivation for

mathematics is an opportunity for the implemen-

tation of IBL in day-to-day teaching but may also

elude some research necessity. Still large-scale

studies on the implementation of IBL and its

effects in mathematics education are missing.

Research on Teachers’ Practices

Regarding IBME

In spite of research evidences and political pres-

sure, IBME remains quite marginal in day-to-day

mathematics teaching and often limited to softer

versions compared tomore ambitious experiments.

This raises the issue of the role to be given to IBME

in teachers’ training and professional development

courses, based on research works on teachers’

practices (see, for instance, the ICMI study

(Even and Ball 2009) or Grangeat (2011)

Essential ingrediens in inquiry based education

Teacher guidance
• Values and builds upon students’

  reasoning/scaffolding

• Connects to students’ experience

What students do
• Pose questions

• Inquire / 5 e’s engage, explore,

  explain, extend, evaluate

• Collaborate

Classroom culture
• Shared sense of purpose / justification

• Value mistakes, contributions (Open-minded)

• Dialogic

• Shared ownership

Valued outcomes
• Inquiring minds

• Prepared for uncertain future

  and life long learning

• Understanding of nature of science & math

Type of questions
• Open, multiple solution strategies

• Experienced as real and/or

  scientifically relevant

Inquiry-Based

Mathematics Education,
Fig. 1 The working
definition of IBE in the
PRIMAS project
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and the results of the European project S-team

http://www.s-teamproject.eu/). In particular, it

seems essential (yet not sufficient) that teachers

have a chance to experience this type of teaching

personally in their own mathematical or profes-

sional training; in other words, the paradigm of

inquiry could serve as a model for designing

activities with trainees. This issue is specifically

stressed in research works on communities of

inquiry (see, e.g., Jaworski et al. 2007) or the

model of lesson studies in Japan (see, e.g.,

Inoue 2010).

Another concern is that professional develop-

ment courses need to start off from teachers’

needs, to be relevant to day-to-day teaching, and

should engage teachers in reflecting on their

teaching practice and on their beliefs on what

they consider as good mathematics education.

This is also important in relation to the teachers’

need for legitimacy in relation to students,

parents, and colleagues.

In order to be effective, professional

development courses need to develop on a long-

term perspective, allowing teachers to learn about

inquiry-based education, to try out inquiry-based

pedagogies in their teaching, and to reflect on it in

the next meeting. However, including IBME in

pre- and in-service teacher education is not suffi-

cient to establish a sustainable teaching practice in

mathematics in which IBL plays a substantial role.

Systemic support from school policy is of course

crucial. In particular, curricula and external assess-

ment need to include some inquiry dimension;

more information is to be found in the article by

Maass and Doorman (Maass et al. in press).
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Characteristics

Richard Skemp (1919–1995) was a British math-

ematics educator and educational psychologist

who was very prominent in the field of

mathematics education in the 1970s. Skemp’s

writings [particularly his two books – The

Psychology of Learning Mathematics (1971)

and Intelligence, Learning, and Action (1979)]

articulated a theory of intelligent learning, in

which relational and instrumental understanding

played a prominent role. Skemp first popularized

the terms relational and instrumental understand-

ing in an article published in 1976 in Mathemat-

ics Teaching. This article was subsequently

published in the United States in 1977 in the

Arithmetic Teacher (a professional journal

published by the American organization National

Council of Teachers of Mathematics) and also

included as a chapter in an expanded American

edition of The Psychology of Learning

Mathematics, published in 1987.

According to Skemp, credit for the

origination of the terms relational and instrumental

understanding should properly go to Stieg Mellin-

Olsen (1939–1995). Mellin-Olsen was a Norwe-

gian mathematics educator and theorist who

(like Skemp) was very prominent in mathematics

education internationally for many years. The

instrumental/relational distinction appears to have

been originally proposed byMellin-Olsen and then

was explored in more depth in a comparative study

of English and Norwegian mathematics curricula

on which Skemp and Mellin-Olsen collaborated

(Skemp and Mellin-Olsen 1973, as cited in

Mellin-Olsen 1981).

In introducing the terms relational and instru-

mental understanding, Skemp notes that while

understanding may be a commonly stated goal

for both teachers and students in mathematics

education, this term can actually hold multiple

meanings. Skemp writes that many math educa-

tors likely conceptualize understanding as he

does, as knowing what to do and why, which he

refers to as relational understanding. In contrast,

he points out that some students and teachers

may have a different way of thinking about

understanding – more akin to rules without

reasons or what he calls instrumental understand-

ing. Skemp notes that instrumental understanding

was not something that he had previously consid-

ered to be understanding at all.

Other than providing the memorable phrases

knowing what to do and why (for relational) and

rules without reasons (for instrumental), Skemp

does not provide an explicit or elaborated

definition of relational and instrumental under-

standing. However, it is possible to extrapolate

what he appears to mean with these terms through

a close reading of this seminal work. Instrumental

understanding involves “memorising which

problems a method works for and which not,

and also learning a different method for each

new class of problems” (Skemp 1987, p. 159), is

a desire to know “some kind of rule for getting

the answer” (p. 155) so that a student can “latch

I 304 Instrumental and Relational Understanding in Mathematics Education

http://www.eesc.europa.eu/?i=portal.en.lso-observatory-documents-background-documents.9003
http://www.eesc.europa.eu/?i=portal.en.lso-observatory-documents-background-documents.9003
http://www.eesc.europa.eu/?i=portal.en.lso-observatory-documents-background-documents.9003


on it and ignore the rest” (p. 155), involves

knowing “a multiplicity of rules rather than

fewer principles of a more general application”

(p. 155), is about developing “proficiency in

a number of mathematical techniques” (p. 156),

may be potentially useful in the short term but in

the longer term is quite detrimental, and generally

involves conceiving of mathematics as a set

of isolated, unrelated set of techniques (“fixed

plans” (p. 162)) which should be memorized.

Relational understanding is described in even

less detail – but with the clear assumption that

relational is defined by what all that it is not – as

the opposite of instrumental. A person with rela-

tional understanding has developed a “mental

map” (p. 162) or “conceptual structure” (p. 163)

of the mathematics that he/she is learning.

Note that in his writings, Skemp uses the

adjectives relational and instrumental to modify

a host of different nouns. Most prominently,

Skemp writes about relational and instrumental

understanding, to describe kinds of knowledge

that learners may develop. Similarly, Skemp also

writes about relational and instrumental knowl-

edge, as well as relational schemas. In addition,

Skemp writes about instrumental and relational

mathematics, to suggest that (for example) the

mathematics that is taught when a teacher holds

instrumental goals for student learning is quite

different from the mathematics that is taught

when the teacher holds relational goals for

student learning. Skemp also uses the phrases

relational and instrumental thinking, which

seem to be used synonymously with understand-

ing. In one instance Skemp refers to relational

mathematicians, which appears to refer to

mathematicians who use relational thinking.

Finally, by implication Skemp also writes about

relational and instrumental teaching, where

relational teaching seeks the development of

relational understanding and instrumental teaching

seeks instrumental understanding.

Although Skemp was clearly a proponent of

relational understanding, given the prevalence of

teaching geared toward instrumental understand-

ing, he attempts to articulate what might be some

benefits of thinking instrumentally. First, he notes

that it is usually easier to develop instrumental

understanding; “if what is wanted is a page of

right answers, instrumental mathematics can

provide this more quickly and easily” (Skemp

1987, p. 158). Second, instrumental understand-

ing can provide a more immediate and apparent

set of rewards, provided one applies rules

correctly to generate correct answers. Third,

instrumental thinking often leads to the correct

answer more quickly and reliably than relational

thinking. As a result, Skemp notes that, “even

relational mathematicians often use instrumental

thinking” (p. 158). (He notes that, “This is a point

of much theoretical interest, which I hope

to discuss more fully on a future occasion”

(p. 158), although there is no evidence that he

returned to this particular topic in his later

writings.)

In terms of the advantages of relational under-

standing, Skemp notes four. First, Skemp claims

that relational understanding is more adaptable –

meaning that relational knowledge can allow

students to be able to modify a known problem-

solving strategy so that it is helpful for solving

unfamiliar problems. Second, Skemp notes that

while relational mathematics is harder to learn, it

is easier to remember. While instrumental think-

ing necessitates remembering a large number of

rules, relational thinking involves also knowing

how all of the rules are interrelated, and Skemp

claims that knowing these interrelationships

between rules (“as parts of a connected whole”

(Skemp 1987, p. 159)) results in longer-lasting

learning. Third, Skemp claims (based on evi-

dence from uncited “controlled experiments

using non-mathematical material” (p. 159)) that

relational learning requires fewer extrinsic

rewards and punishments to learn. And fourth,

Skemp claims that the development of relational

knowledge leads learners to seek out new

knowledge and continue to learn relationally.

Although he articulates advantages of both

instrumental and relational understanding and

also notes the presence of many contextual and

situational factors in schools that may push

teachers toward advocating instrumental under-

standing, Skemp clearly advocates for relational

understanding. He describes a personal anecdote

where the benefits of relational understanding,
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and how it differs from instrumental learning,

became very clear to him. While in a strange

town to meet with a colleague, Skemp notes that

he learned a small number of routes for getting

around, such as between his hotel and his friend’s

office and between his hotel and the university

dining hall. Knowledge of these set of fixed

routes or plans was certainly quite useful. But

when he had free time, he began to explore –

not explicitly to learn new routes between points

of interest but rather to “learn my way around”

(Skemp 1987, p. 162) and see what might be of

interest. His goal for exploring the town was to

“construct in my mind a cognitive map of the

town” (p. 162). Although an observer viewing

Skemp walking around town might not be able

to distinguish the differences between these two

types of activities, for Skemp these activities had

very different goals. In the first case, the goal was

merely to get from point A (e.g., his hotel) to

point B (his friend’s office). But in the second

case, his goal was to further develop his knowl-

edge of the town. Skemp connects the first kind of

activity with instrumental understanding, where

one develops a set of fixed plans that enable one

to reach a certain set of goals. These plans pro-

vide a prescription for what to do next – e.g., take

the second right and cross the street by the cafe.

Each step of the plan is guided solely by the local

situation – the instruction “take the second right”

is only useful and comprehensible when one has

correctly completed all immediately preceding

steps. As a result, one is very limited in what

can be accomplished in terms of navigating

through the town, given such a small and fixed

set of plans. In contrast, the second kind of activ-

ity is similar to relational understanding, in that

the development of a mental map of the town

could enable Skemp to travel from any starting

point to any ending point in the town.

In addition to advocating a focus on relational

understanding, Skemp also notes that he con-

siders it potentially problematic when students

and teachers hold mismatched views on what

understanding means – such as when teachers

desire that students develop relational under-

standing, while students only seek instrumental

understanding (and vice versa). Similarly,

teachers might hold a different view of under-

standing than the text that they are using.

Skemp proposes that such mismatches are

endemic and often unrecognized by mathematics

educators.

It is worth noting that, since the mid-1980s,

mathematics educators have come to rely upon

a different terminological framework for describ-

ing mathematical understanding. Instead of

Skemp’s relational and instrumental understand-

ing, Hiebert’s conceptual and procedural knowl-

edge (Hiebert and Lefevre 1986) has become

dominant in both the research and policy arenas.

These two terminological distinctions are not iso-

morphic (Haapasalo and Kadijevich 2000; Star

2000). In addition, some scholars have raised

concerns about the terminological distinction

between conceptual and procedural knowledge,

including whether this framework has resulted

in misunderstandings and misplaced priorities

(Star 2005, 2007) as well as communication and

collaboration difficulties between different groups

of scholars who study mathematical understanding

(Star and Stylianides 2013).

The field currently lacks consensus on which

framework(s) are optimal, but clearly Skemp’s

notion of instrumental and relational understand-

ing will and perhaps should continue to be widely

used by mathematics educators throughout the

world for advancing important conversations

about mathematical understanding.
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Definition

In order to define instrumentation in the context of

mathematics education, it is necessary to define

instruments: at this stage of this article, we do not

differentiate between instruments and artifacts, i.e.,

we regard them as things that are created and used

by humans to help, assist, support, enlarge, and

empower their activity. Instrumentation is the

action to give someone an instrument, or the pro-

cess by which someone acquires an instrument, in

order to perform a given activity. The notion of

instrumentation is part of a network of concepts;

we will focus here on the main dialectical relation-

ships between them.

Instrumentation and Instruction

Contrary to the common perception thatmathemat-

ics is a pure mental activity, the importance of

instruments in mathematical activity has been

largely acknowledged: “the development of math-

ematics has always been dependent upon the mate-

rial and symbolic tools available for mathematics

computations” (Artigue 2002, p. 245). What is true

in general is all the more true for these essential

parts of mathematical activity that are “teaching

and learning mathematics.” Proust (2012), for

example, noticed the richness of school material

already available for teachingmathematics inMes-

opotamia, 4,000 years ago: “the resources of mas-

ters result therefore from a complex and two-way

process between learning and scholarship, involv-

ing memory, oral communication, writing, and

probably material artifacts” (p. 178).

In a survey conducted for the centennial of

ICMI, Maschietto and Trouche (2010) provided

evidence that the interest in and influence of instru-

ments for mathematics teaching and learning had

been questioned for a long time. For example, in the

case of ICT, they noticed that “the ease and speed of

computations disrupt the organization ofmathemat-

ical work: when a computation is long and difficult,

it is necessary to be sure of its relevance before

tackling it; whereas, when a computation can be

made by simply pushing a key, it is possible to store

sets of results, and only afterwards embark on the

process of sorting them, according to the objectives

associated with the task in hand” (p. 34).

This leads us to a comprehensive viewon instru-

mentation, seen not only as an action (by which

someone acquires an instrument) but also as the

influence of this action on a subject’s activity and

knowledge. This view is coherentwith the origin of

the word: instrument and instruction have the same

Latin root “instruo,” meaning to build and to
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assemble. This view is in line with Vygotsky’s

work, situating human activity in a world of history

and culture, where the instruments, psychological

as well as material, are essential. Vygotsky (1962)

quoted Francis Bacon (1600) saying: “Nec manus,

nisi intellectus, sibi permissus, multam valent:

instrumentis et auxilibus res perficitur” (human

hand and intelligence, alone, are powerless: what

gives them power are instruments and assistants

provided by culture – our translation). Vygotsky

(1981) wrote also that “by being included in the

process of behavior, the psychological tool alters

the entire flow and structure of mental functions. It

does this by determining the structure of a new

instrumental act, just as a technical tool alters the

process of a natural adaptation by determining the

form of labor operations” (p. 137).

With more and more complex instruments

(e.g., calculators) being used in the mathematics

classroom, mainly used by students, it has

become clear that this process of “alteration”

needs to be further investigated. Tools contribute

to the shaping of students activities (Noss and

Hoyles 1996) – and to associated knowledge.

Guin and Trouche (1999) found that students’

answers to the question “Does the f function

defined by f (x) ¼ ln x + sin x have a limit + 1
as x approaches +1?” depended to a large extent

on the environment.

If students had a graphic calculator, due to the

oscillation of the observed graphical representa-

tion (Fig. 1), 25 % of them answered that this

function had no limit. Within a group of students

of the same level without a graphic calculator, only

5%ofwrong answerswere collected. The students’

work was thus altered by a “confusing” graphical

representation of the function, a representation

which was understood as the true mathematical

object, encapsulating, for the students, all its

properties.

This type of phenomena in new technological

environments was studied at the end of the last

century (e.g., Lagrange et al. 2003), and based

on this research, a theoretical approach focusing

on the link between mathematics instrumentation

and instruction emerged.

The Dialectical Relationships Between

Artifact and Instrument

The need for a theoretical approach of instrumen-

tation led researchers in mathematics education

to turn towards scientific domains researching

instruments and cognition, in particular the field

of cognitive ergonomic. Verillon and Rabardel’s

studies (1995) followed the work of Vygotsky’s

theorization, focusing on learning processes

involving instruments. They stressed the essential

difference between an artifact (given to a subject

or acquired by him) and an instrument as

a psychological construct: “The instrument does

not exist in itself, it becomes an instrument when

the subject has been able to appropriate it for him-

self and has integrated it” (p. 84). In this frame, an

instrument can be considered as a mixed entity

made up of an artifact component (an artifact or

the part of an artifact mobilized in the activity) and

Instrumentation in

Mathematics Education,
Fig. 1 A confusing
(for some students)
representation of the
function ln x + sin x
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a cognitive component (what a subject learned

from/for using the artifact in this context). The

development of an instrument is a complex pro-

cess, which Verillon and Rabardel coined instru-

mental genesis. They claim that this process needs

time and influenced by the artifact’s characteristics

(its potentialities and its constraints), to the sub-

ject’s history (his/her knowledge and former

method of working) and to his/her activity, when

working with a problem to be solved. Following

this approach, one can generally speak of “an arti-

fact” (e.g., a hammer or a calculator), but one has to

be more specific when talking about an instrument:

the instrument of somebody, for performing

a given type of task, at a given step of its

development.

This frame leads us to clarify our initial defi-

nition: instrumentation is the action by which

a subject acquires an artifact, and the effect of

this action on the subject, who develops, from

this artifact, an instrument for performing a task.

An instrument is thus made up of an artifact

component and a cognitive component (knowl-

edge necessary for/from using the artifact for

performing this type of task).

In the field of mathematics education, several

French researchers (e.g., Guin and Trouche 1999;

Artigue 2002) appropriated this theoretical

framework for analyzing the effect of the integra-

tion of ICT (e.g., Computer Algebra System) in

mathematics learning (Fig. 2).

They developed what became internationally

known as the instrumental approach of didactics

of mathematics (Guin et al. 2005), in interaction

with other theoretical approaches (Drijvers et al.

2012). This approach has the following advantages:

– It situates the effects of artifacts not as “para-

sites,” but as essential components of learning

processes (Fig. 2) to be integrated by the teacher.

– It leads, through the notion of genesis, to the

analysis of instrumentation and learning as

long-term processes.

– The notion of genesis leads to consider an

instrument as something living: it was born

“to do something” and goes on living across

a field of mathematical problems.

Finally, this approach leads to consider instru-

mentation at the heart of the “dialectics between

technical and conceptual work” (Artigue 2002).

Drijvers (in Guin et al. 2005) illustrates this dia-

lectics by showing how a student uses a calculator

for solving a system of two equations with two

unknown. He extracts y from the first equation

and then replaces the expression of y (function of

x) in the second equation and finally solves this

equation containing only one unknown, x. The

action developed by the student (Fig. 3) can

appear as a sequence of gestures (isolate-substi-

tute-solve) on the keypad of the calculator, but it

requires considerable knowledge.

For example, “the fact that the same solve

command is used on the TI-89 for numerical

solutions and for the isolation of a variable

requires an extended conception of solve: it also

stands for taking apart a variable and for

expressing one of the variables in terms of one

or more others in order to process it further”

(Drijvers et al. 2010, p. 227). Each instrumental

genesis thus appears both as a process of appro-

priating an artifact for doing something and

a process of learning something on mathematics.

Learning new things in mathematics could

engage new ways of using the artifact: beyond

the instrumentation process, there is actually

a dialectic relationship between an artifact and

An artifact

its potentialities

its constraints
his knowledge

Reorganization

of the activity

with and without

the artifact

A subject

An instrument

Instrumental genesis

(through learning, problem

solving...)

Instrumentation in Mathematics Education,

Fig. 2 A schematic representation of an instrumental
genesis (Guin and Trouche 1999, p. 202)
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the instrument developed by its integration

through the subject’s activity.

An Essential Dialectic Relationship Between

Instrumentation and Instrumentalization

Looking at Fig. 2, it clearly appears that, at the

root of each instrumental genesis, there are two

“protagonists”: an artifact and a subject. Up to

now, we have just considered the effect of the first

one on the second (more exactly: the effect on the

subject acquiring the artifact in terms of his/her

activity and knowledge), that is to say, the instru-

mentation process. Yet Verillon and Rabardel

(1995) consider that instrumental geneses are

made up of two interrelated processes:

– An instrumentation process (directed towards

the subject)

– An instrumentalization process (directed

towards the artifact)

This second process appears on the schema

representing an instrumental genesis (Fig. 4).

It has been described by Guin et al. (2005,

p. 156), in the case of calculators: “This process

is the component of instrumental genesis directed

towards the artifact. Instrumentalization can go

through different stages: a stage of discovery and

selection of the relevant functions, a stage of

personalization (one fits the artifact to one’s

hand) and a stage of transformation of the artifact,

sometimes in directions unplanned by the

designer: modification of the task bar, creation

of keyboard shortcuts, storage of game programs,

automatic execution of some tasks (calculator

manufacturers’ websites and personal web sites

of particularly active users often offer programs

for certain functions, methods and ways of

solving particular classes of equations etc.).

Instrumentalization is a differentiation process

directed towards the artifacts themselves.”

However, this process remained quite hidden

in the first studies analyzing the integration of

ICT in mathematics education in light of instru-

mental approach of didactics. For example, in

Instrumentation in Mathematics Education, Fig. 3 The result of a sequence of gestures (isolate-substitute-solve)
on the keypad of a calculator, as it appears on its screen

An artifact

Its constraints

Its possibilities

A subject

Her/his knowledge

Her/his work method

Instrumentation

Instrumentalization

An instrument “to do something”

Part of the artifact + schemes

Instrumentation in Mathematics Education,

Fig. 4 Instrumentation and instrumentalization, seen as
two essential components of instrumental geneses (Guin
et al. 2005). An instrument is here defined as a mixed
entity composed of a part of the artifact and a scheme,
a scheme being, according to Vergnaud (1996), the invari-
ant organization of activity to perform a type of task,
including rules of action and specific knowledge, product
and spring of the activity
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Artigue’s seminal work (2002), the word instru-

mentation is quoted 20 times (and appears in the

title), while the word instrumentalization is

quoted only one time (and is not practically

used in the didactical analysis). This can be

explained by the following: firstly, the instrumen-

tal approach of didactics has been developed for

analyzing the unexpected effects of artifacts

on students’ mathematics learning, giving to

instrumentation processes a major importance;

secondly, the artifacts at stake (as Computer

Algebra System or Dynamic Geometry Software)

were complex and quite closed – in these condi-

tions, the effects of student’s action on the given

artifacts did not appear at a glance; they were

hidden (e.g., using a calculator to store games).

There is perhaps a third, deeper reason linked to

a first “classical” reading of Vygotsky, as

Engeström et al. (1999, p. 26) pointed out: “Both

in the East and in the West, it has been almost

a truism that internalization is the key psychologi-

cal mechanism discovered by the cultural-historical

school [. . .] Symptomatically, Vygotsky’s writings

that deal with creation and externalization, espe-

cially the Psychology of art, have received very

little attention. And it seems to be all but forgotten

that the early studies led byVygotsky, Leont’ev and

Luria not only examined the role of given artifacts

asmediators of cognition but were also interested in

how children created artifacts of their own in order

to facilitate their performance.”

In subsequent studies (e.g., Trouche and

Drijvers 2010), instrumentation and instrumenta-

lization appear to be mentioned in a more balanced

way, as two inseparable ingredients of every instru-

mental genesis. This evolution is linked to several

factors: a better mastering of the instrumental

approach, perceiving the relationship between arti-

fact and subject as essentially dialectic; a deeper

and more comprehensive view of “appropriation

processes” (to appropriate something means to

make something proper, to customize it); and

a wider view of what an artifact is (} 5).

This leads us to reformulate our initial defini-

tion: instrumentation and instrumentalization are

two intrinsically intertwined processes constitut-

ing each instrumental genesis, leading a subject to

develop, from a given artifact, an instrument for

performing a particular task; the instrumentation

process is the tracer of the artifact on the subject’s

activity, while the instrumentalization process is

the tracer of the subjects’ activity on the artifact.

From a Set of Artifacts to a System of

Instruments: The Crucial Notion of

“Orchestration”

We have, up to now, explained the dynamics

of making one instrument from one artifact.

Actually, the situation is a more complex, for at

least two reasons:

– Firstly, a student has a set of artifacts (. . .) at

his/her disposal, for performing a particular

task (paper/pencil, rule, compass, calculator).

A single computer can be considered as

a toolbox, including a set of artifacts (e.g.,

CAS, spreadsheet, word processing). The

trend of digitalization is at the same time

a trend of miniaturization, a trend of gather-

ing very different artifacts in the same enve-

lope (e.g., MP4 or digital tablet), and a trend

of facilitating the switch from one represen-

tation to another, from one application to

another. Under these conditions, for each

type of task, a student will develop an instru-

ment, by using and appropriating several

artifacts. Beyond the treatment of one type

of task (solving a type of equation, studying

a type of function, etc.), each mathematical

problem usually requires the simultaneous

activation of several instruments, related to

several types of tasks. A student needs to

develop, from a set of artifacts, a coherent

system of instruments. The combination and

articulation of several instruments demand

a command of the process (Trouche 2004)

and requiring assistance from the teacher.

– Secondly, the development of an instrument

by a given subject is never an isolated process.

The instrumental geneses always combine

individual and social aspects. Particularly in

a teaching context, students usually have to

face the same type of task at a given moment,

and they simultaneously develop their instru-

ments in the same context. That requires

another level of combination of different

instruments by the teacher.
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The necessity of combining, on a coherent

manner, different instruments in action leads to

the notion of instrumental orchestration. Trouche

(2004) has introduced this concept to model the

work of a teacher taking into account, when

designing her teaching, the set of artifacts avail-

able for each student and for the classroom, and

the stage of development of the different students’

instruments. As in the case of an orchestra,

an instrumental orchestration stands to make the

different student instruments playing together with

the same objective (execute a work or solve

a problem). Designing an orchestration needs

to carefully choose a mathematical problem,

according to the didactical goals, to anticipate the

possible contribution of the artifacts to the prob-

lem solving, and to anticipate, in this context, the

possible instrumentation of students by these arti-

facts. An orchestration appears thus as a musical

score, pinpointing different phases for the problem

solving and, in each phase, the monitoring of

the various artifacts (how the artifacts could be

mobilized by the students and by the teacher).

Drijvers et al. (2010) deepened this notion,

showing the necessity, for the teacher, to adjust,

on the spot, her monitoring of the artifacts: they

named “didactical performance” the way a teacher

adjust her orchestration due to her understanding

of the stage of development of each student instru-

ment. Actually, orchestrations appear thus as

resources assisting teacher activity, developing

into teachers instruments through the two pro-

cesses of instrumentation and instrumentalization

(the didactical performance being, in this point of

view, an expression of instrumentalization).

Conclusion: From Student Instrumentation to

Teacher Instrumentation

Starting from a learner’s instrumentation point of

view, we would like to conclude this article by

a teacher’s professional development point of

view, asking the question: what elements are

instrumenting a mathematics teacher activity? Cer-

tainly these are textbooks, different software (ded-

icated, or not, to mathematics), various repertoires

of mathematical problems and orchestrations (see

above), but also students’ reactions, colleagues’

comments, and, in the thread of digitalization,

much more: Gueudet and Trouche (2009)

pinpointed this dramatic change in teachers’ inter-

actions, using emails, websites, forum, blogs, etc.

Gueudet and Trouche (ibidem) took into

account this metamorphosis and enlarged the

instrumental approach: they named “resources”

(instead of artifacts) all the “things” that are

supporting teacher activity and “documents”

what is developped by a teacher to do and in

doing her teaching (instead of instruments). This

is in line with the field of information architecture

(Sala€un 2012) where documents are developed

by teachers from these resources, for performing

their teaching. This new approach, combined

with other approaches of the field (Gueudet

et al. 2012), appears as a blossoming develop-

ment of the instrumental approach, allowing to

fully express the potentiality of this concept:

– The instrumentalization processes are strongly

reinforced, a teacher collecting, modifying,

and adjusting resources to build the material

of his/her teaching; instrumentation and

instrumentalization clearly developed as two

interrelated processes.

– The social aspects are also strongly stimu-

lated, the Internet offering a lot of opportuni-

ties to exchange and share resources;

individual and social aspects of document

geneses clearly appear as feeding each other.

We have underlined in this article some

main dualities: instrumentation/instruction, arti-

fact (vs. resource)/instrument (vs. document),

and instrumentation/instrumentalization. They

appear at the heart of each process of learning –

and of human development.
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Definition

Symbolic Interactionism and Ethnomethodology

are sociological approaches that are based on

the social psychology of George Herbert Mead

and the phenomenological sociology of Alfred

Schutz (Schutz 1932/67; Alfred Sch€utz is of

German origin and his family name is originally

written with the German umlaut “€u”. In

publications in German his name appears in its

orgininal spelling). The empirical interest is the

immediate concrete situation of the communica-

tive exchange between individuals. Goffman

calls this the “situational perspective,” meaning

a focussing on the occurrence to which an indi-

vidual can be “alive to at a particular moment”

(Goffman 1974, p. 8). These everyday episodes

are governed by symbolic interaction: the

meanings that people ascribe to things and events

are developed and modified in an interactive pro-

cess of negotiation of meaning based on the

situational interpretations of the symbols used

in their remarks (Blumer 1969).

Ethnomethodology focusses on the aspect by

which means or “methods” the participants of

a social situation accomplish their negotiations,

how they achieve a “working consensus” about

what is momentarily taken as shared. Character-

istic for this approach is the identification of the

“activities whereby members produce and

manage settings of organized everyday affairs”

as well as their “procedures for making those

settings ‘accountable’ (Garfinkel 1967, p. 1).

This identification is one of the basic ideas

of ethnomethodology and firms under the

concept of “ethnomethodological reflexivity” or

“indexicality.”

The general achievement of this type of

research is the development of contextual

theories which take into account the oral and

processual, the specific and nonconformist, the

local and domain-specific, and the historical

and biographical. Abandoning decontextual

theories is not meant to be an abandonment of

research based on scientific standards. It is

rather a shift to the empirically grounded devel-

opment of “middle-range-theories” (Merton

1968, p. 50f).

The research methods of these approaches are

characterized by two issues: they are reconstruc-

tive in the sense of redrawing the process of

negotiation of meaning, and they are interpreta-

tive in the sense that they use hermeneutic

methods of interpreting the interpretations of

actors in a concrete situation that allow them

to come to a working consensus with the other

participants. Usually these methods are based

on transcripts of audio or video recordings.

Widely used is the technique of conversation

analysis.

Both approaches are subsumed under what is

called “micro-sociology,” the foremost interest

being the here and now as people interact with

each other and create social reality. They accom-

plish this in their everyday affairs by talking with

each other in symbolic ways about this reality,

which in this sense is not (pre-)given but a result

of their negation of meaning. Social reality

comes into existence in a series of such “local

productions.” “They understand society to be

something that is lived in the here and now,

in the face-to-face and mediated interactions

that connect persons to one another” (Denzin

1992, p. 22).

Reception of Symbolic Interactionism and

Ethnomethodology in Mathematics

Education

In mathematics education usually these two

sociological approaches are included under

the concept of micro-sociology and/or rather

unspecifically as the theoretical foundation for

interpretative research. Historically, one can

identify at least two sources that adapted these

two sociological approaches in an attempt

to overcome certain specific limitations of

traditional psychologically oriented theories in

mathematics education:

• Bauersfeld (1980) describes the limitation of

attempts of curriculum implementation as far

as they are based on a combination of subject

matter theories and psychological assump-

tions about students’ learning. This combined

approach does not sufficiently take into

account the dynamics of the everyday mathe-

matics classroom life. Bauersfeld speaks of
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the “hidden dimensions” of the mathematics

classroom. The “arena of interaction” with its

patterns of interaction, routines, and interac-

tive stereotypes creates a classroom reality

that often is counterproductive to the well-

meant intentions of teacher, schoolbook

author, and/or curriculum developer. Most

influential in this respect was the study of

Mehan (1979). He describes a fundamental

interaction pattern in teacher-guided lessons:

initiation–reply–evaluation. Based on this

initial work, several “patterns of interaction”

had been reconstructed in everyday mathe-

matics classroom situations, such as the

“funnel pattern” by Bauersfeld (1980) or the

“elicitation pattern” and various “thematic

patterns.”

• The second approach is an adaption of Steffe’s

“teaching experiment” (Steffe et al. 1983) to

the conditions of a classroom situation with

a larger group of students by Wood et al.

(1993). Steffe’s research design is a form

of individual teaching of one researcher

with one child. Wood et al. expand this

approach to the regular classroom setting

with 20 or more students and one teacher.

The authors call this a “more naturalistic”

access to mathematics learning situations

(Wood et al. 1993, p. 8). They understand

the learning of mathematics as an active

process of problem solving whereby the

constrains and contradictions of this process

emerge in the classroom interaction. The

enhancement of these interaction processes

depends on “socio-mathematics norms”

(Wood et al. 1993, p. 23), which also must

be negotiated in these processes.

Perspectives for Future Research

There are several perspectives for current or

future research that are based on Symbolic

Interactionism and/or Ethnomethodology. Tak-

ing the specific demands of mathematics

education into account, usually the application

of these two theories is intertwined with

additional approaches: a subject matter-oriented

curriculum theory, psychological theories of

learning, or pedagogical theories of mathematics

teacher education. The reference to Symbolic

Interactionism and/or Ethnomethodology is

more or less transparent. In the following these

diverse research activities will be described with

respect to:

• Sociological aspects of a theory of mathemat-

ics learning

• A combination and expansion of Symbolic

Interactionism and Ethnomethodology with

other socio-constructivist theories

Sociological Aspects of a Theory of Mathematics

Learning

From a mathematics education perspective,

a major interest in applying these two micro-

sociological approaches lies in the further

elaboration of a theory of mathematics learning

that constitutively takes into account the interac-

tional aspects of the social conditions ofmathemat-

ics teaching and learning situations. Primarily,

this leads to research about typical patterns of

interaction in mathematics classes as already men-

tioned above. Thus, the concept of learning evolves

in away that the sociological dimension of learning

is more intensively stressed: learning is not (only)

to be conceptualized as acquisition of knowledge,

but it also can be understood as the individual’s

process of incrementally participating in mathe-

matics discourses (Sfard 2008).

Explanation and justification and their

specific demands are often named as major fea-

tures of these discourses. Various studies about

the “culture of argumentation” in mathematics

teaching and learning situations have been

conducted.

Within this framework of sociological

aspects of a theory of mathematics learning,

as a specific interest one can identify the use

of the computer and Internet in mathematics

classes. Also here symbolic interactionist

and ethnomethodological research projects

have been conducted or are still in process

(Jungwirth 2005).

The fundamental research setting is the mathe-

matics classroom. This research is complemented

by studying mathematics learning situations in pre-

school and kindergarten, in families, and at the

college level. Another research strand can be
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identified in the observation of specific groups

of students in regular classroom situations

focussing, for example, on small group

activities or on second-language learners in

mathematics classrooms.

Combination and Expansion of Symbolic

Interactionism and Ethnomethodology with

Other Theoretical Approaches

The main research interest of symbolic

interactionist and ethnomethodological research

is concerned with the verbal aspects of social

interaction leading to such general philosophical

and linguistics questions as to the nature of

language in mathematics and mathematics teach-

ing/learning situations. An expansion of these

theoretical aspects is found, for example, in

the embedding of inscriptional aspects of

mathematics communication or in the study

of the aspect of gesture in such interaction

processes.

Research adhering to the principles of

Symbolic Interactionism and Ethnomethodology

can be characterized as one that is based on

a socio-constructivist position. Typical for these

two approaches is the view of social reality as

a series of local productions (see above). As such

they are resistant to approaches that search for

general theories (Denzin 1992, p. 22) that are

more abstracted from the individual’s context

and environment. In this respect these two

theories differ from cultural historical approaches

that usually refer to the work of Vygotsky

and Leont’ev. A current research endeavor

is the integration of these two schools of

socio-constructivism (for first attempts see

Krummheuer 2012).
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Introduction

In the history of humanity, early forms of labor

that provided for the satisfaction of basic needs –

food, shelter, and clothing – gave rise to new,

specialized forms through a progressive division

of labor. Disciplines emerged – first stonemasons,

farmers, and tailors and then mathematicians and

mathematics teachers. Those who were highly

skilled in one discipline were less so or had no

skills in other disciplines. Eventually, theoretical

disciplines emerged such as when some master

craftsmen began to specialize in making building

plans and others turned these plans into real build-

ings. Today, there is often very little communica-

tion between the disciplines, each of which forms

a disciplinary “silo.” The idea of interdisciplinar-

ity is to combine multiple (academic) disciplines

into one activity. Whereas this may appear to be

simple and straightforward, in practice it turns out

that those participating in an interdisciplinary

endeavor often find it difficult to work with others

across traditional disciplinary boundaries. Never-

theless, interdisciplinarity involving mathematics

education has become of considerable interest to

some mathematics educators (e.g., Sriraman and

Freiman 2011).

Definition

Interdisciplinarity denotes the fact, quality, or

condition that pertains to two or more academic

fields or branches of learning. Interdisciplinary

projects tend to cross the traditional boundaries

between academic disciplines.

Interdisciplinarity and Mathematics
(Education)

The very idea of an (academic) discipline

embodies strength and weaknesses. On the one

hand, discipline means orderly conduct that is

the result of physical and mental discipline.

Considerable discipline in the second sense of

the word is required to be and become an

outstanding practitioner in the former sense of

the word. The strength of being disciplined

(e.g., doing mathematics) is also the weakness.

Those who are very disciplined in their ways of

looking at problems also are very limited in the

ways they can see a problem. The contradictions

arising in and from interdisciplinary projects are in

part linked to this limitation. To overcome the

limitation of disciplinary approaches, there has

been an increasing interest in establishing connec-

tions between different fields. In mathematics and

mathematics teaching, interdisciplinarity often

faces problems especially at the high school level

because in other fields (e.g., biology, chemistry, or

physics), mathematics is considered to be a mere

service discipline rather than real mathematics.

The curricular intentions in these subject matters

and mathematics is different, which often leads to

tensions of where to place the emphasis. In actual

school practice, there tends to be very little work

across disciplines and curriculum integration.

From the perspective of activity theory, the

origin of these problems is easily understood

(Roth and Lee 2007). This is so because activity

theorists accept that “the production of ideas,

conceptions, consciousness is initially immedi-

ately intertwined with material activity and the

material intercourse of humans, language of real

life” (Marx and Engels 1969, p. 26). Material

activity and a focus on a particular object of activity

involve different forms of relations between peo-

ple. Because the relations between people ulti-

mately become higher psychological functions

(Vygotsky 1989), very different forms of knowing
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and understanding emerge within each discipline:

consciousness and cognition are fundamentally sit-

uated (see ▶Situated Cognition in Mathematics

Education). That is, with each discipline, there are

different forms of consciousness; and there are

different collective object/motives (see ▶Activity

Theory inMathematics Education) pursued in each

discipline even if they work with precisely the

same material objects. Interdisciplinarity requires

new object/motives, which inherently differ from

the object/motives that characterize the root disci-

plines. What is of interest in one discipline is not of

interest to another. But, as the interdisciplinary

design work for modern technology in the work-

place shows (and current scientific practices more

widely), these new interdisciplinary endeavors,

while helping communication across the disci-

plines, create new objects and discourses that are

different from the root disciplines (Ehn and Kyng

1991). Although school contexts differ from

workplace settings, similar issues arise espe-

cially at the high school level where integration

of mathematics with other school subjects tends

to be rare. It does not come as a surprise, there-

fore, when as a result of interdisciplinary pro-

jects, mathematics teachers no longer find their

mathematics just as other specialist teachers

no longer find sufficient attention to their

discipline in joint projects.

The differences between disciplines are beau-

tifully illustrated in a classical case of the history

of physics and mathematics. The Dirac d function

had, for mathematicians, strange properties:

d(x ¼ 0) ¼ 1; d(x 6¼ 0) ¼ 0;
R

d(x)dx ¼ 1.

Whereas it was useful in physics – because it

could be used to model a very sharp pulse – it

became a full mathematical object only over

time. But physicists had a new tool that allowed

them to deal with interesting phenomena such as

the motion of waves in oscillators when stimu-

lated by a sharp pulse. Although mathematicians

had been interested in generalized functions

before, the d function became a fully fletched

mathematical object only later when Laurent

Schwartz developed the theory of distributions.

The d function then can be viewed as

a distribution, the limit case of a Gaussian curve

that is infinitely narrow and infinitely high:

da xð Þ ¼ lim
a!0

1

a
ffiffiffi

p
p e�x2=a2 :

Similarly, studies in workplace mathematics

show that although the people working in a fish

hatchery may make extensive use of mathemati-

cal processes and objects, they do not understand

themselves as doing mathematics – they will

describe themselves as raising fish. In their

hands, mathematical entities are radically differ-

ent than these are in the hands of mathematicians

or mathematics teachers. This is so because the

object/motive of a mathematician is mathemati-

cal; for a fish culturist, the object is to raise fish

and mathematics is but a tool. Similarly, whereas

a mathematician can find many patterns involved

in the construction of a Sioux tent (Orey and

Rosa 2012), the Sioux did not worry about

mathematics but about having a shelter that with-

stands the intemperies of the prairies (see

▶Ethnomathematics). Again, the object/motive

of the mathematician is mathematical patterns

and relations, whereas the object/motive of the

Sioux is shelter from bad weather.

Interdisciplinarity in mathematics education

turns out to be difficult, in part because the curric-

ula specify very different goals for the subject areas

that might be combined in one student project.

Thus, for example, the calculus curriculum for

grade 12 might specify – as it does in British

Columbia – a prescribed learning outcome to be:

define and evaluate the derivative at x ¼ a as

lim
h!0

f aþ hð Þ � f að Þ
h

and lim
x!a

f xð Þ � f að Þ
x� a

:

In the British Columbia physics curriculum at

the same grade level, students learn about motion

through the equations

x tð Þ ¼ x0 þ u0tþ
a

2
t2 andu tð Þ ¼ u0 þ at

where x is position, v is velocity, a is acceleration,

and t is time. The students in mathematics differ-

entiate functions; the students in physics calcu-

late problems given certain values of the

constants and variables. But there is often very

little overlap in the curriculum and little
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interdisciplinary inquiry – even though, in this

case, it is possible to design curriculum in a way

that students come to understand in a very qual-

itative way both physics and mathematics – and

even other subjects, such as the arts. They may do

so even before entering formal calculus courses,

as the following example shows.

In a teaching experiment, the researchers pro-

vided tenth-grade students with a tool that

allowed participants to exert forces that deter-

mined the acceleration of a car on a track; the

forces where measured with force sensors

(Whitacre et al. 2009). The forces and aspects of

the car’s motion – velocity and acceleration –

could be plotted. The research shows that the

students developed rich understandings based

on the integration of their bodily experiences;

the relation of forces, accelerations, and their

bodily motions; and the properties of the resulting

graphs. A convergence was observed between the

different representations of one and the same

phenomenon. The study also shows the connec-

tions to the arts, for example, how body motion

during the act of painting comes to be expressed

in the paintings of Jackson Pollock much as the

body movements of the students came to be

represented in the motion graphs. Whereas these

students did not do “pure” and “typical” mathe-

matics, one can argue that they developed

embodied forms of sense that will allow

them to better understand mathematical proper-

ties of functions and their derivatives. This was

reported to be the case in another study, where

students generated position-time, velocity-time,

and acceleration-time graphs by moving carts

connected to motion detectors (Roth 1993).

They not only came to understand the relation-

ship between their body motions and the graphs

but also the relationships between special aspects

of the graphs. For example, they began to note

that the velocity graph crossed the abscissa

(v ¼ 0) precisely at the point where the posi-

tion-time graph was at a maximum or a mini-

mum; and they learned, with a great deal of

surprise, that the acceleration was a maximum

when the cars were turning rather than when

these were near maximum speed. With some

pointers on the part of their physics teacher,

they came to realize that the slope of one graph

was related to the absolute values of another and,

therefore, that

u tð Þ ¼ dx tð Þ
dt

and a tð Þ ¼ du tð Þ
dt

They had learned some calculus. The special

issues of Educational Studies in Mathematics,

which focused on gestures and multimodality,

further underscore the role of embodied forms

of mathematics (Nemirovsky et al. 2004; Radford

et al. 2009, 2011).

Perspectives

Historically, mathematical understandings have

arisen from nonmathematical preoccupations in

the world where increasing refinements of mate-

rial entities eventually led to the development of

ideal objects typical of mathematics (Husserl

1939). For example, the Greek were preoccupied

with objects in and of their everyday lives,

including those that they called kúbos (cube),

sphaira (ball), or kúlindros (roller). As they

become more and more skilled in perfecting

these, they eventually developed the ideas of

ideal cubes, spheres, and cylinders: mathematics

was born. Similarly, the purpose of interdisciplin-

ary endeavors involving mathematics may be the

development of a rich set of experiences that

underpin purely mathematical endeavors some-

time later in the students’ lives.

As shown in such endeavors as (a) the confer-

ences on “Mathematics and Its Connections to the

Arts and Sciences” (MACAS), (b) the “Interna-

tional Community of Teachers of Mathematical

Modelling and Applications” (ICTMA), or (c)

various groups interested in inquiry-based learn-

ing in mathematics (IBL), there are indeed

endeavors to integrate mathematics with educa-

tion in other disciplines. In fact, inquiry-based

learning often encompasses mathematics and sci-

ence and, thereby, practices interdisciplinarity.

However, visits to schools in many countries

show, however, that a more widespread imple-

mentation of interdisciplinary approaches in
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mathematics education still remains to be

achieved. Because each discipline-related activ-

ity involves different forms of consciousness,

interdisciplinarity will require rethinking mathe-

matics education in terms of the new objects/

motives of an interdisciplinary project; and

these objects will be (very) different than the

object/motives (goals) of traditional mathematics

education. Achieving interdisciplinarity means

redefining what mathematics education can be.

But interdisciplinarity may simply turn into

another disciplinary silo (Roth 2011).

Cross-References

▶Activity Theory in Mathematics Education

▶Calculus Teaching and Learning

▶Ethnomathematics

▶History of Mathematics and Education

▶ Problem Solving in Mathematics Education
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Characteristics

There has been a significant increase in interna-

tional comparative studies (ICS) on achievement

in mathematics in the last few decades. Particu-

larly well-known amongst these ICS are those

held under the auspices of the International

Association for the Evaluation of Educational

Achievement (IEA) and the Organization of

Economic Co-operation and Development

(OECD) that are briefly described later. This

article looks briefly into the following questions:

what are ICS? Why are ICS important? What are

some issues with ICS? Where are we headed

with ICS?
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What Are ICS?

The term comparative can be defined as studying

things to find out how similar or different they

are. In mathematics education there are

several “things” that can possibly be compared

internationally: students’ achievement, teacher

education, mathematics curricula, mathematics

education policies and practices, and certainly

pedagogical practices. While the “what” to be

studied and compared internationally seems

quite obvious, the “when” and the “how” to

compare are not so. The “when” to compare

brings forth a few points: At what point in time

do we make the comparative study? What is the

frequency with which we conduct such studies

so as to have meaningful results? The “how”

problematizes important methodological issues

about the study of such complex phenomena in

the diverse settings of individual participating

countries or regions: Do we use qualitative or

quantitative methods or a combination of

both methods? Do we use cross-sectional or

longitudinal studies?

Artigue andWinsløw (2010) have argued that:

Comparative studies aim to identify and explain
differences of homologous phenomena in two or
more contexts. Comparative studies of mathemat-
ics teaching and learning are undertaken with
a variety of purposes and methods, and their
results and interpretations remain the subject of
fierce debates, especially in the case of large-scale
quantitative surveys such as PISA. (p. 2).

Comparative education is not really new and

has existed for quite some time now (see Noah

and Eckstein 1969; Shorrocks-Taylor 2000).

Many of the recent ICS have been large-scale

studies like the TIMSS and TEDS-M organized

by the IEA and PISA organized by the OECD.

These studies have generated large mass of data

for further analysis. However, the conceptualiza-

tion and the resources required for running the

ICS have strong influences from themore affluent

Western countries. For example, regarding

TIMSS, Leung (2005) stated that the study design

is still very much influenced by North American

and Western European countries and that the test

inevitably reflects the philosophy of these

countries on mathematics education. The ICS

have had various aims and have used a “wide

diversity of approaches, perspectives and orien-

tation” (Kaiser 1999, p. 9). Regarding the meth-

odology used in these ICS, Eckstein (1988) has

claimed that the approach is positivistic and that

empirical and statistical methods generally used

in the sciences form the basis of the studies.

Several methodological issues come to the fore

when we start to conceptualize ICS:

• How do we sample the content and the

processes to be covered by the ICS survey?

• What kinds of items do we use in the survey?

• How do we construct the selected type of

items that will cut across cultural and linguis-

tic boundaries, test what they are supposed to

test, and have the same level of difficulty?

• How and when do we administer these items

to the selected sample of students? Do all

students attempt all of the items?

• How do we sample the students from each

country to participate in the study? What

constitutes an adequate sample for a given

country given the complexity of the student

population?

• How do we ascertain that students sitting for

the tests in these ICS take the test seriously and

put in their best effort?

As international surveys, the ICS generally

have six basic stages or dimensions: (1) the

conceptual framework and research questions;

(2) the design and methodology of the studies;

(3) the sampling strategy; (4) the design of the

instruments; (5) data collection, processing, and

management; and (6) the analysis and reporting

of the findings (see Loxley 1992 cited in

Shorrocks-Taylor 2000, p. 15). These stages can

be identified in the studies cited below.

Some Examples of ICS

IEA organized the Third International Mathemat-

ics and Science Study (TIMSS) in 1995 which

involved 45 countries. It was subsequently

known as the Trends in International Mathemat-

ics and Science Study. TIMSS 1995 followed

the earlier studies called First International
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Mathematics Study (FIMS) with 12 participating

countries carried out in 1964 and the Second

International Mathematics (SIMS) with 20

participating countries or region that was carried

out in 1980–1982 (see Robitaille and Taylor

2002). Subsequently, TIMSS has been carried

out in 1999 (at grade 8 level only), in 2003 and

2007 with the 2011 study under way at the time

of writing. IEA also conducted the Teacher

Education and Development Study in Mathemat-

ics (TEDS-M) in 2008 (see TEDS-M 2012; http://

teds.educ.msu.edu/) which is a comparative study

of the teacher preparation of primary and lower

secondary teachers of mathematics in 17 coun-

tries. OECD has organized the Programme of

International Student Achievement (PISA)

every 3 years since 1997. The focus of PISA has

been the assessment of the extent to which

students can apply their knowledge to real-life

situations at the end of compulsory education

and the extent to which they are equipped for

full participation in society (http://www.oecd.

org/pisa/aboutpisa/). There have been other

less-known ICS such as The Survey of Mathe-

matics and Science Opportunities (Schmidt et al.

1996), The Curriculum Analysis Study (Schmidt

et al. 1997), and The Videotape Study (Stigler

and Hiebert 1999) and The Learner’s Perspective

Study (LPS) (Clarke et al. 2006).

Why Are ICS Important?

There is an interest in finding out how

mathematics is taught and learned elsewhere.

Comparative studies in education are part of

a long tradition, dating back to the ancient

Greeks and encompassing many different

approaches (Shorrocks-Taylor 2000). Mathemat-

ics education is a fairly recent field of study,

coming to prominence only in the last 50 years

or so. However, mathematics has always been

taught, albeit to smaller select groups, in school

curricula in many parts of world, in particular, in

the Western world. In many newly independent

states worldwide although the educational sys-

tems and mathematics curricula mimic those of

the former colonial power, subtle differences

exist in the way mathematics curricula are

planned developed and implemented in schools.

There are differences in policies surrounding

many aspects of the teaching and learning of

mathematics, for example, entry to various

types of schools, compulsory education, teacher

recruitment, teacher preparation, and profes-

sional development of teachers. Postlethwaite

(1988) put forward four major aims of compara-

tive education: (1) identifying what is happening

elsewhere that might help improve our own

system of education, (2) describing similarities

and differences in educational phenomena

between systems of education and interpreting

why these exist, (3) estimating the relative effects

of variables on outcomes, and identifying general

principles concerning educational effects (p. xx).

Other reasons for conducting ICS promul-

gated by some authors include:

1. Comparative studies aim to identify and

explain differences of homologous phenom-

ena in two or more contexts (Artigue and

Winsløw 2010).

2. Through comparative studies, we can observe

the changes and innovations in each

country’s educational system, curriculum, con-

tents of textbook, teaching-learning methods,

teaching materials, and assessment methods

(Shin 1997).

3. Perhaps the most obvious reason to study

classrooms across cultures is that the

effectiveness of schooling, as measured by

academic achievement, differs across cultures

(Stigler et al. 2000).

4. If we look for the goals of comparative educa-

tion, history shows us that comparative educa-

tion serves a variety of goals. It can deepen our

understanding of our own education and

society, be of assistance to policymakers and

administrators, and be a valuable component

of teacher education programs. These contri-

butions can be made through work that is

primarily descriptive as well as through work

that seeks to be analytic or explanatory,

through work that is limited to just one or

a few nations, and through work that relies

on nonquantitative as well as quantitative

data and methods (Kaiser et al. 2002).
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One idea that comes forth in these reasons for

conducting for conducting ICS is that of distanc-

ing oneself as a researcher from one’s own local

practices and looking at these practices from

a different lens to examine the implicit theories

about the teaching and learning of mathematics

(see Bodin 2005; Leung et al. 2006).

Some Issues with ICS

Husén (1983) made this infamous comment that

in ICS we are comparing the incomparables. To

what extent are we comparing the incompara-

bles? Several other questions can be raised

about ICS. To what extent is the methodology

employed in a particular ICS appropriate? To

what extent is it possible to construct internation-

ally equivalent instruments to collect similar data

from different sociocultural contexts? To what

extent does the study use an idealized curriculum

for assessing students’ achievement? Critics of

ICS abound and some authors such as Holliday

and Holliday (2003) have added that: “A much

more important hurdle to overcome is the unique

set of cultural factors situated in each country,

such as differential national languages, social

norms, cultural prides, ethical standards, political

systems, educational goals, and school curricula”

(p. 251). On the other hand, Keitel and Kilpatrick

(1999) have asked: Who directs the ICS? Who

pays for the ICS?Who controls the dissemination

of the results? We may as well add: To what

extent do the ICS portray real achievement levels

in the participating countries? Are countries with

high-performing students the new ideal models

for curriculum, pedagogy and practice?

Other issues with ICS include the misuse of

the outcome of such research. The media has

often used catchy headlines focusing on the rank-

ing of the countries rather than the subtle findings

of the ICS such as TIMSS (Leung 2012). Others

like Bracey (1997) have highlighted how the

aggregate score does not tell the whole story

and deplored how scores can be looked from the

perspective of different cultural or ethnic groups.

It seems unfortunate that the media, institutions,

and even countries often times choose to focus on

how favorable the results are to their own con-

texts. In addition, Clarke (2002) has claimed that

international comparative research is open to

misuse in at least three ways: (i) through the

imposition on participating countries of a global

curriculum against which their performance will

be judged; (ii) through the appropriation of the

research agenda by those countries most respon-

sible for the conduct of the study, the design of

the instruments, and the dissemination of the

findings; and, (iii) through the exploitation of

the results of such studies to disenfranchise com-

munities, school systems, or the teaching profes-

sion through the implicit denigration of curricula

or teaching practices that were never designed to

achieve the goals of the global curriculum on

which such studies appear predicated.

Another dimension worth mentioning is that

of the choice of participating countries. Bishop

(2006, p. 582) asked:

If we seek to develop more cross-cultural research
studies then the first major issue concerns which
cultures should one choose? He added that equity
issues should always be at the forefront and raised
these questions: whose voices are heard?Who does
the ‘talking’? Which countries/cultures are
under-represented in any particular study? Which
countries/cultures are always being under- or
mis-represented? And how can this issue of
under-representation be dealt with? (p. 583).

The Way Forward

The interest in international comparative studies

which has existed for a long time is not going to

dwindle any soon. In a shrinking global world

where boundaries between the local and the inter-

national will get blurred, there is a likelihood of

these comparative studies occurring more fre-

quently and taking more complex forms. The

“why,” “what,” “when,” and “how” of these

studies will certainly be revisited to address

the criticisms leveled against current practices.

As important is also the “who” providing the

resources for carrying out these studies. Bishop

(2006) has warned that it is rare for the financial

supporters not to have an agenda of their own. In

an era of globalization that focuses on promoting
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the knowledge-based economy for maintaining

a competitive edge, countries rightfully look for-

ward to have the best ideas about mathematics

education that they could possibly be offering to

their citizens. However, countries should not

make direct links between mathematics achieve-

ment in schools and economic improvement.

From this perspective, international comparisons

are much misunderstood and abused (Ernest

1999). Ernest cautioned that:

The assumption that there is a direct link

between economic and industrial performance

and national teaching styles in mathematics is

highly dubious. The further assumption that

‘national teaching styles’ in mathematics, if

such a thing exists, can be transferred from

one nation to another, is even more doubtful.

Yet such assumptions underpin many of the

educational policies of governments in the

West. (p. viii).

Improvements need to be made to each of the

six stages or dimensions of international surveys

put forward by Loxley (1992 cited in Shorrocks-

Taylor 2000, p. 15). These questions will need to

be addressed again and again by those conducting

and thinking of conducting ICS in the future: Are

the conceptual framework and the research ques-

tions appropriate for the ICS? To what extent are

the design and methodology of the ICS appropri-

ate for the ICS? Is the sampling strategy

adequately representing the population under

investigation? How appropriate are the instru-

ments used for collecting data? How will the

data be collected, processed and managed? How

will the data be analyzed and how will the

findings be reported?

Hence going forward, ICS should be looked at

more carefully. In particular, countries should

consider questions such as: How important are

ICS to their own contexts? What can they learn

about their own practices? What kinds of prac-

tices from other countries can be adapted and

used in their schools? What kinds of practices,

if any, from other countries have to be avoided?

For ICS to be more useful, a more inclusive kind

of international survey has to be conducted that

will consider the voices of all whether they are

from rich or poor countries. The more affluent

countries involved in the ICS should help their

less affluent counterparts to make right choices

following the publication of the results

without any other covert agenda of their own.

Accordingly, Clarke (2002) has suggested that

international comparative research must be

undertaken on a basis of mutual benefit to all

participants and that we must guard against

the cultural imperialism of an implicit global

curriculum.

On the methodological level, there should be

ongoing debates about the conceptualization of

these studies. Kaiser (1999) has questioned the

suitability of the approach of probabilistic test

theory and regarding the results of ICS has put

forward the idea to the scientific community to

control how the results of the studies are used in

political debates. These are important ideas to be

carefully considered in future studies. On the

other hand, Leung (2012) claimed that very rig-

orous methodologies are adopted in studies such

as TIMSS and PISA, and hence within the limits

imposed by the nature of these studies, they pro-

vide rather reliable results about student achieve-

ment in the participating countries. Adding to the

discussion, Keitel and Kilpatrick (1999) have

queried: “How can there be irrationality, when

so many serious educators and scientists have

worked so hard to produce orderly, scientific

results?” Perhaps this quote from Leung sums

it all:

Results of international studies should serve as
mirrors for us to better understand our system. In
the process, we must bear in mind that education is
a complex endeavor – we cannot expect interna-
tional studies to produce answers for all our
national problems in education. International stud-
ies provide rich dataset for individual countries to
seek answers to their own issues. In so doing, we
need wisdom, and not just data! (Leung 2012).

References

Artigue M, Winsløw C (2010) International comparative
studies on mathematics education: a view point from
the anthropological theory of didactics. Rech Didact
Math 31(1):47–82

Bishop AJ (2006) What comes after this comparative
study – more competitions or more collaborations?
In: Leung FKS, Graf K-D, Real-Lopez F (eds)

I 324 International Comparative Studies in Mathematics: An Overview



Mathematics education in different cultural traditions:
a comparative study of East Asia and the West, The
13th ICMI Study. Springer, New York, pp 581–588

Bodin A (2005) What does PISA really assess? What it
doesn’t? A French view. In: Paper presented at the
joint Finnish-French conference, 6–8 Oct 2005

Bracey GW (1997) On comparing the incomparable:
a response to baker and Stedman. Educ Res
26(4):19–26

Clarke D (2002) Developments in international
comparative research in mathematics education:
problematising cultural explanations. Discussion
paper for ICMI study

Clarke D, Keitel C, Shimizu Y (eds) (2006) Mathematics
classrooms in twelve countries: the insider’s
perspective. Sense, Rotterdam

Eckstein MA (1988) Concepts and theories in compara-
tive education. In: Postlethwaite TN (ed) The encyclo-
pedia of comparative education and national systems
of education. Pergamon, Oxford, pp 7–10

Ernest P (1999) Series editor’s preface. In: Kaiser G, Luna
E, Huntley I (eds) International comparisons in math-
ematics education. Falmer Press, London, pp vii–ix

Holliday WG, Holliday BW (2003) Why using interna-
tional comparative math and science achievement data
from TIMSS is not helpful. Int Educ Forum
67:250–257

Husén T (1983) Are standards in US schools really lagging
behind those in other countries? Phi Delta Kappan
64:455–461

Kaiser G (1999) International comparisons in mathemat-
ics education under the perspective of comparative
education. In: Kaiser G, Luna E, Huntley I (eds) Inter-
national comparisons in mathematics education.
Falmer Press, London, pp 3–15

Kaiser G, Leung FKS, Romberg T, Yaschenko I (2002)
International comparisons in mathematics education:
an overview. In: ICM 2002, vol 1, pp 631–646

Keitel C, Kilpatrick J (1999) The rationality and irratio-
nality of international comparative studies. In: Kaiser
G, Luna E, Huntley I (eds) International comparisons
in mathematics education. Falmer Press, London,
pp 241–256

Leung FKS (2005) Some characteristics of East Asian
mathematics classrooms based on data from the
TIMSS 1999 video study. Educ StudMath 60:199–215

Leung FKS (2012) What can and should we learn from
international studies of mathematics achievement? In:
Dindyal J, Cheng LP, Ng SF (eds) Mathematics edu-
cation: expanding horizons. Proceedings of the 35th
annual conference of the Mathematics Education
Research Group of Australasia, vol 1. MERGA,
Singapore, pp 34–60

Leung FKS, Graf, K-D, Lopez-Real F (eds) (2006)
Mathematics education in different cultural traditions:
a comparative study of East Asia and theWest. In: The
13th ICMI study. Springer, New York

Noah HJ, Eckstein MA (1969) Towards a science of
comparative education. Macmillan, Toronto

Oxford Advanced Learner’s Dictionary (2000) Oxford
advanced learner’s dictionary, 6th edn. Oxford
University Press, Oxford

Postlethwaite TN (ed) (1988) The encyclopedia of
comparative education and national systems of
education. Pergamon, Oxford, pp xvii–xxvii

Robitaille DF, Taylor AR (2002) From SIMS to TIMSS:
trends in students’ achievement in mathematics. In:
Robitaille DF, Beacon AE (eds) Secondary analysis
of the TIMSS data. Kluwer, Hingham, pp 47–62

Schmidt WH, Jorde D, Cogan LS, Barrier E, Gonzalo I,
Shimizu U et al (1996) Characterizing pedagogical
flow: an investigation of mathematics and science
teaching in six countries. Kluwer, Dordrecht

Schmidt WH, McKnight CC, Valverde CA, Houang RT,
Wiley DE (1997) Many visions many aims (vol. 1):
a cross-national investigation of curricular intentions
in school mathematics. Kluwer, Dordrecht

Shin H (1997) Activation of comparative studies on
mathematics education. J Korea Soc Math Educ Ser
D: Res Math Educ 1(1):35–42

Shorrocks-Taylor D (2000) International comparisons of
pupil performance: an introduction and discussion. In:
Shorrocks-Taylor D, Jenkins EW (eds) Learning from
others: international comparisons in education.
Kluwer, Dordrecht, pp 13–27

Stigler JW, Hiebert J (1999) The teaching gap. Free Press,
New York

Stigler J, Gallimore R, Hiebert J (2000) Using video
surveys to compare classrooms and teaching across
cultures. Educ Psychol 35(2):87–100

Teacher Education and Development Study in Mathemat-
ics (2012) Policy, practice and readiness to teach
primary and secondary mathematics in 17 countries.
International association for the evaluation of
educational achievement. Multicopy, Amsterdam

Intuition in Mathematics Education

Dina Tirosh and Pessia Tsamir

Tel Aviv University, School of Education, Ramat

Aviv, Tel Aviv, Israel

Keywords

Intuition; Mathematics; Education; Concept

image; Concept definition; Intuitive rules;

Primary intuitions; Secondary intuitions

“Innovation is often a triumph of intuition over logic”
Albert Einstein
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Definition

Literature addressing a type of mathematical

knowledge, characterized by immediacy,

self-evidence, and intrinsic certainty.

Characteristics, Approaches, and Role in
Mathematics Education

The term intuition comes from the Latin word

intueri, roughly translated as “to look inside” or

“to contemplate.” Diverse and controversial

meanings and roles have been attributed to

intuition in different domains, among them phi-

losophy, psychology, religious studies, ethics,

aesthetics, science, mathematics, and education.

Intuition has been viewed as the highest form of

knowledge, through which the very essence of

things is revealed (e.g., Descartes 1967; Spinoza

1967); as a particular means of grasping truth

(e.g., Bergson 1954); as the source of genuine,

creative innovation (e.g., Hadamard 1945;

Poincaré 1958); and as a first and necessary step

for further education (e.g., Bruner 1965). Yet it

has also been considered a source of misconcep-

tions that should be eliminated (Hahn 1956). In

mathematics education, debates on the role of

intuition in the learning and teaching of

mathematics are often embedded in the perennial

discussions of “the appropriate balance between

intuition and logic.” Throughout history, promi-

nent voices have regarded intuition and rigor as

being at odds, while others have argued that these

two dimensions play complementary roles in

mathematics education (e.g., Klein 1953; Hahn

1956; Begle 1969; Freudenthal 1973; Thom

1973; Wittmann 1981; Howson 1984; Otte

1993; Bass 2005).

Efraim Fischbein has been instrumental in

formulating intuition as a research domain

in mathematics education. In his 1987 compre-

hensive book on intuition in science and

mathematics, Fischbein offers a theoretical view

of intuition, identifies and organizes his own

previously published experimental findings on

intuitive knowledge as well as other relevant

findings, and proposes educational implications

for the learning and teaching of mathematics and

science. In this book and other publications,

he identifies common intuitions in various

areas of mathematics, among them combinatory

and probabilistic intuitions (Fischbein 1975;

Fischbein and Gazit 1984; Fischbein et al. 1991;

Fischbein and Schnarch 1997), proof (Fischbein

1982), infinity (Fischbein et al. 1979; 2001),

intuitive models of basic operations (Fischbein

et al. 1985), geometry (Fischbein and Nachlieli

1998), irrational numbers (Fischbein et al. 1995),

and algebraic expressions (Fischbein and Barash

1993).

Fischbein theorized that intuition is a type

of cognition characterized by immediacy,

self-evidence, intrinsic certainty, perseverance,

coerciveness, implicitness, theory status, extrapola-

tiveness, and globality. “Intuitive knowledge [is]

a kind of knowledge which is not based on

scientific empirical evidence or on rigorous logical

arguments and, despite all this, one tends to accept

it as certain and evident (1987, p. 26).”

Fischbein described various classifications of

intuitions, including a distinction between

primary intuitions and secondary intuitions. He

claimed that primary intuitions arise spontane-

ously and their origins are rooted in our personal

experience or prior knowledge. He further

emphasized that knowledge that is acquired first

shapes our primary intuitions. Due to the primacy

effect (what we learn first is hardly forgotten

and over-implemented), primary intuitions are

usually very resistant. These intuitions frequently

coexist with formal knowledge acquired through

instruction. Fischbein provided numerous exam-

ples of mathematical intuitive reasoning from

his own research, from other studies, and from

the history of mathematics. One such example

addresses the issue of comparing the number of

elements in two infinite sets. A common intuitive

response is that the number of elements in an

infinite set is greater than the number of elements

in each of its infinite proper subsets (a response

based on our experience with finite sets).

He outlined how this intuitive tendency has

been described by mathematicians throughout

the history of mathematics. For example, Hahn

(1956, p. 1604) stated that “if we look for
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examples of enumerable infinite sets we arrive

immediately at highly surprising results. The set

of all positive even numbers is an enumerable

infinite set and has the same cardinal number as

the set of all the natural numbers, though we

would be inclined to think that there are fewer

even numbers than natural numbers.”

Fischbein provided a comprehensive frame-

work for analyzing learners’ mathematical perfor-

mance by addressing two additional components

of mathematical knowledge: formal knowledge

and algorithmic knowledge (e.g., Fischbein 1993).

Formal knowledge is based on propositional think-

ing and refers to rigor and consistency in deductive

construction. This type of knowledge is free of the

constraints imposed by concrete or practical char-

acteristics. Algorithmic knowledge is the ability to

use theoretically justified procedures. Fischbein

emphasized that each of the three components of

mathematical knowledge (formal, algorithmic,

intuitive) and their interrelations play a vital role

in students’mathematics performance and that “the

intuitive background manipulates and hinders the

formal interpretation or the use of algorithmic

procedures” (1993, p. 14). When referring to intu-

itive–algorithmic mixtures, Fischbein offered the

notion of algorithmic models, pointing, for

instance, to methods of reduction in processes of

simplifying algebraic or trigonometric expressions.

For example, the tendency of students to treat

(a + b)5 as a5 + b5 or log (x + t) as log x + log t

was interpreted as an intuitive application of the

distributive law (Fischbein 1993).

Three additional theoretical frameworks

address learners’ mathematical intuitions: Sys-

tem 1–System 2 (e.g., Kahneman 2002, 2011),

concept image–concept definition (e.g., Tall and

Vinner 1981), and conceptual change theory

(e.g., Vosniadou and Verschaffel 2004). Intui-

tions are a pivotal motif in Kahneman’s studies.

He described two systems of the mind, System 1

(intuition) and System 2 (reasoning), proposing

that System 1 thought processes operate automat-

ically and quickly and are heavily influenced by

context, biology, and past experience. This sys-

tem assists in mapping and assimilating newly

acquired stimuli into knowledge structures that

are self-evidently accepted as valid. In contrast,

System 2 thought processes are intentionally

controlled, calling for justification via logic

and analytical thinking. Several researchers in

mathematics education have incorporated this

framework as a means of interpreting their

research findings on mathematical reasoning

(e.g., Leron and Hazzan 2006).

Tall and Vinner (1981) coined the terms

concept image and concept definition. Concept

image comprises all the mental pictures and prop-

erties a person associates with a concept (i.e.,

intuitive and formal ideas), while concept defini-

tion addresses the concept’s formal mathematical

definition. For instance, the concept of tangent is

usually introduced with reference to circles,

implicitly insinuating that a tangent can meet

a curve only at one point and should not cross

the curve. This often becomes part of students’

tangent image (or primary intuitions about

a tangent) and hinders acquisition of related

notions, such as inflection points (Vinner 1990).

Tall and Vinner analyzed students’ concept

images of various advanced mathematical con-

cepts, among them limits, continuity, and tangent

(Tall 1980, 1992, 2001; Tall and Vinner 1981;

Vinner 1990, 1991).

Mathematical intuitions are also addressed by

the conceptual change approach, originally

developed to explain students’ difficulties in

learning science. The term conceptual change

characterizes the learning of new information

that is in conflict with learners’ presuppositions,

i.e., prior intuitive knowledge. In such situations,

a major reorganization of prior knowledge is

required. In the last decade, several researchers

have applied the notion of conceptual change

in a series of studies in mathematics education

(e.g., fractions, Stafylidou and Vosniadou 2004;

rational numbers – Vamvakoussi and Vosniadou

2004; real numbers, Merenluoto and Lehtinen

2004; and algebra, Christou and Vosniadou

2012). Vamvakoussi and Vosniadou (2004)

claimed that in the process of studying mathe-

matics, students form synthetic models of mathe-

matical notions. These synthetics models

comprise a mix of primitive–intuitive and formal

ideas regarding the notion, which are not

necessarily compatible.
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The terms primary intuitions, System 1, con-

cept image, and presuppositions address prelim-

inary, intuitive, and early mathematical ideas

based upon daily experience. These ideas are

often incompatible with the formal definitions

of concepts. Because such ideas are resistant to

traditional instruction, they are imposed on newly

acquired mathematical notions. Fischbein, Tall

and Vinner, and Vosniadou argued that blends of

intuitions and formal knowledge are inevitable, and

Tall and Vinner suggested that compartmentaliza-

tion may be one reason for such intuitive–formal

mixes that coexist in the learner’s mind without

sounding any alarms. Fischbein described the

most favorable situation, namely, when formal

knowledge turns into secondary intuitions. Never-

theless, the conceptual change framework empha-

sized the gradual and time-consuming nature of

such changes and analyzed the synthetic-model

stages, in which presuppositions and scientific

knowledge coexist.

Fischbein, Kahneman, Tall and Vinner, and

Vosniadou offer a content-oriented perspective of

intuition, mainly addressing the impact of

learners’ prior knowledge on their mathematical

performances. Another approach is suggested by

the intuitive rules theory. This theory takes a

task-oriented standpoint, addressing the impact of

specific task characteristics on learners’ responses

to scientific and mathematical tasks (Stavy and

Tirosh 1996, 2000; Tirosh and Stavy 1996;

Tirosh et al. 2001; Tsamir 2007; Stavy et al.

2006). The main claim of this theory is that

students tend to provide similar intuitive responses

to various scientific, mathematical, and daily tasks

that share some external features but are otherwise

unrelated. The intuitive rules theory offers three

major intuitive rules. Two of these rules (more A–

more B and same A–same B) are identified in

students’ reactions to comparison tasks, and one

(everything can be divided) is manifested in

students’ responses to processes of successive

division. Here we refer briefly to the two compar-

ison rules, whose impact can be seen in students’

responses to a wide variety of situations.

The intuitive rule more A–more B was identi-

fied in students’ reactions to comparison tasks in

which two entities differ with respect to a certain

salient quantity A (A1>A2). In the task, students

are asked to compare these entities with respect to

another quantity, B, where B1 is not necessarily

greater than B2. A common incorrect response to

such tasks is as follows: “B1>B2 becauseA1>A2,

or more A–more B.” More A–more B responses

have been observed in many tasks in science and

mathematics, including classic Piagetian conserva-

tion tasks and tasks related to intensive quantities,

number theory, algebra, geometry, infinity, and free

fall. This tendency is evident in a wide range of

ages. Klartag and Tsamir (2000), for instance,

found that high school students tended to claim

that for any function f (x), if f (x1) > f (x2), then

f ’ (x1)> f ’ (x2), or more A (value of f(x))–more B

(value of f ’ (x)).

The intuitive rule same A–same B has

also been identified in students’ reactions to

comparison situations in which two entities are

equal for a noticeable quantity A (A1 ¼ A2) but

differ for another quantity B (B1 6¼ B2). When

asked to compare B1 and B2, students often

respond “B1 ¼ B2 because A1 ¼ A2, or same

A–same B.” Same A–same B responses have

been identified in various domains, including

geometry, percentages, ratio, and proportion.

Tsamir (2007), for instance, reported that univer-

sity students tended to claim that hexagons with

equal sides have equal angles, that is, same A

(sides)–same B (angles).

In conclusion, a major objective of mathemat-

ics education should be to encourage students to

use critical thinking (e.g., NCTM 1989). Yet,

encouraging students to critically examine their

own processes should be done carefully and cau-

tiously so as not to discourage basic and intuitive

mechanisms of thought. Various instructional

methods have been suggested for handling this

delicate situation, among them teaching by

analogy, conflict teaching, calling attention to

relevant variables, raising students’ awareness

of the role of intuition in their thinking processes,

developing metacognitive abilities, experiencing

practical activities, and introducing the formal

meaning and formal content of concepts as early

as possible. Nevertheless, the feasibility and

impact of these methods in specific situations

still need to be explored.
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Definition

Language is ubiquitous – it is everywhere a part

of human life. Language is also highly diverse

and constantly changing. This diversity includes

the languages spoken by different peoples

around the world. This diversity also includes

social variation within languages, for example,

in relation to social class, gender, or race. Lan-

guage also varies in relation to different activi-

ties: the languages of mathematics, of science,

of sport, of religious practice, and so on. Finally,

language varies in relation to different modes of

communication, such as in speech, symbols,

written prose, or texting. The term language

background can be used to refer to the particular

set of national, social, and professional lan-

guage varieties in which any individual or

group of people has experience and expertise.

In this entry, language background refers more

specifically to the different languages that

learners and teachers use.

What does language background have to do

with mathematics education? The teaching and

learning of mathematics depend fundamentally

on language. Mathematics classrooms, for

example, may feature discussion among students,

lectures by the teacher, printed curriculum

materials or textbooks, and writing on a black-

board or on a screen. If mathematics education is

reliant on language, however, a question arises:

Do students’ or teachers’ language backgrounds

have any impact on their learning or teaching or

understanding of mathematics?

The Issue of Language Background in
Mathematics Education

As a focus for research, the above question did

not receive much attention until the 1970s. In

1974, however, a regional symposium addressed

the topic of linguistics and mathematics educa-

tion. The final report (UNESCO 1974) high-

lights a number of issues that have formed the

basis of much subsequent research. These issues

include:

• The challenges of learning mathematics in

a second language or in bilingual or multilingual

settings

• The influence of the structure of different

languages on mathematical thinking

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
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• The challenges of developing mathematical

registers in languages in which mathematics

was not previously taught as a formal subject

• The impact of language policy on mathemat-

ics education

• The effects of differences between formal

mathematical language and everyday language

Happily, the 1980s saw the beginning of more

sustained attention to language issues in mathe-

matics education, including attention to language

background. This entry summarizes the main

trends and findings in this research.

Theoretical Perspectives on Language
Background in Mathematics Education

The broad trajectory of research on language

background in mathematics education falls into

perhaps threemain phases. In the first phase, most

research focused on students’ attainment in math-

ematics, as measured by national examinations or

standardized tests. The general goal of this

research was to establish whether students’ lan-

guage backgrounds had any impact on their

attainment in mathematics. The second phase

was characterized by an interest in classroom

processes, looking at, for example, how students

participated in mathematics lessons and how

teachers adjusted their teaching of mathematics

in response to students’ language backgrounds.

The third and most recent phase has highlighted

the political role of language and has sought to

examine the connections between language status

and students’ participation and attainment in

mathematics education. The later phases have

not replaced the earlier ones, although they have

recast them in some respects. For example,

there is now greater awareness that students’

attainment (phase 1) is influenced by classroom

processes (phase 2) and the political nature of

language (phase 3).

The three phases of research have been

accompanied by shifts in theoretical orientations.

In the first phase, most research was from

a broadly cognitivist perspective, in which

language background was suspected to be an

influence on how students thought about

mathematics. This thinking was assumed to be

measurable, often through standardized tests.

Researchers’ perspectives on language were

largely influenced by psycholinguistics (see

Moschkovich 2007); language was assumed to

be separate from thought and thinking was treated

as an entirely internal, mental process.

In the second phase, researchers began to

adopt discursive perspectives, which looked at

mathematical learning and thinking as social pro-

cesses mediated by interaction with others (e.g.,

teachers or other students). From this perspective,

learning mathematics was a process of encultur-

ation into mathematical practices, including

discursive practices (e.g., ways of explaining,

proving, or defining mathematical concepts).

Thinking was examined by analysis of students’

or teachers’ talk, particularly in classroom

settings, rather than by scores on a test or

a clinical interview. Researchers’ perspectives

on language in this phase were drawn more

from sociolinguistics (see Moschkovich 2007),

a branch of linguistics that examines use

and variation in language in relation to the con-

text and the speakers. This kind of perspective

includes a critique of a narrowly individualist

view of language, often associated with deficit

models of bilingualism or multilingualism.

Bilingual language use has, in the past, been

seen as degenerate and as a barrier to learning.

Research drawing on sociolinguistics shows that

this is not the case.

The third phase is still evolving but features an

attempt to relate individual outcomes to broader

political dimensions of language. This work

challenges a narrow view of mathematics as

a western, largely male, white, middle-class

domain. Such work often draws on sociological

theories of language to explain how mathematics

education stratifies students according to their

language backgrounds. From this perspective,

language is as much a social force as a tool

for thinking. Another strand in this phase

has emerged within ethnomathematics, which

looks at language structure to develop mathe-

matics curricula that challenge the western,

postcolonial bias in many curricula (see

Barton 2008).
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Language Background and Attainment
in Mathematics

The question that is perhaps of most concern to

teachers, parents, and policymakers is the question

of whether language background affects students’

attainment in mathematics. Research shows fairly

clearly that there can be a correlation between

students’ language background and their attain-

ment, depending on a number of factors. Indeed,

there has long been evidence that students learning

through a second language underperform in math-

ematics (e.g., in the USA, by Secada 1992). This

kind of work is based on fairly crude research

designs, however, that crucially do not always

take sufficient account of students’ language profi-

ciency in all the languages they use and which

generally fail to assess students’ mathematical

thinking in their first language or a mixture of

their two languages. It is also difficult to untangle

effects on learning that are due to language back-

ground from effects that are due to socioeconomic

circumstances, racial discrimination, and other fac-

tors (if, indeed, such factors can ever be untangled).

More carefully designed research has, how-

ever, demonstrated a subtle relationship between

language background and mathematical attain-

ment. This work is based on a specific theory

called the Threshold Hypothesis, developed by

Cummins (e.g., 2000), an expert in bilingual edu-

cation. This hypothesis suggests that students’

academic attainment is related to the languages

that they speak in the following way:

• Bilingual students who reach a high level

of academic language use in at least two

languages outperform monolingual students.

• Bilingual students who reach a high level of

academic language use in one language have

comparable levels of attainment to monolin-

gual students.

• Bilingual students who do not reach a high

level of academic language use in any lan-

guage underperform relative to monolingual

students (see Cummins 2000).

This hypothesis has been used as a basis for

research specifically focused on mathematics

attainment. Results have fairly consistently

shown that students with low levels of academic

language proficiency underperform in mathemat-

ics, compared with students who reach a high

level of academic language use in at least one

language. There is also reasonable evidence that

students who develop high levels of academic

language use in two languages do, on average,

outperform monolingual students in mathemat-

ics. This work has been conducted with students

of immigrant backgrounds in the UK, in Austra-

lia, and in multilingual Papua New Guinea (these

studies are reviewed in Barwell 2009). These

findings are indirectly supported by separate

studies based on data from international compar-

isons of mathematics attainment, such as the

TIMMS and PISA studies (e.g., Howie 2003),

and by findings from immersion education

programs that show enhanced mathematics

performance (e.g., Bournot-Trites and Reeder

2001). Hence this general relationship seems

to hold across a variety of different settings.

These findings suggest that in many situations,

as much attention needs to be paid to students’

language development as to their mathematical

learning. For example, in some circumstances,

there may be cognitive advantages for students

who are learning in a second language to continue

to develop their home language to a high level.

Language Background and Learning
and Teaching Mathematics

The majority of research relating to language

background in mathematics education has prob-

ably been devoted to examining mathematics

classroom processes in a wide variety of settings.

These processes include students’ interaction

with each other and with their teacher, students’

interpretation of various mathematical tasks, and

teachers’ strategies in relation to students’

language backgrounds. This section is designed

to give a general overview of this work as well as

illustrate the range of language backgrounds that

have been examined.

Second Language Education Settings

Second language education refers to education

in the language of wider society, where some
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students are learning the classroom language as

second or additional language. Second language

contexts often include students from migrant

backgrounds or from aboriginal backgrounds in

mainstream education systems. Terms used in

English include English as a second language

(ESL), English as an additional language (EAL)

or English language learner (ELL). Mathematics

education research in second language contexts

has been conducted in the UK, the USA,

Australia, Canada, Spain, the Czech Republic,

Germany, Italy, and Sweden (for some examples,

see Cocking and Mestre 2008; Barwell 2009).

This work has shown how students often make

use of their home language or L1 to interpret

problems and for some mathematical thinking.

This use of L1 may occur even where their

home languages are not supported or encouraged

in the classroom; students simply use their home

language privately. Students often are particu-

larly challenged by text-rich problems, such as

word problems. The language of word problems

is complex and quite specific to mathematics edu-

cation. Students may struggle to make sense of

the context of the problem, as well as the unusual

grammar and syntax (something that monolingual

students also frequently experience). Neverthe-

less, research suggests that where students start

frommeaningful situations, they are able to inter-

pret word problems successfully.

Bilingual Education Settings

Bilingual education refers to programs in which

two languages are used in the teaching and

learning of mathematics. Students may have a

bilingual mathematics teacher or two different

teachers, either together or separately who speak

different languages. The aim of many such

programs is to “transition” from proficiency in

one language to proficiency in the other, while

maintaining work in curriculum subjects like

mathematics. Bilingual education settings for

mathematics have particularly been researched

in the USA, where Spanish-English programs

are quite common. Some research has also

been conducted in Wales (Welsh-English) and

New Zealand (Maori-English) (for examples,

see Barwell 2009; Téllez et al. 2011).

Research in bilingual education settings for

mathematics education has examined how students

draw onmultiple language resources tomake sense

of mathematics. These resources include aspects of

both languages. This kind of work demonstrates

how bilingualism does not have to be a problem

or barrier to learning mathematics; quite the oppo-

site, bilingualism gives students a wide repertoire

of different meanings and ideas to draw on as they

learn mathematics.

Research has also identified productive

teaching strategies for bilingual mathematics

classrooms. These strategies include the mainte-

nance of a focus on mathematical meaning rather

than students’ particular use of language. That is,

successful teachers seem to pay careful attention

to students’ mathematical ideas and to work with

them to ensure they clearly understand them.

Plurilingual Societies

Plurilingual societies refers to societies in which

many languages are recognized and used, such as

countries in South and Southeast Asia andmuch of

Africa. (Arguably all societies are multilingual,

but many do not recognize the fact.) In such

societies, a small subset of languages is used for

schooling; these languages may include local

languages, regional languages, or former colonial

languages. In SouthAfrica, for example, English is

the most widely used language of schooling.

Research onmathematics education in plurilingual

societies has largely been conducted in South and

southern Africa (see Adler 2001; Setati 2005;

Setati and Barwell 2008). Some work is also

beginning to emerge from India and Pakistan.

Research in plurilingual settings for mathe-

matics education has highlighted the complex

set of challenges that face teachers, learners,

and parents alike. In plurilingual societies, the

use of multiple languages is widespread and is

likely to occur in mathematics classrooms. Such

practices are often frowned on and teachers may

struggle with various dilemmas that arise. For

example, is it better to allow students to use

their home language in order to express their

mathematical thinking fluently, or to encourage

them to use the language of schooling, whichmay

inhibit their mathematical thinking (Adler 2001)?
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As in bilingual education settings, research has

shown how learners and teachers can draw on

their multiple languages to learn mathematics.

In many respects “switching” between languages

can be used productively; indeed teachers can

encourage deliberate use of such switching to

enhance their students’ learning of mathematics.

Research in plurilingual settings has also

highlighted the effects of language politics on

mathematics education. In South Africa, for exam-

ple, research has shown how many students and

teachers accept that learning and teaching mathe-

matics in English is more difficult than when using

their home languages. But they still prefer to use

English because it is seen as a more valuable

language in terms of the access to jobs and higher

education it is perceived to provide (Setati 2008).

Similar trends are also apparent in much of Asia.

Immersion Education Settings

Immersion education refers to the use of a target

language to teach across the curriculum in order

that students become proficient in that language.

Immersion education is common in Canada, in

Switzerland, and in many parts of the world

where it is used to teach students a prestigious

“foreign” language, such as English or Chinese.

There has not been much research into

mathematics learning and teaching in immersion

settings. Some studies have demonstrated the

efficacy of immersion education for teaching

mathematics (e.g., Bournot-Trites and Reeder

2001) in terms of students’ mathematical

attainment, but there has been little research on

classroom processes.

Language Background in Mathematics
Teacher Education

There has been little research on language

background in mathematics teacher education.

Issues under this heading include the preparation

of mathematics teachers to respond to students’

language backgrounds, such as the specific

strategies that might be needed to teach

mathematics in the different settings discussed

in the preceding section. Mathematics teacher

education also, of course, takes place in these

different settings.

One study in plurilingual Malawi by Chitera

(2009) showed how mathematics teacher educa-

tion tended to reinforce certain assumptions

about language and mathematics, often contrary

to the national language policy for education.

Mathematics teacher educators tended to view

multilingualism as a problem and did not seem

to have adequate preparation in implementing

a policy which promoted the use of students’

home language in teaching mathematics.

Language Background and Researchers
in Mathematics Education

Mathematics education as a research domain also

makes use of language and researchers come from

a wide range of language backgrounds. The politics

of language are to some extent self-evident in the

structure of the research community. In particular,

English is the predominant language of this commu-

nity; the leading international journals and confer-

ences all prefer English (as does this encyclopedia),

with Spanish, French, and Portuguese as distant

acceptable secondary languages. There are thou-

sands more languages in the world that are entirely

absent from mathematics education research dis-

course. The preference for English makes things

easier for English-speaking researchers (predomi-

nantly from, or working in, the UK, USA, Canada,

Australia, and New Zealand) and more challenging

for everyone else. It also, however, privileges certain

ways of thinking about mathematics, teaching and

learning, while rendering invisible other alternatives

(Barwell 2003; Barton 2008).

Future Directions

This area of research continues to develop.

There is a need for a stronger theorization of the

interaction between language background and

mathematics learning and teaching. The critical

perspectives emerging in the third phase of

research described above are likely to be an

important source of such a theorization.

Language Background in Mathematics Education 335 L

L



By its nature, the issue of language background

in mathematics education is of interest around the

world and has, indeed, been researched around the

world. Nevertheless, it would be valuable to see

research in a wider range of geographical settings

as well as in a wider range of linguistically

distinct settings.

Finally, there is a continuing need to find ways

to support mathematics teachers as they are

increasingly faced with language diversity in their

classrooms. Such diversity can be a great opportu-

nity for teachers and learners of mathematics, but

ways of harnessing this potential are not simple.

Cross-References

▶Bilingual/Multilingual Issues in Learning

Mathematics
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Definition

Language disorders are shown by children

whose oral language skills, such as producing

speech and understanding what others say, are
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significantly impaired relative to their peers.

They are at risk for poorer educational achieve-

ment in mathematics just as in other curriculum

subjects. This is not surprising when one con-

siders the general importance of communication

in schooling, the role of oral language in class-

room mathematical investigations, and more

specific connections such as the fundamental

contribution made by knowledge of the number-

word sequence to developing understanding of

symbolic notation.

Characteristics

Language disorders can be the consequence of

physical problems (such as hearing loss, visual

impairment, or accidental injury), impoverished

experience, or general learning disabilities such

as are common in children with conditions such

as autism, Down syndrome, fragile X, Williams

syndrome, Apert syndrome, and cerebral palsy

(Bishop 1997; Dockrell and Messer 1999). Nev-

ertheless, some children show language disorders

when there is no reason to suppose their difficul-

ties result from these above-mentioned causes.

These children have been described as having

developmental aphasia, developmental language

disorders, or specific language impairment. Their

conditions have been recognized in conventional

classification schemes used by doctors and psy-

chiatrists, such as the World Health Organiza-

tion’s International Classification of Diseases

and Disorders and the American Psychiatric

Association’s Diagnostic and Statistical Manual.

Behavioral genetics studies have shown that

identical twins are more alike than nonidentical

twins and that there is substantial overlap between

the genetic variance underlying language impair-

ment and that underlying reading and arithmetic

difficulties. The evidence of genetic influences

does not imply that the environment is irrelevant:

such studies do not support a strong genetic deter-

minism (Plomin andDale 2000; Plomin andKovas

2005; Resnik and Vorhaus 2006).

Children enter the world of number through

learning to count and mastering the number-word

sequence of their language. Counting provides

the basis for computation, and a grasp of spoken

number is presumed for developing understand-

ing of the Hindu-Arabic notation for representing

number. Behavioral studies find that children

with language disorders are more likely to

show delays in mastering the number-word

sequence and the natural number system

(Donlan 2007).

As much of elementary mathematics depends

on competence with the natural number system,

these delays have substantial consequences. Pro-

ficiency in both mental and written computation,

even with single-digit numbers, is compromised

in children with specific language impairment

(Donlan 2007). Nevertheless, there are consider-

able individual differences in these children:

some progress comparably to their typically

developing peers, while others show attainment

in line with their linguistic development which is

several years below their chronological age. The

reasons for this variation are not understood: for

example, it may reflect variation in the effective-

ness of support they receive at home and at school

or variation in other individual characteristics

such as motivation, memory functioning, and

visuospatial abilities.

There is still much to be learnt about children

with language disorders: studies of the mathemat-

ical progress of adolescents with language disor-

ders are very rare. Advice for the teaching of

children with language disorders is available

in book form (e.g., Hutt 1986) and from

several organizations with online presence, such

as Afasic (http://www.afasicengland.org.uk/),

I CAN (http://www.ican.org.uk/en.aspx), and

The Communication Trust (http://www.

thecommunicationtrust.org.uk/schools.aspx).
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Definition

Learner-centered teaching is an approach to

mathematics instruction that places heavy

emphasis on the students taking responsibility

for problem solving and inquiry. The teacher is

viewed as a facilitator by posing problems and

guiding students as they work with partners

toward creating a solution.

Characteristics

Intellectual Autonomy

Many researchers have contended that one of the

most important contributions that education can

make in individuals’ lives is to their development

of autonomy (Piaget 1948/1973). Autonomy is

defined as the determination to be self-governing,

to make rules for oneself rather than rely on the

rules of others to make one’s decisions (heteron-

omy). Kamii (1982) suggests that autonomy is

the ability to think for oneself and make decisions

independently of the promise of rewards or pun-

ishments. In relation to education, Richards

(1991) distinguishes between two types of tradi-

tions in the mathematics education of children,

what he terms school mathematics and inquiry

mathematics. School mathematics is what is typ-

ically thought of as a teacher-directed environ-

ment in which learning mathematics is a process

of memorizing rules and procedures that are

modeled by a teacher and solving routine prob-

lems that often have little significance to the real

world until mastery of the teacher’s solution

methods is attained. Heteronomy is fostered

here as students learn to replicate what the

teacher has shown them, often with little connec-

tion to how they make sense of the world. Math-

ematics is seen as transmitted from the teacher to

passive students with little opportunity to negoti-

ate the meaning of their actions.

An inquiry or student-centered tradition, on the

other hand, is one in which students are actively

engaged in genuine problem-solving activities.

Students are given open-ended problem situations

and work with each other to create multiple, mean-

ingful solutions that are elaborated, debated, and
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validated in the public discourse created by the

students and their teacher. Together, the partici-

pants create a community of learners that engage

in practices similar to actual mathematicians.

Rather than a transmission of skills from one per-

son to another, the metaphor here is one of negoti-

ating meaning among participants under the

guidance of an instructor. In the inquiry tradition,

students are heavily encouraged to develop auton-

omy as they try to invent meaningful strategies for

the problems they are solving.

The term student-centered teaching has been

most notably associated with John Dewey’s work

(Dewey 1938) and is known today by many

names: discovery (Anthony 1973), problem-

based (Barrows and Tamblyn 1980), student-

centered (Chung and Walsh 2000), constructivist

(Jonassen 1991), teaching for understanding

(Hiebert et al. 1997), standards-based instruction

(Tarr et al. 2008), and experiential (Kolb and Fry

1975) to name a few. While there is no universal

definition of student-centered teaching, in gen-

eral, these traditions argue for placing students at

the center of problem solving in some capacity,

with teachers taking a less dominant role.

At the heart of these approaches is the idea that

students should learn to reason critically about

mathematics in more than just a skill-based man-

ner. Student-centered teaching, however, has

grown so prominent in both research and teaching

venues over the decades that many differences

have emerged, rendering one, unified approach

difficult to describe. The differences lie mainly

on how directed the inquiry investigation is, who

motivates the inquiry, and what can be thought of

on a continuum from directed to open inquiry

(Fig. 1).

In more directed approaches, the teacher poses

a situation for inquiry, guides students’ investi-

gations, and directs students’ learning and sum-

marizing. At the other end of the continuum, the

inquiries are completely student-initiated and the

teachers’ lessons are designed around what the

students wish to explore. Kirschner et al. (2006)

argue that minimal guidance during instruction

does not work and unfortunately seem to lump

most student-centered traditions into this “mini-

mally guided” category. However, many student-

centered approaches incorporate some forms of

guidance into their program, and the results have

shown that this approach can produce higher

gains in achievement than the more teacher-

centered tradition (Tarr et al. 2008).

History

Since the publication of the National Council of

Teachers of Mathematics Curriculum and Eval-

uation Standards for School Mathematics in

1989, there has been a significant push toward

student-centered teaching in mathematics. The

1989 NCTM Standards argued for a radical

reconstruction of classroom mathematics with

more emphasis placed on students’ representa-

tion, communication, and mathematical pro-

cesses. Since then, the NCTM has revised its

recommendations in the Principles and Stan-

dards (2000) as well as other key documents

promoting student-centered mathematics instruc-

tion (Curriculum Focal Points; see www.nctm.

org). While these recommendations have been

made by a prominent national organization com-

prised of mathematics educators and researchers,

the student-centered approach has garnered even

more attention and traction with the adoption of

the Common Core State Standards (CCSS 2011)

by a majority of the United States. Not only does

the Common Core set out the mathematical con-

tent to be taught, but more importantly, it outlines

eight Mathematical Practices that are consistent

with student-centered teaching and are to be

engendered in all students, including communi-

cating viable arguments, critiquing the reasoning

of others, and problem solving. The publication

of these important documents ensures that

Directed Open
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student-centered teaching is not going away any

time soon.

Characteristics of Student-Centered

Classrooms

There are some basic characteristics of

student-centered classrooms that transcend the

open/direct dichotomy now plaguing various

implementations of this approach. If a principal

were to enter a student-centered classroom, she

might expect to see certain characteristics that

focus on problem solving, classroom environ-

ment, collaboration, mathematical discourse,

and tools/manipulatives.

Problem Solving

A student-centered classroom can be distin-

guished from a teacher-centered one in that the

students are doing the problem solving rather

than the teacher. In a more directed approach,

the teacher has modeled how to solve and make

sense out of a problem situation, usually with

a manipulative, and the students are working

together or independently to create their own

solutions. In less directed classrooms, the chil-

dren are posed problems without being guided by

the teacher, and asked to create their own, per-

sonally meaningful solutions. In either case, it is

the students who are solving problems, using

critical thinking skills and reasoning to develop

their solutions. Creating genuine problem-

solving environments begins first with worth-

while, open-ended mathematical tasks. Rich

tasks that elicit more than one way to solve

a problem and/or more than one correct answer

have potential to support students in their prob-

lem-solving endeavors.

Classroom Environment

Student-centered teaching is most often associ-

ated with a certain set of social norms for creating

a safe, engaging classroom environment. Social

norms refer to the expectations that the teacher

and students have for one another during mathe-

matical discussions. Yackel and Cobb (1994)

have documented at least four social norms that

support student-centered instruction: Students

are expected to (1) explain and justify their

solutions and methods, (2) attempt to make

sense of others’ explanations, (3) indicate agree-

ment or disagreement, and (4) ask clarifying

questions when the need arises. The teacher’s

role is to help set these expectations and to main-

tain them once they have become established in

the classroom. An example of some dialogue that

might take place in a student-centered environ-

ment can be seen in an excerpt from a middle-

school classroom (12–14-year-olds who are

studying integer operations). The task is to fill

in the blank with a meaningful operation in the

problem 10,000 _________ ¼ 12,000.

T: What is the other easy one?

Dusty: Minusing debt of 2000 [T writes –

(�2000)]

T: Anybody else got that one on their paper?

Do you agree with this one Brad or did you just

put it because Dusty said?

Brad: I agree.

Charlie: I do not agree.

T: You do not agree? Okay, talk about it

Charlie.

Charlie: Because you are minusing. . .never

mind I agree.

T: You do. You just changed your mind. Why

do you agree now?

Charlie: Minusing debt is like she owed $2000

and then she did not have to pay it so she went up

(excerpt from Akyuz 2010).

In this example, the teacher presses students to

indicate whether they agree or disagree with

Dusty’s solution. The teacher must create a safe

environment that allows students to indicate their

disagreement without fear and must feel comfort-

able expressing when they are wrong, like

Charlie.

Collaboration

Another hallmark of a student-centered class-

room is that a large portion of the problem

solving is done in collaboration with peers.

When given a problem to solve, students are

often directed to pair with a partner or work

with others in prespecified teams that range

from two to six students. Collaboration is para-

mount to supporting students’ learning because

research shows that people learn mathematics
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deeper as they explain it to their peers, and stu-

dents who are having difficulty with a math con-

cept can draw on their peers’ explanations for

support. Additionally, teams of students often

invent much more sophisticated strategies than

they might have alone. Collaboration, however,

is not without its controversy, especially when it

comes to assessment of individuals’ learning, so

the teacher must plan collaboration strategically

in her classroom.

Mathematical Discourse

One of the crucial aspects of student-centered

instruction involves using student discourse in

whole class discussion to bring out important

mathematical ideas. In a traditional setting, the

teacher controls what is being said and can ensure

that the lecture includes the intended mathemat-

ics. However, with student-led discussion, the

teacher has to carefully guide students toward

discussing the mathematics that is intended. For

example, one of the goals of a seventh-grade

teacher was to engage students in a discussion

in which ordering integers correctly on a vertical

number line was the main topic. As a first step,

the teacher chose a problem that all of her stu-

dents could work in some meaningful way: Paris’

net worth is �$20,000, and Nicole’s net worth is

�$22,000.Who is worth more and by howmuch?

Students had about 5 min to work this and another

similar problem and the teacher called on Nathan

to show his reasoning to the class.

Nathan created a vertical black and red num-

ber line that had been introduced in a previous

class period (Fig. 2).

T: Tell us why you did put Nicole there andwhy

you put Paris there. Is that a logical question to ask?

Nathan: I do not know why.

T: He says that he does not know. Okay Flora,

say it a little louder.

Flora: He should put Nicole into red.

T: Do you know why she says that? Say it

again Flora.

Flora: Nicole should be in the red.

T: Can you change it, Nathan? Go ahead. That

is helpful Flora (Fig. 3).

Gabe: Because positive numbers are in the

black and the red is negative.

T: Gabe says in the black is positive in the red

is negative. That might be helpful keep in mind.

What do you want to say Adam?

Adam: He has to switch 20,000 and 22,000.

20,000 is supposed to be before 22,000.

T: Did you hear that Charlie? Do you agree

with that? Does it matter guys? Why?

Adam: Paris is closer to zero.

Charlie: Because Nicole owes more so she has

to be in the red more.

−22,000

−20,000

Nathan’s first attempt.

Learner-Centered Teaching in Mathematics Educa-

tion, Fig. 2

−22,000

−20,000

Nathan’s second attempt.

Learner-Centered Teaching in Mathematics Educa-

tion, Fig. 3
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T: She has to be more in the red. Nathan? He

says because Nicole owes more. How do you

know she owes more?

Charlie: It has already said it. Negative 22,000

and negative 20,000.

T: Dusty, what do you want to say?

Dusty: It should be opposite of going up to zero.

Mark: I think we should put the less number in

front of the higher number.

T: In front of it, like this [puts 20,000 above

22,000 on the vertical number line]. Why?

Mark: Because �20,000 is closer to 0.

T: You guys keep saying that, what do you

mean? Marsha?

Marsha: Yes, there is a reflection, if you like flip

it [the top half of the number line] upside down.

Charlie: Because �20,000 is being closer to

out of debt than �22,000.

Brad: The reason 22,000 should be farther

down is because it is further down in the hole.

Like you owemore than the other person (excerpt

from Stephan and Akyuz 2012).

In this example, the teacher uses the contribu-

tions, both correct and incorrect ones, to guide the

discussion in which ordering of integers on

a number line is the topic of conversation. The

teacher purposely chose Nathan to begin the dis-

cussion as she was aware from her observations of

Nathan during small-group time that he was con-

fused about the order. She knew that his solution

would create debate in class and cause several

students to offer counter solutions. It is important

to note that the teacher did not just accept students’

“correct” ordering and move on, hoping Nathan

would change his mind. In order to give Nathan

good reason for changing his opinion, the teacher

pushed students to give justifications for their

ordering. Strong mathematical reasoning came to

the forefront and, as a consequence, several images

emerged (e.g., “in the hole,” reflection lines, closer

to out of debt). As a result of this high-level,

engaging discourse, the intended mathematical

ideas came from the students.

Tools/Manipulatives

Student-centered approaches utilize tools, includ-

ing manipulatives, notations, and symbols, as an

integral part of teaching. Researchers in education

have shown that tools can be powerful instruments

for supporting students’ mathematical develop-

ment (Bowers et al. 1999; Stephan et al. 2001).

Thompson and Lambdin (1994), however, caution

that simply usingmanipulatives in a classroom does

not necessarily improve student learning. Teachers

must be very thoughtful about which manipulative

best supports the concept that is to be developed.

Thompson and Lambdin also argue that not only is

the appropriate tool necessary but also that the

teacher’s instruction with the tool is equally impor-

tant. Depending on how guided the inquiry is, tools

and notations can be introduced at the onset of

instruction (heavily guided inquiry) or after/along-

side students’ problem solving (more open inquiry)

as a means of helping students better organize and

structure their thinking. In guided student-centered

methods, tools are introduced at the beginning of

a concept and students’ are guided to decode their

meaning in order to act meaningfully with it. More

guided student-centered teachers teach students the

steps for using the tool and ask questions to help

students interpret their actions with the tool mean-

ingfully, i.e., directly instruct how to use the tool. In

contrast, the tools from a less directed, student-

centered approach are introduced to students in

a planned, bottom-up manner as a way to help

students organize or better structure their mathe-

matical activity. Rather than hand students a tool

and tell them how to use this new device, the

teacher asks for student strategies so that the reason

for a new tool would be based upon their ideas.

Critiques

Critics of the student-centered approach often site

a lack of emphasis on teaching basic skills as one

of the primary weaknesses. Additionally, without

guidance, opponents question how students ever

come to “discover” the concepts that are necessary

for success in higher-level mathematics. Others

argue that, while manipulatives and real-world

contexts can serve as a source of motivation for

students’ mathematical activity, too many students

do not develop the abstract reasoning associated

with higher-level mathematical thinking. In con-

trast, NCTM officials released a statement that

basic skills are a major component of student-

centered approaches but emphasized that students’
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development of skills and facts should arise from

critical thinking rather than memorization so that

mathematics has meaning. Proponents of student-

centered instruction also argue that real-world con-

texts and manipulatives are crucial for making

meaning of mathematics but that students should

use those experiences to create abstract meaning in

mathematics.
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Introduction

“Learning difficulties” and “special educational

needs” are terms that have been connected with

different groups of children. Three of these

groups are considered here initially, but the

focus of this article is on the third one.

First, some children find learning many things

more difficult than other children, and this includes

learning mathematics. These children are assumed

to have an intellectual disability due to genetic

causes. Children with Down syndrome (DS) or

with Williams syndrome (WS) exemplify the find-

ing that genetically based intellectual disability

also results in difficulty in learning mathematics.

But there is a long way between genes and pheno-

types in educational achievement, and one must be

cautious about generalizations. Research shows

very wide variation in the measured intelligence

of children and adults with DS (estimates of their

intellectual quotient [IQ] vary between about 30

and 70; average IQ in the non-affected population

is 100) as well as those with WS (estimates of IQ

vary between about 40 and 112. Research on the

development of numerical cognition of individ-

uals with DS and WS shows differences in the

profiles of the two groups. Infants with DS per-

form less well than those with WS in numerosity

recognition tasks (i.e., tasks that measure infants’

reactions to displays with varying number of

objects up to 4), but adults with DS achieve

more in numerical cognition than those with

WS, even when they are of comparable intellectual

levels. Evidence from other genetic syndromes

shows more specific effects on mathematics learn-

ing. Turner syndrome and fragile X syndrome are

genetic disorders that affect girls and are associated

with mathematical disability, although these

syndromes do not typically result in general intel-

lectual disability.

A second group to be considered relates to the

finding that difficulties in mathematics can be

a consequence of brain injury. The connection

between different neurological circuits in the

parietal lobe and mathematical activities has been

investigated extensively, and some researchers

suggest that damage to these brain circuits

causes difficulties in mathematics. Consequently,

some children may have difficulty in learning

mathematics due to brain injury. Children who

have genetic disorders or brain injuries have been

included among children with learning difficul-

ties and special educational needs. However, the

term learning disability, rather than learning dif-

ficulty, is considered more appropriate in refer-

ence to these groups, due to its connection to the

word ability and in view of the causes of the

children’s learning problems. This article focuses

on the third group of children, whose measured

intellectual ability is in the normal range but who

find learning mathematics quite difficult.

Estimates of how common mathematics

learning difficulty is vary depending on the

method used in the study. The most reliable

method is a cohort study, in which all the children

born within a particular geographical region dur-

ing a specified period are assessed and the results

are scrutinized. Using a large cohort study and the

American Psychiatric Association definition,

which requires a discrepancy between perfor-

mance in intelligence tests and in mathematics

assessments, Barbaresi et al. (2005) estimated

that 5.9–9.8 % of children and adolescents expe-

rience a substantial difficulty in some area of

mathematics. However, the rate increased to

13.8 % if all children who experience difficulty

in learning mathematics are considered and not

only those for whom the difficulty is unexpected.

There are two main issues to be considered in

the analysis of mathematics learning difficulty.

The first is the nature of the mathematical skills

affected, and the second is the specificity of

the learning difficulty. Each of these issues is

considered in turn with a focus on primary school

mathematics learning.

Characteristics

Two Sorts of Mathematical Skills to Be

Learned

The aim of mathematics instruction in primary

school is to provide a basis for people to think

mathematically even if they will not pursue

a career that requires deeper mathematics knowl-

edge. In order to think mathematically, people
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need to learn to represent quantities, relations,

and space using numbers and other mathematical

tools, such as algebra, graphs, and calculators,

which are commonplace in today’s society.

A crucial distinction is made between quantities

and relations, on the one hand, and numbers, on

the other hand. Numbers are elements in a con-

ventional system of signs and are used to repre-

sent quantities and relations between quantities.

But numbers and quantities are not the same

thing. “Quantities, when measured, have numer-

ical value, but we need not measure them or know

their measures to reason about them” (Thompson

1993, p. 165). For example, if you know that

Robert is taller than Stephen and that Stephen is

taller than Patrick, you conclude by reasoning

about the quantities that Robert is taller than

Patrick, although you do not know their heights.

The distinction between reasoning about

quantities and knowledge of numbers supports

the identification of two types of skill, which

are both important in mathematics learning:

mathematical reasoning and arithmetic skill

(Nunes et al. 2011a). When a child solves a math-

ematical problem in school, the child is faced

with two sorts of cognitive demand: the child

must know which calculations to use to solve

the problem and how to calculate. Some prob-

lems demand more reasoning than others because

they demand cognitive transformations of the

information before one can choose the operation

to solve the problem. A comparison between

problems A and B exemplifies this.

(a) Emma has a box with 14 CDs. Harmony

gives her 19 CDs. How many CDs does

Emma have now?

(b) The postman has some letters to deliver. He

delivers 12 at one house. Now he has 39

letters in his bag. How many letters did he

have before?

Both problems can be solved by an addition, but

the first problem requires little transformationof the

information: Emma gets more CDs and the prob-

lem is solved by an addition. In contrast, in the

second problem, the postman delivers some letter

and has fewer letters in his bag, but the problem is

solved by an addition, which is the inverse of sub-

traction, because the starting number of letters is

missing. Several studies have demonstrated that it

is significantlymore difficult to solve problems like

B than like A. In a recent study with 7–8-year-olds,

the children were asked to solve problems of

these two types using a calculator, in order to

circumvent difficulties with arithmetic. The level

of success in type A problemswas 86% and in type

B problems 37 %.

The distinction between these two sorts of

skill, mathematical reasoning and arithmetic, has

influenced how researchers define mathematics

learning difficulty. One group of researchers

defines mathematics learning difficulties as an

inability to learn number relations (e.g., order of

magnitude in the number system, addition and

multiplication bonds) and to calculate quickly and

accurately. The second group finds this a limited

definition and argues that learning difficulties

should be defined with relation to problems with

mathematical reasoning as well as number skills:

some children may know how to calculate but not

know when to use which arithmetic operation.

The two groups agree on a research strategy

that can be used to achieve a better understanding

of mathematics learning difficulties. Both groups

seek to predict which children will do better and

which will do less well in mathematics. In these

predictive or longitudinal studies, children are

assessed at an earlier age on the factors that

are hypothesized to be connected to mathematics

achievement. At a later age, the same children are

assessed in mathematics. If the factors measured

earlier on do in fact predict the children’s

later achievement after the right controls have

been taken into account, the study helps us

understand mathematics learning difficulties

better. Both groups agree that it is necessary

to control for the children’s performance in

intelligence tests because mathematics learning

difficulty is defined as an unexpected difficulty in

learning mathematics. In spite of the similarity in

the use of predictive studies, these two groups of

researchers differ with respect to the assessments

that they use as criteria for success or difficulty in

learning mathematics.

Researchers who define mathematics learning

on the basis of arithmetic skills seek to predict

children’s success on standardized tests, such as
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the Wechsler Individual Achievement Test

(WIAT), which assess number discrimination,

counting, number production, knowledge of

basic addition and subtraction, multi-digit

addition and subtraction, and multiplication and

division but do not include items that require

reasoning. The predictors that they use in

their research are typically earlier forms of the

same sort of number knowledge and cognitive

processes related to memory, which are consid-

ered important for learning number relations and

calculation rules. Geary et al. (2009), for example,

used as predictors in their research children’s

early counting skill, speed and accuracy in iden-

tifying the number in sets, their ability to order

numbers by magnitude, and their ability to recall

addition facts. They also assessed the children’s

working memory (i.e., the ability to keep infor-

mation in mind andwork on the information at the

same time). They assessed the children on these

measures when they were in kindergarten. The

children’s success in mathematics learning was

assessed when they were in first grade, using the

WIAT. Because of the focus on arithmetic, chil-

dren are not allowed to use calculators during this

assessment. Geary and colleagues found that mea-

sures of number knowledge and working memory

obtained when the children were in kindergarten

predicted the children’s performance in theWIAT

mathematics measure, after controlling for the

differences in the children’s intelligence.

Researchers who think ofmathematics learning

more widely seek to predict the children’s

achievement in broader assessments. In England,

for example, children are given state-designed

standardized tests, called Key Stage tests (KS),

which measure the children’s mathematical

learning. By the time children are in their sixth

year in school, the KS mathematics tests include

mental and written arithmetic as well as knowl-

edge of decimals, problem solving, geometric

reasoning, measurement of space and time, iden-

tification of number patterns in sequences of fig-

ures, and line and bar graph reading. The children

are allowed to use a calculator for some parts of the

assessment, but not for those that measure arith-

metic knowledge. Nunes et al. (2011) hypothe-

sized that arithmetic skills and mathematical

reasoning would both predict children’s achieve-

ment in theseKS tests, and they used a large cohort

study to investigate this hypothesis. They assessed

the children’s arithmetic skills by means of

a standardized test in which the children were

asked to solve arithmetic problems that required

little reasoning; they assessed the children’s

mathematical reasoning by asking them to solve

problems that required processing information

about quantities before decidingwhich calculation

to use but involved very simple arithmetic. The

children were given these measures when they

were between 8 and 9 years. They took the KS

tests when theywere 11 and again at age 14. Nunes

and colleagues found that both the measure

of arithmetic and the measure of mathematical

reasoning predicted the children’s performance

in the KS tests, after controlling for individual

differences in intelligence. It was also found

that the reasoningmeasure was the better predictor

of the two.

In summary, researchers start from different

conceptions of mathematics learning difficulty

and therefore use different measures of

mathematics learning. Some researchers focus

exclusively on number and arithmetic skills and

exclude reasoning about quantities and relations

from their analysis, whereas others include both

types of knowledge. This theoretical divergence

also leads to a discrepancy in the explanations for

mathematics learning difficulties.

The Specificity of Mathematics

Learning Difficulties

Researchers differ in the way they define

mathematics learning difficulties, but they agree

that it is important to find out whether children’s

difficulties are specific to mathematics or

result from more general cognitive processing

mechanisms. There are different methods to

investigate the specificity of learning difficulties.

One is called comorbidity study: children who

have difficulties in mathematics are screened

for other learning difficulties, such as reading

problems. The second is to analyze whether

the factors that predict mathematics difficulties

also predict other difficulties, such as English

(or more generally, mother tongue) achievement.
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The two large cohort studies mentioned earlier

on in this paper used either of these methods in

the investigation of specificity. Barbaresi and

colleagues (2005) used the comorbidity method.

They reported that many children who showed

difficulty in learning mathematics did not show

reading problems, therefore supporting the

specificity of mathematics learning difficulties.

However, the rates differed depending on the def-

inition used. When the discrepancy definition was

used, 56.7% of the children who showed difficulty

in mathematics did not show difficulty in reading,

but this rate fell to 35% if the discrepancy between

intellectual andmathematical skills was not used in

the identification of mathematics learning diffi-

culty. Thus, when intellectual ability is not con-

trolled for in the definition of mathematics learning

difficulty, there is greater comorbidity between

mathematics and reading problems.

The second approach, which assessed the

specificity of the predictors of mathematics

learning, was used in the cohort study by Nunes

et al. (2011). They reported that arithmetic skill

and mathematical reasoning are strong predictors

of mathematical achievement but have little

relation to the children’s achievement in English

KS tests. In contrast, intelligence measures

predicted results in the KS tests for mathematics

and for English. Thus, both methods used in

cohort studies found evidence for the significance

of general cognitive processes and for the

specificity of mathematics learning difficulties.

Further Research

Although some progress has been made in the

investigation of the specificity of mathematics

learning difficulties, there is an urgent need for

further research. The issue of specificity needs to

be investigated within mathematics learning itself.

The tools used in mathematics, such as numerical

and algebraic representation systems, calculation

procedures, calculators, and computer programs,

are increasingly more varied both in the same cul-

ture and across cultures. These tools clearly place

different sorts of cognitive demands on learners,

but very little is known about the continuities and

discontinuities in learning when children use these

different tools. It is quite possible that some chil-

dren can do better in mathematics if they use one

mathematical tool than another. For example, in the

domain of simple calculation, there is evidence that

some children are significantly better at oral calcu-

lation than at using written calculation procedures

(Nunes et al. 1993) and that some are able to per-

form calculations quickly and accurately with the

abacus but they do not perform as well without it.

Mathematics educators recognize the empowering

role of mathematical tools – for example, students

learn algebra because it is expected to increase the

power of their mathematical reasoning – but

research has not yet started to consider how the

use of different tools could impact the definition of

mathematics learning difficulties. Therefore, this

article closes with a question: could an earlier

mastery of calculators and computers as tools for

calculation change the definition of mathematics

learning difficulty, or is the access to such tools

dependent on children’s knowledge of arithmetic?
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Computer Scaffolded Learning

Scaffolding refers to adults helping a child in

a process of tutorial interactions (Wood et al.

1976). The original definition can be generalized

as capable people helping a novice, for instance,

parents, tutors, or capable peers. However, when

the novice who is scaffolded becomes capable,

the scaffolds should fade in order to pass control

back to the student.

In terms of Vygotsky’s theory (1978), capable

people as a form of scaffolding can help students

to develop their potentials that they cannot reach

alone, which is well known as the zone of prox-

imal development. In other words, although

low-ability students lack enough prior knowl-

edge, they can complete a task if supported

appropriately. Furthermore, Bloom (1984) found

that if students were taught one-to-one by a human

tutor, they could perform two standard deviations

better than those taught in a conventional class-

room. The finding suggested that capable people

could effectively scaffold low-ability students and

improve their performance.

Previous educators have found that there is

a positive correlation between a student’s prior

knowledge and academic performance (Alexander

and Jetton 2000; Dochy et al. 1999). The finding

suggests that low-ability students need support to

work from their prior knowledge when they learn

new knowledge. Scaffolding is accordingly widely

used as an appropriate tutoring strategy to solving

the problem nowadays, because it can bridge and

expand a student’s capability by linking his/her

prior knowledge and new knowledge (Wood et al.

1976;Wood andWood 1996). Furthermore, owing

to the additional and appropriate support, it is

regarded as a core tutoring strategy to help students

carry out a task.

Nowadays, learning technologies have

prompted many changes in the design of scaffold-

ing. Furthermore, in a computer-supported learning

environment, the forms of scaffolding have shifted

and have been extended from interaction

with capable people to the support of artifacts,

resources, and environments. The research of com-

puter-based scaffolds focuses on cognitive and

interface designs (Sharma and Hannafin 2007).

The former emphasizes making cognitive pro-

cesses visible to students. For example, procedural

scaffolds provide explicit tasks and their sequences

for achieving a goal (Quintana et al. 2002). The

latter emphasizes using accurate and efficient rep-

resentations of scaffolds. For example, embedded

contextual scaffolds provide hyperlinks to support-

ive resources as well as contradictory evidence in

order to facilitate students’ critical thinking (Saye

and Brush 2002).

Here is an example of using computer-based

scaffolding of dynamic geometry software for

supporting the exploratory learning of the

mathematical topic “area of closed shapes.” In

general, students commonly have three types of
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difficulties in learning this mathematical topic

(Kospentaris et al. 2011; Naidoo and Naidoo

2007; Yu and Tawfeeq 2011). The first type of

difficulty is the lack of the concept of area conser-

vation, with a misunderstanding that the area of

a shape is not the same before dissection and after

re-combination. The second type of difficulty is

the failure to identify a base and its corresponding

height for area calculation. The third type of diffi-

culty is the misconception that only regular closed

shapes such as squares and rectangles have

measurable area and corresponding mathematical

formulas for area calculation; other irregular

closed shapes have none.

The example discussed here uses GeoGebra,

a computer-supported geometry software, to sup-

port students to explore mathematical formulas for

calculating the area of closed shapes. GeoGebra

has a graphics view interface with a dynamic coor-

dinate plane which accurately and efficiently rep-

resents geometric objects. The dynamic functions

of this and other dynamic geometry software

(DGS) packages support users to flexibly manipu-

late, such as move, duplicate, and rotate, the geo-

metric objects displayed, for a clear visualization

of cognitive processes behind the actions on the

geometric objects (Aydin and Monaghan 2011;

Hohenwarter et al. 2009; Taylor et al. 2007).Math-

ematics teachers can use DGS packages to design

interactive learning tools for exploratory learning

which address students’ three common difficulties

in learning the area calculation of closed shapes.

Figure 1 shows the use of a GeoGebra-based

interactive learning tool for addressing the first

type of learning difficulty. The interface of this

interactive learning tool displays a parallelogram.

Teachers in this exploratory learning activity ask

students to use the dynamic function of shape

movement to move the triangle dissected

from the parallelogram for the final display of

a rectangle. The accurate and efficient graphical

support provided in this exploratory learning

activity helps students to understand the concept

of area conservation, through visualizing the

cognitive process that after dissection the

original parallelogram has the same area as

the re-combined rectangle after shape movement.

This also promotes students’ association of irreg-

ular closed shapes with regular ones, and then

their induction of the mathematical formula

“base � height” for calculating the area of

parallelograms.

Figures 2 and 3 show the use of two GeoGebra-

based interactive learning tools for addressing the

second type of learning difficulty. The interface of

the first interactive learning tool (see Fig. 2) dis-

plays a parallelogram of which the perpendicular

line starting from the upper left vertex (Vertex C)

locates between the two vertices of the opposite

side (Vertex A and Vertex B). The interface of the

second interactive learning tool (see Fig. 3) dis-

plays a parallelogram of which the perpendicular

line starting from the upper left vertex (Vertex C)

locates outside of the two vertices of the opposite

side (Vertex A and Vertex B).

Teachers in this exploratory learning activity

first ask students to explore the first interactive

learning tool, selecting the option for displaying

the “height of AB,” and use the dynamic function

of shape movement to move the triangle dis-

sected from the parallelogram along the line AB

for the final display of a rectangle. Subsequently,

teachers ask students to explore the second inter-

active learning tool and continue the option for

displaying the “height of AB.” Students will then

find that no triangle is dissected from the

Learning Environments in Mathematics Education, Fig. 1 Using a computer-based scaffold for supporting
students to develop the concept of area conservation
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parallelogram for movement along the line AB.

Teachers can soon ask students to select the

option for displaying the “height of AC.”

Students this time will find that they are able to

move a triangle dissected from the parallelogram

along the line AC for the final display of

a rectangle. The graphical support in this explor-

atory learning activity accurately and efficiently

represents the geometric objects in response

to students’ manipulations, which promotes stu-

dents’ realization that every parallelogram has

two sets of base and the corresponding height

for area calculation. This also helps students to

visualize the underlying process in identifying

the height corresponding to the designated base,

and therefore promotes their induction of the

relationship between a base and its corresponding

height of parallelograms for area calculation.

Figures 4 and 5 show the use of two

GeoGebra-based interactive learning tools for

addressing the third type of learning difficulty.

The interface of the first interactive learning tool

(see Fig. 4) displays a duplicable triangle. The

interface of the other interactive learning tool

(see Fig. 5) displays a duplicable trapezoid.

Teachers in this exploratory learning activity

ask students to use the dynamic function of shape

duplication to duplicate one triangle and one

trapezoid, and then use the dynamic function of

shape rotation to rotate the duplicated shapes for

the final display of a parallelogram. The accurate

and efficient graphical support in response to
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Learning Environments in Mathematics Education, Fig. 3 Using a computer-based scaffold to identify the height
corresponding to the designated base (line AC)
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Learning Environments in Mathematics Education, Fig. 2 Using a computer-based scaffold to identify the height
corresponding to the designated base (line AB)

Learning Environments in Mathematics Education, Fig. 4 Using a computer-based scaffold to explore the
mathematical formula for calculating the area of triangles
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students’ manipulations of geometric objects

enables students to visualize the cognitive pro-

cess of associating irregular closed shapes with

regular ones. Students can then find that irregular

closed shapes like triangles and trapezoids, the

same as with other regular closed shapes like

squares and rectangles, have measurable area

that can be calculated by mathematical formulas.

Teachers can subsequently remind students to

recall prior knowledge about the mathematical

formula for area calculation of parallelograms,

in order to promote their gradual induction that

the mathematical formulas for calculating the

area of triangles and trapezoids are “base �

height/2” and “(upper base + lower base) �

height/2” respectively.

Computer-Supported Collaborative
Learning

Even if children have not learnt mathematics,

they live in a world with numbers and shapes.

Mathematics helps people to understand the

world by simplifying complex problems, solving

them reasonably, and conveying the solution

to other people persuasively. For this reason,

mathematical communication emphasizes that

students express their mathematical thinking

coherently to peers and teachers. Furthermore,

mathematical communication can be achieved

by verbal and written forms (Hiebert 1992; Silver

and Smith 1996). More specifically, students

should use mathematical language to explore

and express mathematical concepts and ideas in

their own ways (Baroody 2000; Ginsburg et al.

1999; NCTM 2000; Rubenstein and Thompson

2002; Whitin and Whitin 2003). By doing so,

students can broaden and deepen their conceptual

understanding through making mathematical

connections within mathematics and between

mathematics and other domains (Brown and

Borko 1992; NCTM 1991).

The National Council of Teachers of Mathe-

matics (NCTM) describes the importance of

mathematical communication: “communication

is an essential part of mathematics and mathe-

matics education (NCTM 2000, p. 60).” Mathe-

matical communication involves adaptive

reasoning (Kilpatrick et al. 2001, p. 170) and

even argumentation (Andriessen 2006). In terms

of adaptive reasoning, students have to acquire

the ability to think logically, to explain

a mathematical concept or procedure, and to jus-

tify their own or others’ assertions. Adaptive

reasoning also relates to the usage of representa-

tion (English 1997). The ability to use appropri-

ate representation can facilitate conceptual

understanding, and problem solving. In terms of

argumentation, students have to elaborate what

they think, and to debate with sufficient evidence

(Toulmin 1958). When students attempt to build

arguments, they aim to produce their mathemat-

ical ideas. For doing so, they may direct them-

selves to learn new concepts and procedures.

In order to facilitate the ability to communi-

cate mathematically, students should be given

opportunities, encouragement, and scaffolds to

engage in oral communication in classrooms

(NCTM 2000; Whitin and Whitin 2003). Previ-

ous research has identified several approaches to

the facilitation of mathematical communication,

which are introduced as follows.

Self-explanation (or think aloud) is a domain-

general learning strategy (Chi et al. 1994), which

emphasizes the linkage between prior knowledge

and new one (Chi and van Lehn 1991). Previous

research has shown that successful problem-

solvers can generate more explanation (Chi

et al. 1989).

Learning Environments in Mathematics Education, Fig. 5 Using a computer-based scaffold to explore the
mathematical formula for calculating the area of trapezoids
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Compared with self-explanation, peer-

explanation is an interactive explanation strategy,

which can be applied in a natural and social

learning environment. Among various peer-

explanation pedagogies, peer instruction is

a widely adopted and effective pedagogy, which

allows students to explain their own ideas for

reducing misconceptions (Mazur 1997).

Furthermore, students may benefit from

tutoring others (Cohen et al. 1982; Rohrbeck

et al. 2003) as well as preparing teaching mate-

rials (Ching et al. 2005). Additionally, peer-

teaching facilitates spontaneous and appropriate

use of diagrams in order to solve mathematics

word problems (Uesaka andManalo 2007, 2011).
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Definition

To examine how new affordances of digital rep-

resentations enable students and teachers’ access

to core mathematical ideas and develop deeper

thinking and mathematical expressivity.

Characteristics

The inherited corpus of mathematical knowledge

produced with pre-digital technologies is large

and stable. This stability has generated a kind of

Platonic illusion as if this knowledge were inde-

pendent of human beings.

Today, digital environments are becoming

infrastructural for education, and inevitably they

are confronted with the Platonic vision of knowl-

edge that demands mathematical objects to be not

just stable but immutable.

Learning practices in digital environments

should take this confrontation seriously. In fact,

as digital representations are executable, the

environment reacts to the actions of the learner,

and thus, the representation of the object is

transformed. It has been aptly explained by

Duval (2006), how the only way to access

a mathematical object is by means of a semiotic
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representation. At the same time, the object does

not have a pre-semiotic life as Plato had wished.

The fact that digital representations are exe-

cutable enables the learner to manipulate the

object in ways that are not possible in the tradi-

tional static environments. Executable represen-

tations constitute an affordance of the digital

environments. Today, learning demands the

design of transition strategies to transform the

corpus of knowledge coming from the static envi-

ronment and make it feasible in digital environ-

ments. Curriculum designers cannot ignore that

the presence of executable representations trans-

lates into an enhanced expressivity on the side of

learners. For instance, the graph of a function is

not anymore the static picture seen in paper books

but an enlivened object with the power to ignite

new ways of exploration: The learner coacts

(Moreno and Hegedus 2009) with the environ-

ment. Related work (Trouche and Drijvers 2010)

investigates handheld technologies to distinguish

between instrumentation – how tools affect and

shape the thinking of the user – and instrumenta-

lization, where the tool is shaped by the user.

Vygotsky (1981) explained that human action

is mediated by tools and how the inclusion of

a tool in a learning process modifies the nature

of the process itself. The initial encounter with

a digital environment can amplify what the

learner already knows, by making explicit some

features of the knowledge that appears as hidden

in a static representation.

We will illustrate this position with a famous

mechanical linkage – the Peaucellier Inversor.

This machine transforms circular motion of the

point P (see Fig. 1) into the straight-line motion of

point Q. Point P moves around the circle with

center D that contains the center C of the largest

circle in the next figure. At the same time, point

P is the center of the circle that intersects the

largest circle at E and F. Point Q is the fourth

vertex of the parallelogram.

When it appeared in 1864, the inversor went

almost unnoticed. It is interesting to observe that

when JJ Sylvester (in 1874) delivered a lecture on

mechanical conversion of motion, one of the

attendants to the lecture, Lord Kelvin, exclaimed

when he saw the mechanical inversor in action:

It is the most beautiful thing I have ever seen in

my life!

Our experience with teachers (as learners) is

that from their first encounter with the inversor, in

its dynamic geometry embodiment, they are fas-

cinated as well. They live a new kind of experi-

ence with geometry far from their former

experience with static geometry. They learn pre-

cisely what a theorem in motion means. A new

way of thinking emerges.

The learner establishes, gradually, a more

profound relationship with the digital environ-

ment. With time, from being guided by the envi-

ronment, the learner overcomes the resistance

inherent in the environment reaching a new

level of dexterity that makes it possible, for the

learner, to guide the environment. This bilateral

relationship (from being guided to guiding)

implies, for instance, that the learner takes profit

from the affordances of the environment to

enhance her problem-solving strategies (Verillon

and Rabardel 1995). None of this takes place in

a social vacuum. The plasticity of the symbiotic

relationship between learners and environments

is sensitive to the presence of other learners

(and teachers) and the ways they coact with the

given environment and share their points of view.

E

F

Q

D·C

P
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Fig. 1 A dynamic form of the Peaucellier Inversor
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Thus, the collective guiding of the environment

eventually takes it to a higher structural level, as

if the environment were crystallizing its own

zone of proximal development.

Coaction is enhanced in such contexts where

the environment is structured by executable

visual representations as well as by the presence

of a public space where the work of every learner

can be viewed and analyzed (Hegedus and

Moreno-Armella 2010). In such a space, the pre-

sentation can be controlled, and the teacher can

ask questions about expectations before a set of

graphs or motions are displayed as in SimCalc

MathWorlds® (see http://www.kaputcenter.

umassd.edu/simcalc/).

Actions displayed in the digital environments

entail various forms of expressivity. Participants

aim to explain “what they see,” and consequently

they express themselves in terms of gestures as

well as speech. Coaction extends into the social

space between the user (learner) and the whole

set of contributions from all the participants. The

action is not owned – in fact, agency is a plastic

collaboration between the user and environment,

both are actors and reactors. This occurs thanks to

the infrastructural affordances provided by the

environment.

Again, there is an “invisible hand” that can

guide both the conceptual structure of the task

and the flow of argumentation in the classroom.

Coaction becomes a relationship between a

learner, other learners, and the executable space

within the technological environment.

Now, let us consider what are called border

objects (Moreno-Armella and Hegedus 2009) that

are essential for coaction to occur. They are

digital-dynamic embodiments of mathematical

objects that are defined initially within a paper-

and-pencil environment and that can be meaning-

fully explored within the new environment.

This kind of embodiment is not the same as

a change of semiotic representation within the

same medium – the static medium, for instance.

In fact, a semiotic digital representation of a border

object possesses a new quality that is not present

in paper-and-pencil semiotic representations:

the executability of the representation. This is

a refraction into a different medium where the

refracted object acquires a new operational field

due to the executable nature of its new semiotic

representation. This quality transforms the interac-

tion that a learner can have with the mathematics,

now embedded in the digital medium. For instance,

when the learner finds a familiar object, a triangle

let us say, and she drags a vertex, themedium reacts

to her action producing a new triangle – revealing

the plasticity of the object as it does not lose its

identity as a triangle. This behavior is enabled by

the executability of the digital representation of the

border object. This reaction stimulates a new action

from the hands of the learner.

The border object possesses some points, like

the vertex, that are infrastructural. These points are

called hot spots. It is the existence of hot spots in the

object that creates the dynamic for coaction. These

hot spots are points that can be used to construct

mathematical figures, e.g., join two points with

a segment or construct a piecewise graph, and

then used to dynamically change the construction,

as in the case of dragging the vertex of a triangle. In

digital media – such as dynamic geometry environ-

ments (e.g., Cabri II Plus or Geometer’s

Sketchpad®) or SimCalc MathWorlds® – hot

spots are key infrastructural pieces.

When students explore mathematics in

a digital medium, where hot spots are present

and where mathematics is embedded, they can

experience mathematics through a qualitatively

different semiotic mediator – that is, the new

digital medium. The emergent knowledge from

this digital medium is different from the knowl-

edge emerging from a paper-and-pencil medium

because the mediator is not epistemologically

neutral. The nature of the knowledge is inextri-

cably linked to the mediating artifact. This is

where the border objects can guide us in the

design of new models to explore mathematical

thinking in classroom environments.
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Characteristics

Learning Study is an arrangement for teachers’

collaborative work (with or without a researcher)

aimed at enhancing student learning of

a particular topic (Runesson 2008). By carefully

and systematically studying their classroom

teaching and students’ learning, teachers

explore what the students must learn in order

to develop a certain capability. Learning

Study is premised on an explicit learning the-

ory and centers on students’ learning prob-

lems. It was first conducted in Hong Kong

1999 and has since been developed in other

parts of the world (e.g., Sweden, Brunei, and

the UK). The Learning Study was developed

from the background of several studies of

classroom learning and differences in learning

outcomes when the same topic was taught by

different teachers to different classes. In these

studies it was found that how the topic taught

was handled, in terms of those aspects or

features that were brought out in the lesson,

was reflected in students’ learning (Marton

and Tsui 2004).

The Cyclic Process and the Object
of Inquiry

Just like the Japanese Lesson Study cycles

(Stigler and Hiebert 1999), it is a process

entailing planning a research lesson (or a

sequence of lessons), which is taught, observed,

evaluated, and modified in further lessons. The

process starts with a group of teachers choosing

and deciding about the object of learning, usu-

ally something they know is hard to learn and to

teach. Next they design a pretest and give it to

the students to find out about their learning

problems. On the basis of this, they plan the

first lesson(s) in the cycle, and one of the

teachers implements the research lesson(s).

This is documented by video recording, and

after the lesson(s) a posttest is given to the

students. The teachers meet again in a post-

lesson session to analyze the recorded lesson

and the results on the posttest. They reflect on

the students’ performance and the enactments

of the lesson. If needed, they revise the plan,

and another teacher implements the revised

lesson in her class. This continues in a number

of cycles until all the teachers in the group have

conducted one lesson. So, in Learning Study,

teachers try to find out why students fail to learn

something specific and try to solve this

problem. The failure is not sought in inade-

quacy of the learner, neither in the teaching

arrangements nor methods used. Instead it is

the relation learning – teaching that is the object

of inquiry.
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Guided by a Learning Theory

One significant characteristic of the Learning

Study is that in the iterative process of planning

and revising, the teachers are guided by a learning

theory – Variation Theory (Marton and Tsui

2004) – which helps them to focus on the object

of learning and its critical features. The object of

learning refers to the capability that the learners

are expected to develop. It has a specific aspect –

what is to be learned (e.g., Pythagoras’ theorem,

division with a decimal number) – and a general

aspect, which refers to the way the learner

masters that which is learned (e.g., explain,

calculate, understand). Variation Theory states

that how something is understood, seen, or

experienced is a function of those features that

are attended to at the same time. So, differences

in ways of understanding are due to differences in

the discernment of the features of what is learned.

For every object of learning, there are some fea-

tures that must be attended to at the same time by

the learner; they are critical. Students might not

focus on those features, or not focus on them

simultaneously and their relationship, and thus

not learn what is expected. In Learning Study

the teachers try to identify features that are

critical for a specific group of learners.

Exploring the Object of Learning

To find out what the critical features are, it is

necessary to go deeply into exploring the object

of learning. In the process the teachers try to

understand what it means to know something in

mathematics by asking questions like: “What

does it imply to understand that decimal numbers

are dense?” and “What must be learned to under-

stand this?” Teachers can use many sources to

find the answers to these questions: literature

review or their own and colleagues’ teaching

experience. The main source, however, is

students’ learning, how they experience that

which is learned. One theoretical point of depar-

ture in Learning Study is that students’ learning

problems can arise from the teacher taking the

critical features for granted; therefore, it is

necessary to explore students’ learning also.

That is why some tasks are given to the students

before and after the lesson, either as a written

“test” or by interviewing the students before and

after the lesson(s). Gaining information about

what features the students do not discern must

also be done by carefully observing students’

responses in the video-recorded lesson. The aim

is to get a deeper understanding of what features

the students have failed to grasp. For instance, in

a Learning Study about subtracting negative

numbers, it was found on the posttest that the

students had great problems with calculating,

for example, �3� (�5) ¼ ?. From a deep

analysis of the lesson and students’ learning, it

was found that they did not realize that �18 is

a smaller number than 3 (i.e., they had not learned

the magnitude of integers). So, this was found to

be one (of several) critical feature of being able

to calculate with negative numbers.

Although the teacher has an idea of what the

critical features may be for a particular group of

students, she may not be able to bring them out in

the classroom in a way that makes them learnable

for the students. Here Variation Theory can

help the teacher by being a guiding principle

when designing learning possibilities. From

a Variation Theory perspective, the relationship

between learning and teaching is not seen as one

of cause and effect. Teaching can only bring out

possibilities for learning by helping the learners

to discern the critical features. One fundament

in Variation Theory is that a feature can be

discerned only when it is experienced as

a dimension of variation. Bowden and Marton

(1998) state that something that varies against

a stable background is likely to be discerned.

So, applying Variation Theory when designing

for learning implies creating a pattern of variation

and invariance of those aspects that are critical

for learning. For instance, in a Learning Study

where the object of learning was to realize that

decimal numbers are dense, it was found that

seeing the decimal number as a part-whole rela-

tionship was a critical feature for learning. The

students must learn that 0.97 is a point on the

number line as well as hundreds in relation to

one whole. To make it possible to learn this, the
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lesson was designed from a Variation Theory

perspective so the same rational number was

represented in different ways (e.g., 0.97 ¼
97/100 ¼ 97 %). When the number was kept

invariant whereas the representation varied, the

students learned better compared to the lesson

when only one representation was presented

(i.e., did not vary) (Runesson and Kullberg

2010). Those students that had encountered

representation of rational numbers as a dimen-

sion of variation were better at explaining why

there are infinite decimal numbers in an

interval.

Another example of how the principle in Vari-

ation Theory can be used is a Learning Study about

angles (Runesson and Kullberg 2010). From the

pretest it was found that the students (grades 4 and

5) thought that the size of an angle has to do with

the lengths of the arms. Hence, if two angles with

the same size, but with different length of the arms

were compared, they thought the angle with the

longest arms was the biggest. Guided by Variation

Theory, the teachers designed tasks that would

help them to focus on the amount of the rotation

between the arms and disregard the length of the

arms (i.e., the critical feature). For instance, in one

of the (several different) tasks, two angles were

compared. The students had to decide which was

the biggest angle, a smaller angle (e.g., 30�) with
the longest arms or a bigger angle (e.g., 60�) with
the shortest arms.

Teachers’ Learning and Students’
Learning: A Parallel Process

Besides enhancing student learning, Learning

Study contributes to teachers’ learning also.

They learn about the object of learning from

their teaching and from the learners. Their expe-

riences are preferably documented so they can be

accessible to other teachers. The documentation

of a Learning Study is not a lesson plan in

a general sense of the word. Instead it is

a documentation of the critical features identified

and a description of the pattern of variation and

invariance that was found being effective in

bringing them out in the lesson.
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Definition

Lesson study, originated in Japan, is a common

element in approaches to professional develop-

ments whereby a group of teachers collaborate to

study the subject matter, instruction, and how

students think and understand in the classroom.

The original term of lesson study, “jugyo

kenkyu” in Japanese, literally means the study

of lesson.
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Historical Developments and Contexts

Lesson study is a Japanese approach to improve

teaching and learning mathematics through a

particular form of activity by a group of teachers.

It provides teachers with key learning opportuni-

ties in working collaboratively with their

colleagues to study subject matter, students’ think-

ing and learning, and how to change classroom

instruction.

The origin of lesson study can be traced back

to the late 1890s, when teachers at elementary

schools affiliated to the normal schools started to

study lessons by observing and examining them

critically (Inagaki 1995). The group of teachers

started to have studymeetings on newly proposed

teaching methods. The original way of observing

and examining lessons has spread out nationwide

with some major refinements and improvements.

Teachers shared two types of methods to learn

about new teaching approaches, called ‘criticism

lesson’ and ‘model lesson’. ‘Criticism lesson’

included a particular function of studying lessons,

carefully examining the effectiveness of teaching,

and publicly discussing ways to improve teaching

and learning. The term ‘research lesson’, or

kenkyu-jyugyo, might come from this particular

function of lesson study with its major focus on

producing a new idea, or testing a hypothesis in the

form of an operationalised teaching method or

teaching materials. On the other hand, ‘model les-

son’ included another function of studying lessons;

demonstrating or showcasing exemplary lessons,

or presenting new approaches for teaching. For this

purpose, the lesson should be carefully planned

and based on research conducted by a teacher or

a group of teachers. Participants can observe and

discuss actual lessons with a hypothesis, instead of

simply reading papers that describe the results of

the study. The two different functions of lesson

study – ‘criticism lesson’ and ‘model lesson’ – can

be the original model of a variety of lesson study

practiced around the county.

Lesson study takes place in various contexts

(Shimizu 2002). Preservice teacher-training

programs at universities and colleges, for

example, include lesson study as a crucial and

challenging part in the final week of student

teaching practice. In-service teachers also have

opportunities to participating in it, that is held

within their school, outside their school but in

the same school district or city, prefecture,

and even at the national level for a couple of

objectives. Teachers at university-affiliated

schools that have a mission to developing a new

approach to teaching often open their lesson

study meeting for demonstrating an approach or

new teaching materials they developed.

Key Elements

The activity of lesson study includes planning

and implementing the “research lesson” as

a core of the whole activity, followed by post-

lesson discussion and reflection by participants.

A lesson plan plays a key role as a medium for the

teachers to share and discuss the ideas to be

examined through the process of lesson study.

Lesson study is a problem-solving process

whereby a group of teachers work on a problem

related to a certain theme. The theme can be

related to examining the ways for teaching

a new content or for using new teaching materials

in relation to the revision of national curriculum

guidelines or to assessing students’ learning of a

certain difficult topic in mathematics such as

common fractions or ratio.

The first step of lesson study is defining the

problem. In some cases, teachers themselves pose

a problem to solve, such as how to introduce a

concept of common fraction or what is the effec-

tive way to motivate students to learn mathemat-

ics. Second, planning lesson follows after the

problem is defined. The group of teachers collab-

oratively develop a lesson plan. A lesson plan

typically includes analyses of the task to be

presented and of the mathematical connections

both between the current topic and previous topics

(and forthcoming ones in some cases) and within

the topic, anticipation for students’ approaches to

the task, and planning of instructional activities

based on them. The third step is a research lesson

in which a teacher teaches the planned lesson

with observation by colleagues. In most cases,

a detailed record of teacher and students
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utterances is taken by the observers for the dis-

cussion in a post-lesson discussion. Evaluation of

the lesson follows in a post-lesson discussion

focusing on the issues such as the role of

the implemented tasks, students’ response to

the tasks, and appropriateness of teachers’

questionings. Based on the evaluation of the les-

son, a revised lesson plan is developed to try the

lesson again. These entire process forms a cycle of

lesson study.

The Role of Outside Experts

In lesson study, an outside expert is often invited

as an advisor who facilitates and makes com-

ments on the improvement of lesson in the post-

lesson discussion (Fernandez and Yoshida 2004).

The expert may be an experienced teacher, a

supervisor, a principal of a different school, or a

professor from the nearby university. In some

cases, not only inviting the expert as a commen-

tator of the discussion on site, the group of

teachers may meet with him/her several times

prior to conducting the research lesson to discuss

issues such as reshaping the objective of the

lesson, clarifying the role of the task to be posed

in the classroom, and anticipating students’

response to the task. In this context, outside expert

can be a collaborator who shares responsibility

for the quality of lesson with the teachers, not just

an authority who directs the team of teachers.

Lesson Study Adopted as a Model
of Professional Development in
Other Countries

After researchers in the USA introduced lesson

study to the mathematics education community

during the late 1990s, the term “lesson study”

spreads among researchers and educators in

the USA and later around the world

(Hart et al. 2011). One of the most influential

books that discusses about lesson study is The

Teaching Gap (Stigler and Hiebert 1999). Then,

schools and teachers in different countries have

been trying to implement lesson study into their

own education systems. The central question to

the possibilities of “adoption” of the approach

to other place is raised from a perspective on

teaching as a cultural activity.

Improvement of teaching and learning

through lesson study over a long period of time

can take place, in Japanese education system,

within the context in which clear learning goals

for students are shared among teachers in relation

to the national curriculum standards as well as

teachers’ voluntary hard efforts with the support

of administrators. There are challenges to be

resolved in practice and research possibilities to

be explored in each context.
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Definition

Logic is a domain that was developed among

the ancient Greeks and was first formalized by

Aristotle in the Organon, where we already

find the essential features of contemporaneous

first-order logic: the importance of quantified

statements and the interplay between syntax and

semantics on the one hand, between truth in an

interpretation and logical validity on the other

hand. So, although Aristotle system was limited

and insufficient for mathematics, most authors

who developed the modern first-order logic (i.e.,

Frege, Russell, Wittgenstein, Tarski, Quine)

implicitly or explicitly refered to Aristotle.

Of course, logic is a field with a very large

spectrum of aspects and use; so we will not try

here to give a general definition, but restrict to

a definition suitable for mathematics education.

Following Durand-Guerrier et al. (2012), we

define logic as:

(. . .) the discipline that deals with both the
semantic and syntactic aspects of the organization
of mathematical discourse with the aim of
deducing results that follow necessarily from a set
of premises. (op. cit. p. 370)

The Role of Logic in Mathematics
Education

In the period of modern mathematics in the 1960s

and 1970s, logic and naı̈ve set theory were briefly

part of the high school curriculum in some countries

(e.g., in France). Since the 1980s, the question of the

role of logic in mathematics education is highly

controversial. In particular, there are discussions

among authors if logic should be opposed to or

considered as complementary of intuition. A rather

common position among mathematics educators

(and also mathematicians) against the teaching of

logic is that practicing mathematics should develop

the logical competencies required for mathematical

activity. More over research have shown that teach-

ing logic for itself does not necessarily improve

mathematical compentencies. As a consequence,

in a number of countries, the teaching of logic is

nowadays developed in departments of computer

sciences, often with links to discrete mathematics.

However, it seems rather clear that logic is

closely intertwined with mathematical activity

in two main aspects: the first one concerns

mathematical language, and the second one con-

cerns mathematical proof, argumentation, and

reasoning.

Logic and Mathematical Language

A first aspect concerns the role of logical

categories in conceptualization process

(Vergnaud 2009). These categories are proposi-

tion (a linguistic entity either true or false),

predicate (propositional function) that models

either a property (one place predicate) or

a relationship (two or more places predicate),

and argument that can be assigned to

a placeholder in a predicate. Below are some

examples of such categories.

Propositions: 23 is a prime number (true). For

all Cauchy sequence in the rational number

set, there exists a rational number which is the

limit of the sequence (false). Symmetry preserves

distance (true).

Predicates: To be a prime number (one place),

to be convergent (for a sequence, a series;

one place), to be an axis of symmetry of (two

places).

Arguments: Integers, real numbers, sequences,

convergence (of sequence, series), line, symme-

try etc.

Logic in Mathematics Education 361 L

L



It is indeed a remarkable feature of mathe-

matics that the process of conceptualization

goes ahead along with a process of

nominalization, such that properties at a given

level are likely to become arguments at a more

advanced level.

The second important issue concerns formali-

zation. Indeed, the main interest of predicate

calculus is to provide formal languages aiming

to get rid of ambiguities that are inherent in

natural languages and constitute a large part

of their richness. In educational contexts,

ambiguities are likely to lead to deep misunder-

standing between teachers and students, or

among students. As shown by research, such

misunderstandings are often related with quanti-

fication matters (Durand-Guerrier et al. 2012). In

this respect predicate calculus offers a sound

resource for conceptual clarification. However,

although formalizing statements is often useful

to examine their truth-value or to engage in

a proving process, even advanced students

might fail to master properly such tasks (i.e.,

Selden and Selden 1995), and opposite with

what could be expected, the introduction of for-

malized language to undergraduates appears for

many students as an insuperable obstacle

(Chellougui 2009). In educational contexts

where students learn mathematics in a non-

motherhood language, beyond differences in

lexics or notations, differences in syntactical

(grammatical) structures such as negation or

quantifiaction are likely to impact strongly the

understanding of the mathematical discourse in

classroom. This last point needs international

research development.

Although the empirical results from various

research attest that these logical aspects of

mathematical language are source of difficul-

ties for many students (Durand-Guerrier et al.

2012), mathematics educators tend to underes-

timate these difficulties, a shared opinion

being that clarity is a clue feature of mathe-

matical language. Then, there is a tendency

to neglect the importance of a specific work

on the logical structure of mathematical

statements.

The Role of Logic in Mathematical Proof,
Argumentation, and Reasoning

In an educational perspective, it could seem obvi-

ous to consider the role of logic in proof and

proving in mathematics (Epp, 2003). But this

position has been weakened by results in psycho-

logical research on reasoning, in particular

around the famous Wason selection task, that

seemed to show the irrelevance of formal logic

to actual human reasoning. Nevertheless, as

Stenning and Van Lambalgen (2008) state, this

is a consequence of an interpretation of the given

results from a strictly syntactic point of view.

As soon as semantic aspects are considered as

part of logic, the inadequacy of logic for

modeling reasoning has to be reconsidered

(Durand-Guerrier et al. 2012).

As developed in Quine (1982), logic is the

theory of form and inference. This point has

been clearly established by Tarski for quantified

logic. Tarski (1994) provided a semantic

definition of truth for formalized languages and

developed a methodology for deductive sciences,

introducing a model-theoretic point of view so

that, according to Sinaceur (2001), logic can be

considered as an effective epistemology to

understand mathematical activity.

The relevance of this approach for mathe-

matics education is developed in Durand-

Guerrier (2008). In fact, considering proof,

argumentation, and reasoning, as well as prob-

lem solving, it is quite clear that being able to

recognize whether an inference is valid (i.e., is

associated to a logical theorem) or not is

crucial, as illustrated in the two following

examples.

The first example is about valid and not

valid inferences involving implication in

propositional calculus. In propositional calcu-

lus, the truth tables provide means to prove

that a formula is a logical theorem (a tautol-

ogy, i.e., a statement that takes the value true

for all combinations of values of its compo-

nents) or that it is not. As shown by Quine

(1982), this is closely related to inference

rules in interpretation. The two tautologies
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“(p · (p ) q)) ) q” and “(�q · (p ) q)) )
�p” are respectively associated with the infer-

ence rules named modus ponens “A; and “If A,

then B”; hence B” and modus tollens “not B;

and “If A, then B”; hence not A.” The two

implicative formulas “(q · (p ) q)) ) p”

and “(�p · (p ) q)) ) �q” are not tautolo-

gies (it is possible that the premises are true

and the consequence false); therefore, it is

neither possible to deduce A from B and “If

A, then B” nor to deduce not B from not A and

“If A, then B.” It is important to notice that

this is at the core of the distinction between an

implication and its converse, and hence

between implication and equivalence.

The second example is about a not valid infer-

ence rule involving multiple quantifiers. It is well

known that the following rule – “For all x, there

exits y such that P(x, y)”; and “For all x,

there exists y such that Q(x, y)”; hence “For all

x, there exists y such that P(x, y) and Q(x, y)” – is

not a valid inference rule. Indeed, it is easy to find

counterexamples where the premises are true

while the conclusion is false: given an interpre-

tation, once a generic element a has been

considered, the first (resp. the second) premise

allows considering an element b (resp. c) such as

P(a, b) (resp. Q(a, c)) is true; b and c are a priori

different. However, in a large number of mathe-

matical contexts, it is possible once having con-

sidered such elements b and c to build a third

element satisfying both premises and hence the

conclusion (e.g., in ordered sets in some cases,

the maximum of b and c satisfies both premises),

so that teachers can decide to delete this step of

reasoning. As a consequence, students, forgetting

that the rule is not valid, can use it in cases where

it is not possible to find an element satisfying both

premises. This can lead them either to prove

a false statement or to provide an incorrect

proof for a true statement (Durand-Guerrier and

Arsac 2005).

To control validity of written text, natural

deduction (i.e., Copi 1954) offers tools allowing

students and teachers to become aware of the

necessity of and to be able to control the validity

of the inference rules used (Durand-Guerrier

et al. 2012). However concerning the production

and the control of arguments exchanged during

classroom sessions, in particular during situa-

tions of validation, dialogical models are more

suitable as shown by Barrier (2011) who intro-

duced semantics and pragmatics aspects as devel-

oped in Semantics Games Theory (Hintikka and

Sandu 1997).

Conclusion

Examining the role of logic in mathematics edu-

cation brings argument for the value of integrat-

ing logical instruction in mathematics curricula.

The question of how to do this in order to foster

the development of mathematics conceptualiza-

tion and the development of proof and reasoning

competencies remains largely opened. Some first

paths are given in Durand-Guerrier et al. (2012),

but further research taking in consideration the

variety of educational and linguistic contexts are

needed.
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Definition

Mathematical manipulatives are artifacts used in

mathematics education: they are handled by stu-

dents in order to explore, acquire, or investigate

mathematical concepts or processes and to

perform problem-solving activities drawing on

perceptual (visual, tactile, or, more generally,

sensory) evidence.

Characteristics

Manipulatives and Mathematics Education

One can distinguish several kinds ofmanipulatives

used in schools and education. Two classifications

that emerge from the literature may be suggested,

referring to either the quality of interaction user-

manipulative or the origin of the manipulative:

concrete versus virtual manipulatives and

historic-cultural versus “artificial” manipulatives.

Concrete manipulatives are physical artifacts

that can be concretely handled by students

and offer a large and deep set of sensory

experience.

Virtual manipulatives are digital artifacts that

resemble physical objects and can be manipu-

lated, usually with a mouse, in a similar way as

their authentic, concrete counterparts.

Historic-cultural manipulatives are concrete

artifacts that have been created in the

longstanding history of mathematics to either

explore or solve specific problems, both from

inside and from outside mathematics.

“Artificial” manipulatives are artifacts that

have been designed by educators with specific

educational aims.

The following table lists some examples

according to the combination of the two classifi-

cations above.

Concrete Virtual

Historic-
cultural

Different kinds of abaci;
Napier’s bones; measuring
tools such as graded rulers
and protractors;
polyhedrons; mathematical
machines; topological
puzzles; geometrical
puzzles; dices and
knucklebones; ancient
board games

Suanpan the
Chinese
abacus,
virtual copies
of
mathematical
machines

(continued)
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Concrete Virtual

“Artificial” Froebel’s gifts,
Montessori’s materials,
Cuisenaire rods, Dienes’s
materials, multibase blocks,
fraction strips and circles,
bee-bot

Library of
virtual
manipulatives

Historic-cultural manipulatives refer to mathe-

matical meanings, as they have paved the way

towards today’s mathematics (some examples are

discussed in a further section). Artificial manipula-

tives are the outcomes of an opposite path: an

ingenuous educator invented, for specific educa-

tional purposes, a new way to embody an

established mathematical concept into an object or

a game. At the beginning this choice might be

considered artificial (and this is the reason of

using this term in the classification above).

A famous example is given byDienes who explains

the root of multibase blocks and the teachers’ resis-

tance to this introduction, perceived as completely

artificial. One might object that the difference

between the historic-cultural and artificial ones is

fuzzy. Is one allowed to consider Froebel’s gifts

artificial and the Slavonic abacus historic-cultural?

Not exactly, if one considers that both artifacts date

back to the same period and have been designed for

educational purposes. The Slavonic abacus was

carried to France around 1820 from Russia by

Poncelet who transformed the Russian abacus for

educational purposes. Froebel gifts were designed

around 1840 for activity in the kindergarten. In the

proposed classification, the Slavonic abacus is con-

sidered a historic-cultural one, because of the strict

relationship with other kinds of abaci, while Froe-

bel gifts are considered the ancestors of other arti-

ficial manipulatives produced later by educators

like Montessori, Cuisenaire, and Dienes (Fig. 1).

Both are examples of the inclination to give

value in Europe to active involvement of mathe-

matics students during the nineteenth century

(see Bartolini Bussi et al. 2010) and represent

the background where the International Commis-

sion on Mathematical Instruction (ICMI) started

to work with a big emphasis on active methods

and laboratory activities.

The distinction between concrete and virtual

manipulatives deserves some observation.

A whole library of virtual manipulatives is avail-

able on the web. In this library, there are digital

“objects” (mostly in the form of Java applets)

representing many artificial manipulatives and

allowing to act on them in a way similar to the

action on their concrete counterparts. There are

also websites, where digital copies of historic-

cultural manipulatives are available. In all cases

the user-manipulative interaction is limited to

mouse piloting and looking at effects. Systematic

research on virtual manipulatives and on compar-

ison between concrete and virtual manipulatives

is still at the very beginning. Virtual manipula-

tives are easily available (wherever a computer

Manipulatives in Mathematics Education, Fig. 1 Schoty and Froebel gifts
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laboratory is located), are time and space saving,

and are motivating, because of the appeal they

exert on students accustomed to digital devices.

However, if compared with concrete manipula-

tives, virtual manipulatives seem to highlight

mainly visual experience, skipping reference to

tactile and other sensory experience. The new

touch-screen technology with the possibility of

touching simultaneously different points on the

screen seems to open new possibilities (see, for

instance, Mak-trace, by Anna Baccaglini-Frank

(Baccaglini-Frank et al. (2012)) and TouchCounts

by Nathalie Sinclair).

A few studies have been carried out about the

comparison between concrete and virtual manipu-

latives. For instance, Hunt et al. (2011) report the

findings of a three-year studywith prospectivemid-

dle-grademathematics teachers enrolled in Clayton

State University. Perceived advantages and disad-

vantages of concrete versus virtual manipulatives

are compared after a full coursewhere both kinds of

manipulatives for Number Concepts had been used.

Concrete manipulatives appeared to be more effec-

tive for building preservice teachers’ and students’

conceptual understanding. The virtual manipula-

tives were used to reinforce those concepts. The

usefulness of using both concrete and virtual

manipulatives is emphasized by Maschietto and

Bartolini Bussi (2011). Both a concrete and

a virtual copy of the same manipulative (i.e., the

van Schooten ellipsograph by antiparallelogram –

Fig. 2) are analyzed, comparing classroom tasks

and tasks for teachers about the textual description

with “realistic” drawings.

Critical Issues

The first critical issue concerns the students’

autonomy in using manipulatives. In the western

tradition, since the time of Montessori, the use of

manipulatives was mainly aimed at spontaneous

activity within a well-prepared environment:

adults organize the environment where students

(usually aged between 3 and 10–12) are free to

select activity. This trend has to be historically

contextualized as a reaction against the lecture-

based school, criticized also by Dewey (1907).

Yet there are studies (e.g., Uttal et al. 1997;

McNeil and Jarvin 2007) which have a more crit-

ical approach to manipulatives. The effectiveness

of manipulatives over more traditional methods is

analyzed, claiming that the sharp distinction

between concrete and symbolic forms of mathe-

matical expression is not useful. There is no guar-

antee that students will establish the necessary

connections between manipulatives and more tra-

ditional mathematical expressions. In particular

this issue calls into play the importance of instruc-

tion (or teaching) about manipulatives and the

connection between manipulatives and symbols.

The second critical issue concerns the students’

age. Most research about manipulatives has been

carried out at preschool and primary school level,

highlighting the usefulness of manipulatives at

a certain age only (e.g., Kamii et al. 2001). In

most guides for teachers, the use of manipulatives

is especially aimed at either primary school

students or students with special needs. Curtain-

Phillips complains about the scarce use of manipu-

latives inUS high schools, quoting, as an exception,

Marilyn Burns who used manipulative materials at

all levels for 30 years. Moreover, she quotes the

attention of the National Council of Teachers of

Mathematics (NCTM) that has encouraged the use

of manipulatives at all grade levels, in every

decade, since 1940. She asks an interesting

Manipulatives in Mathematics Education, Fig. 2 van
Schooten ellipsograph
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question: why are high school teachers reluctant to

use this type of resources? One reason might be the

nearly unique emphasis on artificial manipulatives

that have been created with the declared aim to

embody an abstract mathematical concept into

a concrete (or virtual) object. If this is the shared

approach, the effect is that they are used with either

young children or students with special needs, who

are expected to need more time for concrete-

enactive exploration. N€uhrenbörger and Steinbring

(2008) contrast this position emphasizing that

manipulatives are symbolic representations in

which mathematical relationships, structures, and

patterns are contained and can be actively

interpreted, exchanged within the discursive con-

text, and checked with regard to plausibility (see

also Uttal et al. 1997). The “theoretical ambiguity”

ofmanipulatives is to be considered a central theme

inmathematics lessons. This very ambiguitymakes

manipulatives suitable to all school levels, up to

university, as a context where fundamental pro-

cesses, as defining, conjecturing, arguing, and prov-

ing, are fostered. This requires a very strong and

deep analysis of manipulatives, from theoretical

and epistemological points of view, and a study of

the consequence of this analysis in teachers’ design

of tasks and interventions in the mathematics class-

room. To cope with this problem, in our research

team (Bartolini Bussi and Mariotti 2008), we have

developed the framework of semiotic mediation

after a Vygotskian approach. In the following sec-

tion, we outline this framework together with some

examples, mainly taken from the historic tradition.

A Comprehensive Theoretical Approach to

Manipulatives: Semiotic Mediation After

a Vygotskian Approach

Vygotsky studied the role of artifacts (including

language) in the cognitive development and

suggested a list of possible examples: “various

systems for counting; mnemonic techniques;

algebraic symbol systems; works of art; writing;

schemes, diagrams, maps, and mechanical draw-

ings; all sorts of conventional signs, etc.”

(Vygotsky 1981, p. 137). Manipulatives might

be included in this list. The introduction of an

artifact in a classroom does not automatically

determine the way it is used and conceived of

by the students and may create the condition for

generating the production of different voices. In

short, the manipulatives are polysemic, and they

may create the condition for generating the pro-

duction of different voices (polyphony). This

position is consistent with N€uhrenbörger and

Steinbring’s theoretical ambiguity mentioned

above (2008). The teacher mediates mathemati-

cal meanings, using the artifact as a tool of semi-

otic mediation. Without teacher’s intervention,

there might be a fracture between concrete

learners’ activity on the manipulative and the

mathematical culture, hence no learner’s con-

struction of mathematical meanings. In this

framework the theoretical construct of the semi-

otic potential of an artifact is central: i.e., the

double semiotic link which may occur between

an artifact and the personal meanings emerging

from its use to accomplish a task and at the same

time the mathematical meanings evoked by its

use and recognizable as mathematics by an expert

(Bartolini Bussi and Mariotti 2008).

Some Examples of Manipulatives and Tasks

This section presents the semiotic potential of

some manipulatives, known as Mathematical

Machines. A geometrical machine is a tool that

forces a point to follow a trajectory or to be

transformed according to a given law. An arith-

metical machine is a tool that allows the user to

perform at least one of the following actions:

counting, reckoning, and representing numbers.

They are concretely handled and explored by

students at very different school levels, including

university. In most cases also virtual copies exist

as either available resources (see the right frame

at www.macchinematematiche.org) or outcomes

of suitable tasks for students themselves

(Bartolini Bussi and Mariotti 2008). The his-

toric-cultural feature of these manipulatives

allows to create a classroom context where

history of mathematics is effectively used to

foster students’ construction of mathematical

meanings (Maschietto and Bartolini Bussi

2011). Each example contains a short descrip-

tion of the manipulative, an exemplary task and

the mathematical meaning, as intended by the

teacher.

M 368 Manipulatives in Mathematics Education
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Counting Stick

Counting sticks, dating back to ancient China, are

thin bamboo or plastic sticks. The sticks are

counted, grouped, and bundled (and tied with

ribbons or rubber bands) into tens for counting

up to hundred; ten bundles are grouped and

bundled into hundreds and so on.

Figure 3a–b is taken from a Chinese textbook:

the oral numerals beyond ten are introduced by

grouping and tying ten sticks (left, 1st grade) and

a “difficult” subtraction is realized by untying

and ungrouping a bundle (right, 1st grade).

Tasks: To guess numerals between 10 and 20

in the first case and to calculate 36–8 in the

second case.

In this case the triangle of semiotic potential

hints at:

Mathematical knowledge: Grouping/

regrouping.

There is a perfect correspondence between the

two opposite actions: tying/untying and group-

ing/ungrouping. The former refers to the concrete

action with sticks and bundles; the latter refers to

a mathematical action with units and tens. It is

likely that primary students’ descriptions refer to

the concrete action (in one class, 1st graders

invented the Italian neologism “elasticare,” i.e.,

“rubbering”). It is not difficult for the teacher

to guide the transition from the wording of

the concrete action towards the wording of

a mathematical action. In this way also the need

(as perceived by teachers) to use “borrowing”

from tens to units is overcome (see Ma 1999,

p. 1ff. for a discussion of this issue).

Pascaline

The pascaline is a mechanical calculator (see

Fig. 4) (Bartolini Bussi and Boni 2009).

The name of the instrument hints at the design

of a mechanical calculator by Blaise Pascal (for

details, see Bartolini Bussi et al. 2010). An exem-

plary task is the following: Task: Represent the

number 23 and explain how you made it. Differ-

ent pieces of mathematical knowledge may be

involved to answer the task, for instance:

• The generation of whichever natural number

by iteration of the function “+1” (one step

ahead for the right bottom wheel)

• The decomposition of a 2-digit number

(23) into 2 tens and 3 units

Manipulatives in Mathematics Education, Fig. 3 Shuxue ISBN 7-107-14-632-7
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The first mathematical action may be carried

out on the pascaline by iterating 23 times the

function “+1”; the second mathematical action

may be carried out by iterating the function

“+1” 3 times on the right bottom wheel and 2

times on the central bottom wheel.

Pair of Compasses and Other Curve Drawers

The compass (pair of compasses) is the oldest

geometrical machine; it is a technical drawing

instrument that can be used for inscribing circles

or arcs. It is used also as a tool to measure dis-

tances, in particular on maps. The compass objec-

tifies, by means of its structure and its functional

use, the defining elements of the circle (center

and radius) and reflects a clear definition of the

circle as a closed curve such that all its points are

equidistant from an inside common point

(Bartolini Bussi et al. 2007).

Tasks: How is the pair of compasses made?

What does it draw? Why does it do that?

Mathematical knowledge: From primary

school the compass can be used and analyzed in

order to learn concepts and to understand how it

embodies some mathematical laws (Chassapis

1999). The same can be done in the upper grades

(up to teacher education programs, Martignone

2011), after the exploration of the compass struc-

ture and movements, student can become theo-

retically aware about how the mathematical law

is developed by compass and then they can use

this instrument to solve problems and to produce

proofs in Euclidean geometry.

Even if the compass is the most famous curve

drawer, over the centuries many different types of

curve drawers have been designed and used as

tools for studying mathematics and for solving

problems (see http://www.museo.unimo.it/labmat/

usa1.htm). The oldest linkages date back to the

Alexandrian and Arabic cultures, but it is in seven-

teenth century, thanks to the work of Descartes

(1637), that these machines obtained a wide

theoretical importance and played a fundamental

role in creating new symbolic languages (see http://

kmoddl.library.cornell.edu/linkages/).

Pantographs

Over the century the pantographs were

described in different types of documents, such

as mathematical texts and technical treatises for

architects and painters. In particular, in nine-

teenth century, when the theory of geometrical

transformations became fundamental in mathe-

matics, they were designed and studied by many

scientists. A famous linkage is the Scheiner’s

pantograph: a parallelogram linkage, one of

whose joints has its movement duplicated by

an attached bar. This has been used for centu-

ries to copy and/or enlarge drawings. Since the

end of the sixteenth century, this type of

machines was used by painters even if it was

improved and described by Scheiner in 1631

(Fig. 5a–b).

Tasks: Students can study how the machine

is made, how the different components move,

what are the constraints, and the variables

Manipulatives in Mathematics Education, Fig. 5 (a–b) Scheiner’s pantograph http://www.macchinematematiche.
org/index.php?option¼com_content&view¼article&id¼112&Itemid¼195
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modeling the structure by means of Euclidean

geometry.

Mathematical knowledge: The Scheiner’s

pantograph can be used for introducing the con-

cept of dilation (homothety) and/or for develop-

ing argumentation processes about why the

machine does a dilatation.

Finally, it should be emphasized that these

ancient technologies, whose use and study date

back to past centuries, have modern develop-

ments, for example, modeling the robot arms.

Also in mathematics, the study of linkages has

been recently revived. In the twentieth century,

ideas growing from Kempe’s work were further

generalized by Denis Jordan, Michael Kapovich,

Henry King, JohnMillson,Warren Smith,Marcel

Steiner, and others (Demaine and O’Rourke

2007).

Open Questions

There is no best educational choice between

different kinds of manipulatives. Rather the

choice depends on different factors (what is

available, what fits better the students’ culture

and expectations, and so on) and, above all, on

teachers’ system of beliefs and view on math-

ematics. There is never a “natural” access to

the embodied mathematics, as no artifact is

transparent in its embodied mathematical mean-

ing (Ball 1992; Meira 1998): a suitable context

and set of tasks are always required. There are

many reasons to support the use of manipula-

tives in the mathematics classrooms, but the

short review of literature above shows that

there is still a place for developing studies

about:

• Manipulatives: to analyze limits and potenti-

alities of different kinds of manipulatives

(concrete vs. virtual; historic-cultural vs. arti-

ficial) from an epistemological, cognitive, and

didactical perspective

• Classroom practice: to design, test, and analyze

tasks about manipulatives at different school

levels and in different cultural traditions

• Teacher education and development: to

design, test, and analyze tasks for teachers

about the use of manipulatives in the mathe-

matics classroom

Cross-References

▶Activity Theory in Mathematics Education

▶ Semiotics in Mathematics Education

▶Teaching Practices in Digital Environments
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Definitions

Mathematical ability is a human construct, which

may be defined cognitively or pragmatically,

depending on the purpose of definitions. Cognitive

definitions are used when relating to this construct

from a theoretical perspective; mathematical ability

can then be defined as the ability to obtain, process,

and retain mathematical information (Krutetskii

1976; Vilkomir and O’Donoghue 2009) or as the

capacity to learn and master new mathematical

ideas and skills (Koshy et al. 2009). Pragmatic

definitions are usually used when looking at this

construct from a perspective of evaluation (e.g.,

when the focus is on identifying learners’ potential

or assessing learning outcomes). From this perspec-

tive, it can be defined as the ability to perform

mathematical tasks and to effectively solve given

mathematical problems. Such definitions are gen-

eral in nature and are commonly unpacked into

several components, which are not necessarily

exclusive to one definition or another. Thus, we

speak of an assemblage of mathematical abilities

rather than a single ability. One of the most

acknowledged and widely accepted theories in this

respect is that of Krutetskii (1976), who suggested

that mathematical ability is comprised of the fol-

lowing abilities: use formal language and operate

within formal structures of connections, generalize,

think in a logic-sequential manner, perform short-

cuts (“curtailments”) while solving problems,

switch thinking directions, move flexibly between

mental processes, and recall previously acquired

concepts and generalizations.

Characteristics

The Evolvement of Mathematical Abilities

Mathematical abilities develop in correspondence

with the development of rational and logical think-

ing. According to Piaget’s theory of cognitive

development (Piaget and Inhelder 1958), logical

thinking skills are limited in the first two develop-

mental stages of normative childhood, the sensori-

motor stage and the preoperational stage. This

means that although young children, who have

acquired the use of language (around the age of

2–3), are able to link numbers to objects and may

have some understanding of the concepts of num-

bers and counting, they still cannot comprehend

logical notions such as reversible actions or transi-

tivity until they reach the concrete-operational stage,
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around the age of 7–8. At this stage, a child can

comprehend, for example, that the distance from

point A to point B is the same as the distance from

point B to point A and that if x� y and y� z, then

x � z. During the concrete-operational stage (ages

7–8 to 11–12), a considerable growth in mathe-

matical abilities is enabled due to the acquisition

of two additional logical operations: seriation,

defined as the ability to order objects according

to increasing or decreasing values, and classifi-

cation, which is grouping objects by a common

characteristic (Ojose 2008). Yet, the abstract

thinking necessary for grasping and constructing

mathematical ideas evolves during the formal-

operational stage, around the ages of 11–12 to

14–15. At this stage, according to Piagetian

theory, adolescents are able to reason using sym-

bols, make inductive and deductive inferences,

form hypotheses, and generalize and evaluate

logical arguments.

Piaget’s theory was criticized, among other

things, for underestimating the abilities of young

children while overestimating the abilities of

adolescents (Ojose 2008). However, Piaget himself

emphasized that the stages in his theory do not

necessarily occur in the ages specified. That is,

some children will advance more quickly and

reach a certain cognitive stage at a relatively early

age; others may not arrive at this stage until much

later in their lives. The speed of development and

the degree to which the last formal-operational

stage is realized depend on various personal and

environmental attributes. This view corresponds

with Vygotsky’s theory (Vygotsky 1978) which

emphasizes the crucial role that social interactions

and adult guidance, available in children’s environ-

ment, play in their cognitive development. Thus, as

a result of variations in individuals’ circumstances

and available mathematical experiences, we find

that the spectrum of mathematical abilities in

a specific age group is of a wide magnitude.

Characterizing Different Students on the

Spectrum of Mathematical Abilities

Researchers have endeavored to characterize

students located close to both ends of the mathe-

matical ability spectrum: on the one hand math-

ematically gifted and highly able students and on

the other hand students who are lacking in their

mathematical abilities, compared with their

peers.

The aforementioned classical work of

Krutetskii (1976) concentrated on the higher

end of mathematical abilities. Krutetskii used

a wide-ranging set of mathematical problems

and an in-depth analysis of children’s answers,

in an attempt to pinpoint the components of math-

ematical ability in general and higher ability in

particular. Based on his investigations, Krutetskii

referred to four groups of children: extremely

able, able, average, and low. He inferred that

extremely able children are characterized by

what he termed as a “mathematical cast of

mind.” This term designates the tendency to per-

ceive the surrounding environment through

lenses of mathematical and logical relationships,

to be highly interested in solving challenging

mathematical problems, and to keep high levels

of concentration during mathematical activities.

Interpreting Krutetskii’s theory, Vilkomir and

O’Donoghue (2009) suggest that a mathematical

cast of mind stimulates all other components of

mathematical ability to be developed to the

highest level, if the student is provided with the

necessary environment and instruction.

At the other end of the spectrum, we find

learners with low mathematical abilities.

Although these learners typically perform poorly

in school mathematics, the inverse is not neces-

sarily true. In other words, the presumption that

poor mathematical performance of students is

indicative of their low mathematical abilities is

problematic; a range of social, behavioral, and

cultural circumstances can result in low achieve-

ments in school mathematics (Secada 1992).

In addition, students may develop a negative

mathematical self-schema that reduces their

motivation to succeed in mathematics, regardless

of their overall abilities (Karsenty 2004). Never-

theless, characteristics of low mathematical abil-

ities are available in the literature. Overcoming

the abovementioned pitfall may be achieved

through careful consideration of a child perfor-

mance in a supportive environment, under

a personal guidance of a trusted adult. Thus, we

find that the main features of low mathematical
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abilities are difficulties in establishing connec-

tions between mathematical elements of

a problem; inability to generalize mathematical

material according to essential attributes, even

with help and after a number of practice exer-

cises; lack of capability to deduce one thing from

another and find the common principle of series

of numbers even with assistance; avoidance

from using symbolic notations; and short-lived

memory for mathematical procedures (Karsenty

et al. 2007; Vilkomir and O’Donoghue 2009).

In extreme cases of low mathematical abilities,

the term mathematical disability (MD) is used.

Research on MD is commonly conducted on sub-

jects with notable deficiencies in basic arithmetic

skills and includes explorations of the disability

known as dyscalculia. MD is not an uncommon

disorder (estimations range between 3 % and 8 %

of the school-age population) and is mainly

attributed to cognitive, neuropsychological, and

genetic origins (Geary 1993).

Mathematical Abilities and General

Intelligence

Despite the popular view that links mathematical

ability with intelligence, the relation between these

two constructs remains elusive. The original intel-

ligence test developed by Binet and Simon in the

early 1900s emphasized mostly verbal reasoning

and did not include a mathematical component,

except for simple counting. The later version,

known as the Stanford-Binet test, which was com-

posed by Terman in 1916 (and is still used today,

after several revisions along the years), includes

a quantitative reasoning part. Terman assumed

that mathematical abilities play some role in deter-

mining general intelligence, yet he did not conduct

empirical studies to support this argument. Later

theories of intelligence also suggested that there is

a quantitative element in models describing intelli-

gence. For instance, Thurstone (1935) stated that

number facility is one of the seven components of

which human intelligence is comprised; Wechsler

(1939) included mental arithmetic problems in his

widely used IQ tests. There is some evidence that

fluid intelligence, defined as general reasoning

and problem-solving abilities independent from

specific knowledge and culture, is positively corre-

latedwith the ability to solve realisticmathematical

word problems (Xin and Zhang 2009). However,

since mathematical ability stretches far beyond

number sense and successful encountering of arith-

metic or word problems, we cannot construe on the

basis of existing data that intelligence and mathe-

matical ability are mutually related.

Multidimensional theories of intelligence

offer a different view on this issue. Gardner, in

his seminal work first presented in his book

“Frames of Mind” in 1983, suggested that there

are several distinct intelligences, one of which is

the logical-mathematical intelligence. Gardner

argued that traditional models of intelligence,

such as Terman’s, combine together human

capacities that do not necessarily correlate

with one another. Thus, a person with high

mathematical abilities, as described, for instance,

by Krutetskii, will be defined by Gardner’s

Multiple Intelligences theory as having high

logical-mathematical intelligence; this defini-

tion does not necessarily imply that this

person’s score in a conventional IQ test will

be superior.

Measuring and Evaluating Students’

Mathematical Ability

Following the above, it became clear to

researchers that a standard IQ test is not an

appropriate tool for evaluating the mathematical

ability of students, especially for the purpose of

identifying extremely able ones (Carter and

Contos 1987). Instead, one of the most prevalent

means for this purpose is known as aptitude

tests. Aptitude tests are aimed at measuring

a specific ability or talent and are often used to

predict the likelihood of success in certain areas

or occupations (e.g., foreign language learning,

military service, or, in this case, mathematics).

Among the many existing aptitude tests,

a widely known one is the SAT (an acronym

which originally stood for Scholastic Aptitude

Test), designed by the College Board in USA

for predicting academic success. The SAT

includes three parts, one of which is the

SAT-M, referring to mathematics. Julian Stanley,
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founder of SMPY (the Study of Mathematically

Precocious Youth) at Johns Hopkins University,

found that SAT-M is an efficient means for

identifying mathematically gifted students at

junior high school age (Stanley et al. 1974).

However, the use of aptitude tests like SAT-M

for the purpose of measuring mathematical abil-

ity was criticized by several scholars as inade-

quate. For instance, Lester and Schroeder (1983)

claimed that multiple-choice, standardized tests,

such as SAT-M, provide no information about

students’ ability to solve nonroutine mathemati-

cal problems, and moreover, they cannot reveal

the nature and quality of students’ mathematical

reasoning. These tests focus on a narrow inter-

pretation of mathematical ability, ignoring

important problem-solving behaviors that are

indicative of this ability. Krutetskii (1976)

attacked the credibility of psychometric items

for measuring mathematical ability, claiming

that (a) a single assessment event is highly

affected by the subject’s anxiety or fatigue,

(b) training and exercise influence the rate of

success, and (c) psychometric means concentrate

on quantitative rather than qualitative aspects of

mathematical ability, i.e., they focus on final

outcomes instead of thinking processes, thus

missing the central meaning of this construct.

Despite criticisms, the current predominant

method for assessing students’ mathematical

ability is still different versions of multiple-

choice aptitude tests, most likely due to

considerations of time and budget resources.

Nevertheless, efforts are being conducted to

develop low-cost assessment tools that follow

the qualitative approach characteristic of the

work of Krutetskii and others (e.g., Vilkomir

and O’Donoghue 2009).
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Introduction

Research in mathematics education is interdisci-

plinary. According to Higginson (1980), mathe-

matics, philosophy, psychology, and sociology

are contributing disciplines to mathematics edu-

cation (similar to what Michael Otte called

Bezugsdisziplinen; Otte et al. 1974, p. 20). Lin-

guistics and semiotics could be added. Framing

of research, by means of theories or methods

from these, amounts to different approaches,

mathematics itself being one obvious choice.

According to one view, mathematics education

as a research field belongs to mathematics: at the

second International Congress on Mathematical

Education (ICME) in Exeter, Zofia Krygowska

suggested that mathematics education should be

classified as “a part of mathematics with a status

similar to that of analysis or topology” (Howson

1973, p. 48). Another view sees mathematics

education as an autonomous science (didactics

of mathematics as Hans Georg Steiner in 1968

called the new discipline he wanted to establish;

see Furinghetti et al. 2008, p. 132), strongly linked

to mathematics, as expressed at ICME1 in Lyon

1969: “The theory of mathematical education is

becoming a science in its own right, with its own

problems both of mathematical and pedagogical

content. The new science should be given a place

in the mathematical departments of Universities or

Research Institutes, with appropriate qualifications

available” (quoted in Furinghetti et al. 2008, p. 132).

However, in many countries, mathematics educa-

tion research has an institutional placement mainly

in educational departments.

Definition

Mathematical approaches in mathematics

education take the characteristics and inner struc-

tures of mathematics as a discipline (i.e., the logic

of the subject) as its main reference point in curric-

ulum and research studies. These characteristics,

however, might be questioned. Studies include

philosophical, historical, and didactical analyses

of mathematical content and of how it is selected,

adapted, or transformed in the process of recontex-

tualization by requirements due to educational

constraints, as well as the consequences entailed

by these transformations on didactic decisions

and processes.

Developments

The field of mathematics education research

historically emerged from the scientific disci-

plines of mathematics and of psychology

(Kilpatrick 1992). On an international level,

through the activities promoted by ICMI (Inter-

national Commission on Mathematical Instruc-

tion) during the first half of the twentieth

century, with their focus on comparing issues of

mathematical content in curricula from different

parts of the world, with little consideration

of research on teaching and learning (Kilpatrick

1992), the approach to secondary and tertiary

mathematics education was predominantly mathe-

matical. During the same period, however, in pri-

mary mathematics education, the approaches were

commonly psychologically or philosophically ori-

ented. Independently, the use of concrete materials

in schools is widely developed (Furinghetti et al.

2013). While this situation led to a decrease of

ICMI’s influence on mathematics education,

through and after the New Math movement in the

1960s, ICMI regained its voice with support of

OEEC/OECD, UNESCO, and through the collab-

oration of mathematicians with mathematics
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educators, mainly through CIEAEM, concerned

with the full complexity of teaching and learning

at all school levels (Furinghetti et al. 2008). The

mathematical approach underpinning the reform

was warranted not only by the aim to update cur-

ricula with modern developments in mathematics

but also by Piagetian psychology pointing to “sim-

ilarities” between mental and mathematical struc-

tures (Furinghetti et al. 2008). The aim of the New

Math to be a mathematics for all was counteracted

by its emphasis on general mathematical structures

and fundamental concepts. This type of mathemat-

ical approach was strongly criticized, most notably

by Hans Freudenthal who used the term anti-

didactic inversion for a static axiomatic ready-

madeversion ofmathematics presented to students.

An influential similar critique was offered by René

Thom (1973, p. 202), who suggested that mathe-

matics education should be founded on meaning

rather than rigor.

The eventual failure of the New Math pointed

to the need of establishing mathematics educa-

tion as a discipline “in its own rights” and a wider

scope for the work of ICMI. In retrospective, the

first ICME congress in 1969 can be said to mark

the creation of an autonomous mathematics

education community (during a period when

several institutions and journals specialized in

mathematics education were founded; see, e.g.,

Furinghetti et al. 2013) and a loosening of the

strong link to the community of mathematicians

with implications for the “status” of mathemati-

cal approaches. With this wider scope, besides

mathematical and psychological approaches,

a variety of approaches for the study of phenom-

ena within the field was needed, especially with

reference to social dimensions.

This development highlights different

interpretations of mathematical approach. While

the NewMath was the outcome of a deliberate and

research-based program prepared in collaboration,

the type of “mathematical approaches” of later

movements in the USA, such as Back to Basics in

the 1970s and even more so the Math Wars in the

1990s, is better described as ideologically based

reactions to what was seen by some individuals

and interest groups as fuzzy mathematics. The

return to the skill-oriented curriculum advocated

failed to take into account not only reported high

dropout rates and research showing how it disad-

vantages underprivileged social groups but also

research that highlights the complexity in teaching

and learning processes (Goldin 2003; Schoenfeld

2004). In the more research-oriented mathematical

approaches that developed in Europe during the

same period, it was shown how both the character

and learning of mathematics at school are institu-

tionally conditioned.

Characteristics

The following quote gives an argument for taking

a mathematical approach to research: “The math-

ematical science in its real development is there-

fore the central focus of the mathematics

educators, because the separation of creative

activity and learning – taking into account the

fundamental difference between research and

learning – is unfruitful and does not allow to

adequately capture the learning nor to properly

guide the learning process” (auth. transl., Jahnke

et al. 1974, p. 5). To develop mathematical

knowledge, the learner must engage in creative

mathematical activities. Another rationale for

a focus on mathematics itself in didactical

research draws on the observation that mathemat-

ics “lives” differently in different institutions and

is transformed (recontextualized) when moved.

In a mathematics classroom, different ideologies

influence what kind of mathematical knowledge

is proposed as legitimate, requiring from both, the

teacher and the researcher, an awareness of

the structure of the knowledge produced. The

often cited claim by René Thom (1973, p. 204)

that “whether one wishes it or not, all mathemat-

ical pedagogy, even if scarcely coherent, rests on

a philosophy of mathematics,” also applies to

research in mathematics education. This can be

seen as an argument for the necessity of keeping

an awareness of how mathematics is viewed

in all approaches to research in mathematical

education.

In the following, some examples of theorizing

in the field of mathematics education that employ

a mathematical approach will be discussed, with
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a focus on the role given tomathematics as a main

point of reference.

Stoffdidaktik

The Stoffdidaktik (subject matter didactics, con-

tent-oriented analysis) tradition in German-

speaking countries, originally with main focus

on secondary school mathematics and teacher

education, has its modern roots in the efforts by

Felix Klein, during the first decades of the twen-

tieth century, to structure elementary mathemat-

ics from an advanced standpoint and to include

lectures on the didactics of mathematics in the

education of future teachers. While his classic

book (Klein 1908) served the aim to teach

(future) teachers to think mathematically, the

aim of the lectures was to teach (future) teachers

to think didactically (Vollrath 1994).

According to Tietze (1994), “Stoffdidaktik

mainly deals with the subject matter under the

aspects of mathematical analysis and of

transforming mathematical theories into school

mathematics” (p. 42). This approach in mathe-

matics education operates through an explicit

didactic transposition of (academic) mathematics

for the purpose of making it accessible to

students at specific educational levels. Some key

principles used in this process, constituted by

a mathematical analysis and selection of the

content to be taught, are elementarizing,

exactifying, simplifying, and visualizing (Tietze

1994). Students’ problems to cope with, for

example, definitions in mathematics, are in this

approach seen as based in the complex logical

structure of the definitions, which then must be

analyzed by way of these principles in order to

prepare their teaching.

An example of such analyses is

Padberg’s (1995) work on fractions, a textbook

for teacher education outlining four central

aspects (Größenkonzept, Äquivalenzklassenkonzept,

Gleichungskonzept,Operatorkonzept) and twobasic

ideas (Grundvorstellungen; see below), elaborating

on accessible metaphorical descriptions of the con-

cepts but also including a chapter on the mathemat-

ical foundation of fractions, presenting an axiomatic

characterization of the topic aimed to provide back-

ground knowledge for the teacher. Such mathemat-

ical background theories in mathematics education

have commonly been introduced and used within

Stoffdidaktik. For geometry, Vollrath (1988,

pp. 121–127) identifies five (historical) phases of

background theories: Euclid’s elements (from early

times, perfected by Hilbert), transformation geome-

try (from the early 1800s; e.g., Möbius, later Klein),

different axiomatic theories as competing back-

ground theories (from early 1900s), an axiomatic

theory developed by didacticians from practice of

teaching (from 1960s, to decrease the gap from

theoretical mathematics to teaching practice; e.g.,

Steiner 1966), and “The totality of geometric knowl-

edge, including the ideas, connections, applications,

and evaluations.”As an early example of this kind of

mathematical approach, Steiner (1969) outlines a

mathematical analysis of the relation of rational

numbers to measurement and interpretation as oper-

ators, with the aim to characterize possibilities

for teaching. He calls his procedure a didactical

analysis (p. 371).

A specific focus for the transposition work is

on so-called fundamental ideas (Fundamentale

Ideen). According to Schwill (1993), for an idea

to be fundamental, it must appear within different

topics of mathematics (Horizontalkriterium)

and at different levels of the curriculum

(Vertikalkriterium), be recovered in the historical

development of mathematics (Zeitkriterium),

and be anchored in everyday life activities

(Sinnkriterium). Using the term universal ideas,

Schreiber (1983) in a similar vein presents the

requirements of comprehensiveness, profusion,

and meaningfulness. As an example, Riemann

integration is not a fundamental idea but

a specific application of the fundamental idea

of exhaustion. Another example is reversibility.

Historically, alreadyWhitehead (1913) suggested

that school mathematics should emphasize main

universally significant general ideas rather than

drown in details that may not lead to access to big

ideas or provide necessary connections to everyday

knowledge. In line with this and with explicit

reference to Jerome Bruner’s principle that teach-

ing should be oriented towards the structure of

science, much work in Stoffdidaktik consist of
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analyses of fundamental ideas in different areas of

mathematics. For the teaching of fundamental

ideas, Schwill (1993) suggests Bruner’s spiral prin-

ciple to be used, in terms of extendibility, prefigu-

ration of notions, and anticipated learning. It still

remains unclear; however, at what level of abstrac-

tion, fundamental ideas are located.

As basis for teaching a mathematical concept,

meta-knowledge about the concept is seen as

necessary and has to be addressed in teacher

education. A theory of concept teaching

(e.g., Vollrath 1984) needs to build on the

evaluation of mathematical concepts and their

hierarchical structure, their historical develop-

ment, and the principle of complementarity

(Otte and Steinbring 1977) that concepts should

offer both knowledge and use.

Research methods of early work within

Stoffdidaktik were mainly the same as those of

mathematics (Griesel 1974). In Griesel (1969),

for example, an axiomatically based mathemati-

cal theory for a system of quantities is outlined. It

has been pointed out by Griesel, however, that

without also empirically investigating the out-

comes from such analyses in teaching and learn-

ing, the analytical work would not be justified.

Stoffdidaktik later widened to consider not only

academic mathematics along with its epistemol-

ogy and history but also factors relating to the

learner of mathematics. In this context the notion

of Grundvorstellungen became widely used

(e.g., vom Hofe 1995), that is, the basic meanings

and representations students should develop about

mathematical concepts and their use within and

outside mathematics. Conceptualized both as men-

tal objects and as a prescriptive didactical con-

structs for prototypical metaphorical situations,

the epistemological status of Grundvorstellungen

remains debated.

Outside German-speaking countries,

mathematics-oriented didactical research has

dominated mathematics education, for instance, in

the Baltic countries (Lepik 2009). One example of

a non-European work employing the approach is

Carraher (1993), where a ratio and operator model

of rational numbers is developed. There are

also regional and international periodic journals

for teachers, mathematicians, and mathematics

educators that publish mathematical and didactical

analyses of elementary topics for school and under-

graduate mathematics.

An Epistemological Program

Mathematics also serves as a basic reference

point for the “French school” in mathematics

education research referred to as an epistemolog-

ical program (Gascon 2003), including the theory

of didactical situations (TDS) developed by Guy

Brousseau and the anthropological theory of

didactics (ATD) developed by Yves Chevallard.

What constitutes mathematical knowledge is here

seen as relative to the institution where it is prac-

ticed and thus, in research, needs to be questioned

regarding its structure and content as practiced.

In studies of the diffusion of mathematical

knowledge within an institution, it is therefore

necessary for the researcher to construct

a reference epistemological model of the

corresponding body of mathematical knowledge

(Bosch and Gascon 2006), in order to avoid a bias

of the institution studied.

Brousseau (1997) proposes didactical situa-

tions as epistemological models of mathematical

knowledge, both for setting up the target knowl-

edge and for developing it in classroom activity.

For the researcher, such models are employed

mainly for the analysis of didactical phenomena

emerging in the process of instruction. They are

also used for didactical engineering (e.g.,

Artigue 1994), where they are analyzed in terms

of possible constraints of epistemological, cogni-

tive, or didactical nature (Artigue 1994, p. 32). By

investigating the historical development of the

mathematical knowledge at issue, as well as its

current use, the epistemological constraints can be

analyzed. In particular the functionality of the

knowledge to be taught is seen as a key component

of a fundamental didactical situation, constituting

a milieu that promotes the student’s use of the

knowledge. An idea is here to “restore” the episte-

mological conditions that were at hand where the

knowledge originated but have disappeared in cur-

riculum processes such as decontextualization and

sequentialization of knowledge.
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In ATD mathematics is seen as a human

activity within institutions (as social organiza-

tions), with collective practices that form how

the participants think and define their goals.

It includes a focus on how mathematical

knowledge, having a preexistence outside the

educational institution, is transposed by institu-

tional constraints when moved into it. The

structure of the mathematical knowledge and

work is modeled by praxeologies (or mathemat-

ical organizations) that provide a holistic descrip-

tion of the relations between different aspects of

the institutional mathematical practice, in terms

of types of tasks and techniques for dealing with

these tasks, and those technologies and overall

theoretical structures that justify the practice. In

didactical research, the characteristics of praxe-

ologies are analyzed in terms of aspects, such as

connectedness and levels of generality, and

issues linked to the didactic transposition,

in order to identify possible constraints that

are being imposed on students’ knowledge

development. According to ATD, “phenomena

of didactic transposition are at the very core of

any didactic problem” (Bosch and Gascon 2006,

p. 58). To develop a target mathematical praxe-

ology for classroom teaching, a didactical praxe-

ology needs to be set up. Here one finds a strong

emphasis on the functionality of the mathemati-

cal knowledge studied (its raison d’être), to

avoid a monumentalistic noncritical selection of

traditional school mathematics topics, often

described as alien to the reality of the students.

Realistic Mathematics Education

Realistic mathematics education (RME) views

mathematics as an emerging activity: “The learner

should reinvent mathematising rather than mathe-

matics, abstracting rather than abstractions,

schematising rather than schemes, algorithmising

rather than algorithms, verbalising rather than

language” (Freudenthal 1991, p X). While keeping

mathematics as a main reference point, researchers

within RME take on didactical, phenomenological,

epistemological, and historical-cultural analyses as

bases for curricular design (see ▶Didactical

Phenomenology (Freudenthal)). Activities of hori-

zontal mathematization aim to link mathematical

concepts and methods to real situations, while

vertical mathematization takes place entirely

within mathematics. An example of work within

RME employing a strong mathematical approach

is found in Freudenthal (1983), with its elaborated

analyses of mathematical concepts and methods

and efforts to root the meanings of those

mathematical structures in everyday experiences

and language.

Mathematical Knowledge for Teaching

Empirical quantitative research on the amount of

mathematical studies needed for a successful or

effective teaching of mathematics at different

school levels has not been able to settle the

issue. Rather, the character of teachers’ knowl-

edge and the overall approach to teaching seem to

matter more (Ma 1999; Boaler 2002; Hill et al.

2005). With reference to the distinction between

subject matter knowledge and pedagogical con-

tent knowledge (PCK), during the last decades,

descriptions and measurements of what has been

named mathematical knowledge for teaching

(MKT) for use in preservice and in-service

teacher education have been developed. This

mathematically based approach to mathematics

education sets out to characterize the mathemat-

ical knowledge that teachers need to effectively

teach mathematics and to investigate relations

between teaching and learning. MKT stays close

to the PCK construct while applying and further

detailing the latter in order to grasp the specific-

ities of school mathematics. The approach has

much in common with the didactical analyses of

mathematical content developed much earlier

within Stoffdidaktik, though with more focus on

primary mathematics. However, as the approach

is less systematic and without reference to

different possible mathematical background the-

ories, the level of analysis remains unclear. The

scope of the empirical research includes efforts to

both develop and measure MKT for groups of

teachers and its relation to student achievement

(e.g., Hill et al. 2005).
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Some Further Aspects of Mathematical
Approaches

In university mathematics, educational issues

identified in beginning courses (such as calculus

and linear algebra), especially in the context

of the transition from secondary school to

university, have commonly been addressed by

a mathematical approach by ways of analyses of

mathematical structures and processes in the

courses. However, in line with the widened

scope of mathematics education research since

the time of New Math, de Guzman et al. (1998)

suggest epistemological and cognitive, sociologi-

cal and cultural, as well as didactical approaches to

study the transition problem. Beside cognitivistic

(still constituting the dominating approach), socio-

logical, and discursive approaches, today more

recent mathematical approaches (such as the

epistemological program) are common for investi-

gating university mathematics education (see, e.g.,

Artigue et al. 2007).

The importance and relevance of the history of

mathematics for mathematics education has long

been emphasized in the mathematics education

community (e.g., the report from the ICMEwork-

ing group on history in Athen and Kunle 1976,

pp. 303–307). In this context, both the didactical

analyses of the historical material and the ways of

using these in teaching practice often employ

a mathematical approach. The claim of a parallel

between the historical development and individual

learning of mathematical concepts (the phylogeny-

ontogeny parallel) has been one of the arguments

for this approach, while others relate the use of

history to motivational and cultural-historical

issues or introduce historical outlines as a tool for

teaching mathematics (Athen and Kunle 1976).

The examples of theoretical perspectives

presented above employ different mathematical

approaches to mathematics education as an over-

arching approach in the research. However, also

within other approaches (psychological, social,

etc.), mathematical aspects often come into

focus. As an example, the APOS framework

(e.g., Cottrill et al. 1996) takes a psychological

approach to model and study the development of

students’ conceptual knowledge. However, as

a basis for the construction of a genetic decom-

position of the taught mathematical concept,

a mathematical analysis of its structure and

historical development is undertaken.

There are several influential mathematics

educators whose work cannot be subsumed

under the theoretical perspectives considered

above, but who have sought to understand and

improve mathematics instruction by means of

analyzing mathematical processes and structures,

often with a focus on developing teaching aids

and didactical suggestions. Emma Castelnuovo,

Zoltan Dienes, Caleb Gattegno, and George

Polya, among others, could be mentioned here.

Unresolved Issues

The community of mathematics education tends

to become disintegrated by its diversity of

theoretical approaches used in research with

a knowledge structure fragmented into what

Jablonka and Bergsten (2010) call branches. If

mathematics education research strives to

enhance the understanding of mathematics teach-

ing and learning, including its social, political,

and economic conditions and consequences, only

a productive interaction of research approaches is

likely to move the field forward. Unresolved

issues are often due to institutionalized separation

of researchers taking distinct approaches, as, for

example, epitomized in bemoaning a loss of the

focus on mathematics, which need to be resolved

through theory (for theory networking, see

Prediger et al. 2008). This would, for example,

include integrating approaches that focus

on mathematical knowledge structures with

discursive and sociological approaches. Further,

for producing unbiased policy advice, it is neces-

sary to integrate research outcomes on students’

and teachers’ engagement with mathematics,

including cognitive, emotional, language-related,

and social dimensions of teaching and learning

in classrooms. Such work has been attempted

in a range of initiatives and working groups,

as, for example, at the conferences of ERME

(Prediger et al. 2008). In discussions of goals

ofmathematics education,mathematical approaches

Mathematical Approaches 381 M

M



combined with sociological theorizing become per-

tinent to analyses of the use and exchange values of

(school) mathematics for students.
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Definition

Literature examining the contribution of mathe-

matical games in the learning and teaching of

mathematics.

Characteristics

Piaget, Bruner, and Dienes suggest that games

have a very important part to play in the learning

of mathematics (Ernest 1986). In the last

four decades, games have been proposed by

a number of researchers as a potential learning

tool in the mathematics classroom, and there are

quite a few researchers who make claims about

their efficacy in the learning and teaching of math-

ematics (e.g., Ernest 1986; Gee 2007; Kafai 1995).

Some authors take a step further; Papert (1980)was

among the first who suggested that students could

learn mathematics effectively not only by playing

(video) games but also by designing their own

computer games, using, for instance, authoring

programming tools like Scratch and ToonTalk

(Kafai 1995; Mousoulides and Philippou 2005).

By synthesizing definitions by Harvey and

Bright (1985, p. ii) and Oldfield (1991, p. 41),

a task or activity can be defined as a pedagogical

appropriate mathematical gamewhen it meets the

following criteria: has specific mathematical cog-

nitive objectives; students use mathematical
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knowledge to achieve content-specific goals and

outcomes in order to win the game; is enjoyable

and with potential to engage students; is governed

by a definite set of rules and has a clear underly-

ing structure; involves a challenge against either

a task or an opponent(s) and interactivity between

opponents; includes elements of knowledge,

skills, strategy, and luck; and has a specific

objective and a distinct finishing point.

While mathematical games have been the core

of discussion of researchers since the late 1960s

(e.g., Gardner 1970), the inclusion of games for the

teaching and learning of school mathematics,

among other subject areas, has been in the core

of discussion in the 1990s (Provenzo 1991).

An example of this perspective appears in Lim-

Teo’s (1991) work, who claimed that “there

is certainly a place for games in the teaching

of Mathematics . . . teacher to creatively

modify and use games to enhance the effective

teaching of Mathematics” (p. 53). At the same

time, Ernest (1986) raised a question that is still

cutting: “Can mathematics be taught effectively by

using games?” (p. 3).

The answer to Ernest’s question is not easy

yet straightforward. The main pedagogical aim of

using games in mathematics classrooms is to

enhance the learning and teaching of mathematics

through developing students’ mathematical knowl-

edge, including spatial reasoning, mathematical

abstraction, higher level thinking, decision making,

and problem solving (Ernest 1986; Bragg 2012).

Further, mathematical games help the teaching

and learning of mathematics through the advantage

of providing meaningful situations to students and

by increasing learning (independent and at different

levels) through rich interaction between players.

There are positive results, suggesting that the appro-

priate mathematics games might improve mathe-

matics achievement. A meta-analysis conducted

by Vogel and colleagues (2006) concluded that

mathematical games appear to be more effective

than other instructional approaches on students’

cognitive developments. The positive impact

of mathematical games is further enhanced by

technology. Digital mathematical games pro-

vide, for instance, a powerful environment for

visualization of difficult mathematical concepts,

linkage between different representations, and

direct manipulation of mathematical objects

(Presmeg 2006). However, Vogel et al. (2006),

among others, exemplify that the positive

relation between mathematics games and higher

achievement is not the case in all studies that

have been conducted in the field.

Games for learning mathematics are also bene-

ficial for a number of other, frequently-cited, argu-

ments, including benefits like students’ motivation,

active engagement and discussion (Skemp 1993),

improved attitudes towardsmathematics and social

skills, learning andunderstandingof complex prob-

lem solving, and collaboration and teamwork

among learners (Kaptelin and Cole 2002). Among

these benefits of using mathematical games, the

most cited one is active engagement. Papert

(1980) expressed the opinion that learning happens

best when students are engaged in demanding and

challenging activities. In line with Papert, Ernest

(1986) claimed that the nature of games demands

children’s active involvement, “making themmore

receptive to learning, and of course increasing their

motivation” (p. 3). Various studies in both digital

and non-digital mathematical games have shown

that students are highly engaged with working in

a game environment and that this milieu creates

an appropriate venue for teaching and learning

mathematics (e.g., Devlin 2011).

Research has highlighted various factors

that should be taken into consideration as to

acknowledge mathematical games as an appropri-

ate and successful vehicle for the learning and

teaching of mathematics. Games should not be

faced in isolation of broader mathematical pro-

grams and approaches. Clear instructional objec-

tives and pedagogies have to accompany the use of

games, while at the same time these pedagogies

should consider peer interaction, teacher-facilitator

role, the access to and the use of technological

tools, and the use of rich problem-solving contexts.

Cross-References

▶Learner-Centered Teaching in Mathematics

Education

▶Motivation in Mathematics Learning
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Characteristics

It was Shulman’s Presidential Address at the 1985

annual meeting of the American Educational

Research Association, and its publication the fol-

lowing year, that placed content knowledge in and

for teaching firmly on the educational research,

policy, and practice agenda. Shulman developed

this focus from a critique of research on teaching

at the time, arguing that attention is needed asmuch

to “the content aspects of teaching as we have

recently devoted to the elements of teaching

process” (1986, p. 8) and elaborated three compo-

nents that in concert comprise the professional

knowledge base of teaching: subject matter knowl-

edge (SMK), pedagogic content knowledge (PCK),

and curriculum knowledge.

Shulman’s description of a teacher’s SMK

marked out its specificity:

We expect that the subject matter content under-
standing of the teacher be at least equal to that of
his or her lay colleague, the mere subject matter
major. The teacher need not only understand that
something is so; the teacher must further under-
stand why it is so . . . (and) why a given topic is
particularly central to a discipline. . . (Shulman
1986, 1987 p. 9)

and its substantive and syntactic structures:

The substantive structures are the variety of ways
in which the basic concepts and principles of the
discipline are organized to incorporate its facts.
The syntactic structure of a discipline is the set of
ways in which truth or falsehood, validity or
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invalidity, are established. . . Teachers must not
only be capable of defining for students the
accepted truths in a domain. They must also be
able to explain why a particular proposition is
deemed warranted . . . how it relates to other prop-
ositions, both within the discipline and without,
both in theory and in practice. (P. 9)

SMK was also distinct from PCK, “a form of con-
tent knowledge that embodies the aspects of con-
tent most germane to its teachability” (p. 9).

The past 20 years has seen ongoing research

into mathematical knowledge for teaching

(MKT), often focused on both SMK and PCK.

In recognition of the deep connection between

these two elements of the professional knowledge

base for teaching and contestation over the

boundary between them, there are separate but

related entries on SMK and PCK in this encyclo-

pedia. Work on SMK has focused on defining and

theorizing the nature of this specialized knowl-

edge, its measurement, its significance for peda-

gogy, and the implications for teacher education.

Defining, Theorizing, and Measuring
SMK

Deborah Ball and colleagues at the University of

Michigan engaged in detailed studies of teaching

practice with the goal of developing Shulman’s

work empirically, analytically, and theoretically

and with the desire to understand how compo-

nents teachers’ professional knowledge are

associated with student achievement gains.

They focused simultaneously on defining distinct

forms of MKT and on developing related mea-

sures. They distinguish common, specialized, and

horizon content knowledge as forms of SMK and

knowledge of mathematics and students, mathe-

matics and teaching, and mathematics and cur-

riculum as forms of PCK (Ball et al. 2008). They

described specialized content knowledge (SCK)

as mathematical knowledge that is unique to the

work of teaching and distinct from the common

content knowledge (CCK) which is needed and

used by teachers and non-teachers alike.

Multiple choice items developed as measures

for each of these components of MKT were

administered to elementary teachers, together

with data on the learning gains across a year

of children in these teachers’ classes. Their anal-

ysis showed significant associations between

teachers’ content knowledge measures (their

CCK and SCK) and students’ learning gains

(Hill et al. 2005). In a following study compris-

ing five case studies of teaching and associ-

ated quantitative data, Hill et al. (2008) also

report a strong positive association between

levels of MKT and the mathematical quality

of instruction, but note a range of factors

(e.g., use of curriculum texts) that mediate

this association.

Similarly driven by the desire to understand

the significance of teachers’ mathematical

knowledge for teaching and learning, the Profes-

sional Competence of Teachers, Cognitively

Activating Instruction, and Development of

Students’ Mathematical Literacy (COACTIV)

project in Germany developed open response

measures of SMK (which they called content

knowledge – CK) and PCK at the secondary

level and used these together with data from

varied records of practice of a large sample of

grade 10 teachers and their students’ progress

(Baumert et al. 2010). COACTIV studies

succeeded in distinguishing CK from PCK

in secondary mathematics, conceptually and

empirically. They validated their measures by

testing them on groups of teachers that differed

in their mathematical and teacher training, and

through this confirmed the dependence of growth

in teachers’ PCK on the levels of CK, and the

determining effects of CK acquired in initial

training. At the same time, Baumert et al. (2010,

p. 133) showed a substantial positive effect of

teachers’ PCK on students’ learning gains,

mediated by their pedagogic practice. In other

words, while PCK was inconceivable without

sufficient CK, CK cannot substitute for PCK.

In COACTIV, content knowledge (CK) is

defined as “deep” or “profound” understanding

of the mathematics taught in the secondary

school and associated with the Klein’s (1933)

idea of “elementary mathematics from a higher

viewpoint,” on the one hand, and to Ma’s (1999)

notion of Profound Understanding of Mathemat-

ics on the other. CK is also distinguished from
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other notions of “content knowledge,” including

the everyday mathematical knowledge of adults,

and described as lying between school land

university-level mathematics. PCK in COACTIV

is defined to include knowledge of tasks

(including multiple representations of mathemat-

ical concepts), of students (e.g., typical errors),

and of instruction. For Ball et al., knowledge

of representing mathematics would align more

with specialized content knowledge. Hence,

difficulties with the boundary between SMK and

PCK as distinct elements of MKT, noted by many

others in the field, become evident.

Together with Shulman (1986, 1987), these

two major studies have nevertheless evidenced

a form of mathematical knowledge that is unique

to teaching, that sits outside of, or between,

school mathematics and university mathematics,

with significant implications for the mathemati-

cal content preparation of teachers in teacher

education.

SMK, Pedagogy, and Teacher Education

Numerous other studies, particularly at the

elementary level, based on examination of

teachers’ knowledge in use in practice, have

resulted in different categorizations and descrip-

tions. Turner and Rowland, in Rowland and

Ruthven (2011), developed the Knowledge

Quartet (KQ), comprising foundation, transfor-

mation, connection, and contingency knowledge.

Foundation knowledge aligns with SMK, and the

other three with PCK: the KQ serves as a useful

tool for reflection with and by teachers on the

content of their teaching. Through her study

of US and Chinese teachers’ responses to

mathematical tasks situated in the context of

teaching, Ma (1999) described the flexibility,

depth, and coherence of the knowledge displayed

by the Chinese teachers. She identified four key

components of this “profound understanding of

mathematics,” connectedness, multiple perspec-

tives, basic ideas, and longitudinal coherence,

that together constitute a “package” of knowl-

edge that was “deep, broad and thorough”

(p. 122–123). Adler and Ball (2009), in their

overview of a range of studies concerned with

MKT, note the widening lexicon developing in

the field. To this end, Petrou and Goulding,

and Ruthven, both in Rowland and Ruthven

(2011), provide useful overviews of texts on

MKT.

All studies referred to above have episodes of

mathematics teaching, or of a teacher engaged

with a mathematics task of teaching as their unit

of analysis. A different gaze from the perspective

of the social production of knowledge moved the

empirical site into mathematics teacher education

and built descriptions of MKT from what is

produced as mathematics in teacher education

practice. For example, Adler and Davis, in

Rowland and Ruthven (2011), illustrate how

despite similar goals for deepening teachers’

MKT opportunities for learning MKT in teacher

upgrading programs in South Africa vary

across contexts and practice, shaped in particular

by different perspectives on knowledge and

pedagogy.

Research on MKT with a focus on subject

matter knowledge has thus evolved across

empirical and cultural contexts and across levels

of schooling and continues. A common conclu-

sion can be drawn: if, as is now widely accepted,

there is specialized knowledge that matters for

practice, and initial or preservice education is

paramount, then the inclusion of these forms of

mathematical knowledge should not be left to

chance and the context of practice, but become

part of the content of professional training/

education. Thus, not only is further research

required with respect to precision and definition

of MKT and its constitutive elements but also

around the boundary around what constitutes

mathematics in teacher preparation and profes-

sional development. We note with interest

the explorations of MKT in teacher education,

particularly in recent papers in the Journal of

Mathematics Teacher Education.

Cross-References

▶ Pedagogical Content Knowledge in

Mathematics Education

Mathematical Knowledge for Teaching 387 M

M

http://dx.doi.org/10.1007/978-94-007-4978-8_123
http://dx.doi.org/10.1007/978-94-007-4978-8_123


References

Adler J, Ball D (2009) (eds) Special issue: knowing and
using mathematics in teaching. Learn Math 29(3):2–3

Ball D, Thames M, Phelps G (2008) Content Knowledge
for teaching: what makes it special? J Teach Educ
59(5):389–407

Baumert J, Kunter M, Blum W, Brunner M, Voss T,
Jordan A, Tsai Y (2010) Teachers’ mathematical
knowledge, cognitive activation in the classroom,
and student progress. Am Educ Res J 47(1):133–180

Hill H, Rowan B, Ball D (2005) Effects of teachers’
mathematical knowledge for teaching on student
achievement. Am Educ Res J 42(2):371–406

Hill H, Blunk M, Charalambos C, Lewis J, Phelps G,
Sleep L et al (2008) Mathematical knowledge for
teaching and the mathematical quality of instruction:
an exploratory study. Cognit Instr 26(4):430–511

Klein F (1933) Elementarmathematik vom ho¨heren
Standpunkte aus (Elementary mathematics from
a higher viewpoint). Springer, Berlin

Ma L (1999) Knowing and teaching elementary
mathematics: teachers’ understandings of fundamental
mathematics in China and the United States. Lawrence
Erlbaum Associates, Mahwah

Rowland T, Ruthven K (eds) (2011) Mathematical
knowledge in teaching. Springer, Dordrecht

Shulman L (1986) Those who understand: knowledge
growth in teaching. Educ Res 15(2):4–14

Shulman L (1987) Knowledge and teaching: foundations
of the new reform. Harv Educ Rev 57(1):1–22

Mathematical Language

Candia Morgan

Institute of Education, University of London,

London, UK

Keywords

Algebraic notation; Communication; Genre;

Language; Mathematical vocabulary;

Multimodality; Objectification; Register;

Representations; Semiotic systems

Introduction: What Is Mathematical
Language?

Specialized domains of activity generally have

their own specialized vocabularies and ways of

speaking and writing; consider, for example, the

language used in the practices of law or computer

science, fishing, or football. The specialized

language enables participants to communicate

efficiently about the objects peculiar to their

practice and to get things done, though it may

simultaneously serve to exclude other people

who are not specialists in the domain. This is

certainly the case for the specialized activity of

mathematics: While some aspects of mathemati-

cal language, such as its high degree of

abstraction, may be an obstacle to participation

for some people, doing mathematics is highly

dependent on using its specialized forms of

language, not only to communicate with others

but even to generate newmathematics. In making

this claim, we need to be clearer about what

mathematical language is.

For some, the language of mathematics is

identified with its systems of formal notation.

Certainly, like other languages, these systems

include a “vocabulary” of symbols and

grammatical rules governing the construction

and manipulation of well-formed statements.

A significant part of mathematical activity and

communication can be achieved by forming and

transforming sequences of such formal state-

ments. In recent years, however, it has been

widely recognized that not only other semiotic

systems, including what is sometimes called

“natural” language, but also specialized visual

forms such as Cartesian graphs or geometric

diagrams play an equally essential role in

the doing and communicating of mathematics.

This recognition has been strongly influenced

by the work of the linguist Halliday and his

notion of specialized languages or registers

(Halliday 1974), by research applying and devel-

oping theories of semiotics in mathematics

and mathematics education, and by more recent

developments in multimodal semiotics that

address the roles of multiple modes of communi-

cation (including gestures and the dynamic visual

interactions afforded by new technologies). In

this entry, it is not possible to provide a full

characterization of all these aspects of mathemat-

ical language; in what follows, some of the most

significant characteristics will be discussed.
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Characteristics of Mathematical
Language

The most easily recognized aspect of the

“natural” or verbal language component of

mathematical language is the special vocabulary

used to name mathematical objects and

processes. This vocabulary was the focus of

much of the early research conducted into

language in mathematics education (see Austin

and Howson 1979 for an overview of this

research). This vocabulary includes not only

some uniquely mathematical words (such as

hypotenuse, trigonometry, and parallelogram)

but, in addition, many words that are also used

in everyday language, often with subtly different

meanings. In English, words such as prime,

similar, multiply, and differentiate originated in

non-mathematical contexts and, in being adopted

for mathematical use, have acquired new, more

restrictive or precise definitions. The difficulties

that learners may have in using such words in

appropriately mathematical ways have been

a focus of research; David Pimm’s seminal book

“Speaking Mathematically: Communication in

Mathematics Classrooms” (Pimm 1987) provides

a useful discussion of issues arising from this

aspect of mathematical vocabulary. In national

languages other than English, the specific

relationships between mathematical and every-

day vocabularies may vary, but similar issues

for learners remain.

Another characteristic of mathematical

vocabulary is the development of dense groups

of words such as lowest common denominator or

topological vector space or integrate with respect

to x. Such expressions need to be understood as

single units; understanding each word individu-

ally may not be sufficient. The formation of such

lengthy locutions serves to pack large quantities

of information into manageable units that may

then be combined into statements with relatively

simple grammatical structure. To consider

a relatively simple example: if we wished to

avoid using the complex locution lowest common

denominator, the simple statement

The lowest common denominator of these

three fractions is 12. would need to be unpacked

into a grammatically more complex statement

such as

If we find fractions with different

denominators equivalent to each of these three

fractions, the lowest number that can be

a denominator for all three of them is 12.

The condensation of information achieved by

complex locutions makes it possible to handle

complex concepts in relatively simple ways.

This is not unique to mathematics but is also

a feature of the language of other scientific

domains (Halliday and Martin 1993).

A further characteristic with a significant

function in mathematics is the transformation of

processes into objects; linguistically this is

achieved by forming a noun (such as rotation or

equation) out of a verb (rotate or equate).

Like many of the special characteristics of

mathematical language, this serves at least two

functions that we may think of as relating to the

nature of mathematical activity and to the ways in

which human beings may relate to mathematics.

In this case, by forming objects out of processes,

the actors in the processes are obscured, contrib-

uting to an apparent absence of human agency

in mathematical discourse. At the same time,

however, changing processes (verbs) into objects

(nouns) contributes to the construction of new

mathematical objects that encapsulate the

processes; the ability to think about ideas such

as function both as a process and as an object

that can itself be subject to other processes

(e.g., addition or differentiation) is an important

aspect of thinking mathematically. Sfard (2008)

refers to these characteristics of mathematical

language as objectification and reification, arguing

that they both contribute to alienation – the

distancing of human beings from mathematics. It

is possible that alienation contributes to learners’

difficulties in seeing themselves as potential active

participants in mathematics. However, it is impor-

tant to remember that many of the characteristics

of mathematical language that seem to cause

difficulties for learners are not arbitrary complexi-

ties but have important roles in enabling

mathematical activity. Indeed, in Sfard’s

communicative theory of mathematical thinking,

she makes no distinction between communicating
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and thinking: Thinking and doing mathematics are

identified with participating in mathematical

discourse, that is, communicating mathematically

with others or with oneself.

Variations in Language and Thinking
Mathematically

Considering the relationship between language

and thinking mathematically or doing mathemat-

ics also raises questions about the possible effects

of using different national languages, especially

those that do not share the structures and

assumptions of the European languages that

have dominated the development of modern aca-

demic mathematics. Even relatively simple lin-

guistic differences, such as the ways in which

number words are structured, have been argued

to make a difference to children’s learning

of mathematics. Barton (2008) suggests that

more substantial linguistic differences such

as those found in some indigenous American

or Australasian languages are related to dif-

ferent ways of thinking about the world that

have the potential to lead to new forms of

mathematics.

In focusing on features of verbal language, it is

important not to forget the roles played by other

semiotic systems in the doing and development of

mathematics. A prime example to consider is the

way in which Descartes’ algebraization of

geometry has transformed the development of

the field. A powerful characteristic of algebraic

notation is that it can be manipulated according to

formal rules in order to form new statements that

provide new insights and knowledge. In contrast,

graphical forms tend not to allow this kind

of manipulation, though they may instead enable

a more holistic or dynamic comprehension of the

objects represented. The different affordances for

communication of verbal, algebraic, and graphi-

cal modes, analyzed in detail by O’Halloran

(2005), mean that, even when dealing with the

“same” mathematical object, different modes

of communication will enable different kinds

of messages. Consider, for example, which

aspects you focus on and what actions you

may perform when presented with a function

expressed in verbal, algebraic, tabular, or

graphical form.

Duval (2006) has argued that the differences

between the affordances of different modes

(which he calls registers) have an important

consequence for learning: Converting from

one mode to another (e.g., drawing the graph

of a function given in algebraic form or deter-

mining the algebraic equation for a given

graph) entails understanding and coordinating

the mathematical structures of both modes and

is hence an important activity for cognitive

development. The design of environments

involving making connections between differ-

ent forms of representation has been a focus of

researchers working with new technologies in

mathematics education.

By speaking of mathematical language, as we

have so far in this entry, it might seem that there is

only one variety of mathematical language that

has identical characteristics in all circumstances.

This is clearly not the case; young children study-

ing mathematics in the early years of schooling

encounter and use specialized language in forms

that are obviously different from the language of

academic mathematicians. Even among aca-

demic mathematicians writing research papers,

Burton and Morgan (2000) identified variation

in the linguistic characteristics of publications,

possibly relating to such variables as the status

of the writers as well as to the specific field of

mathematics. Researchers using discourse

analytic approaches have studied the language

used in a number of specific mathematical and

mathematics education contexts. One way of

thinking about the variation found across con-

texts is suggested by Mousley and Marks

(1991): Different kinds of purpose in communi-

cating mathematically demand the use of

different forms of language or genres. Thus, for

example, recounting what has been done in order

to solve a problem will use language with

different characteristics from that required in

order to present a rigorous proof of a theorem. It

may be that mathematical language should be

thought of in terms of a cluster of forms of

language with a family resemblance, differing
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in the extent to which they use the characteristics

identified in this entry but sharing enough spe-

cialized features to enable us to recognize them

all as mathematical. An important implication of

recognizing the contextual variation in mathe-

matical language is that research into the role of

language in teaching and learning mathematics

needs to be sensitive to the specificity of the

practice being studied and cautious in its

generalizations.

Cross-References
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Definition and Development

One of the first written occurrences of the term

mathematical literacy was in 1944 in the USA,

when a Commission of the National Council of

Teachers of Mathematics (NCTM) on Post-War

Plans (NCTM (1970/2002), p. 244) required that

the school should ensure mathematical literacy

for all who can possibly achieve it. Shortly after

(in 1950), the term was used again in the

Canadian Hope Report (NCTM (1970/2002),

p. 401). In more recent times, the NCTM 1989

Standards (NCTM 1989, p. 5) spoke about

mathematical literacy and mathematically

literate students. Apparently, no definition of the

term was offered in any of these texts. The 1989

Standards did, however, put forward five general

goals serving the pursuit of mathematical literacy

for all students: “(1) That they learn to value

mathematics, (2) that they become confident

with their ability to do mathematics, (3) that

they become mathematical problem solvers,

(4) that they learn to communicate mathemati-

cally, and (5) that they learn to reason mathemat-

ically” (op. cit., p.5). The IEA’s Third

International Mathematics and Science Study

(TIMSS), first conducted in 1995, administered

a mathematics and science literacy test to

students in their final year of secondary school

in 21 countries that aimed “to provide
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information about how prepared the overall

population of school leavers in each country is

to apply knowledge in mathematics and science

to meet the challenges of life beyond school”.

The first attempt at an explicit definition appears

to be found in the initial OECD framework for

PISA (Programme for International Student

Assessment) in 1999 (OECD 1999). The defini-

tion has been slightly altered a number of times

for subsequent PISA cycles. The version for

PISA 2012 reads (OECD 2010):

Mathematical literacy is an individual’s

capacity to formulate, employ, and interpret

mathematics in a variety of contexts. It includes

reasoning mathematically and using mathemati-

cal concepts, procedures, facts, and tools to

describe, explain, and predict phenomena. It

assists individuals to recognise the role that

mathematics plays in the world and to make

well-founded judgments and decisions needed

by constructive, engaged and reflective citizens.

In the mathematics education literature, one

finds an array of related notions, such as

numeracy, quantitative literacy, critical mathe-

matical literacy, mathemacy, matheracy, as well

as statistical literacy. While some of these

concepts more clearly differ in extension

and intension, some authors use “numeracy,”

“quantitative literacy,” and “mathematical liter-

acy” synonymously, whereas others distinguish

also between these. While the term “mathemati-

cal literacy” seems to be of American descent,

the term “numeracy” was coined in the UK.

According to Brown et al. (1998, p. 363), it

appeared for the first time in the so-called

Crowther Report in 1959, meaning scientific lit-

eracy in a broad sense, and later obtained wide

dissemination through the well-known Cockcroft

Report (DES/WO 1982), which stated that its

meaning had considerably narrowed by then.

There have been further shifts in interpretation

since then. A recent, rather wide, definition of

“numeracy” can be found in OECD’s PIAAC

(Programme for the International Assessment of

Adult Competencies) “numeracy” framework:

“Numeracy is the knowledge and skills required

to effectively manage and respond to the

mathematical demands of diverse situations”

(PIAAC Numeracy Expert Group 2009, p. 20).

The term “quantitative literacy” is yet another

term of American descent, going back to the

work of Steen (see, e.g., Madison and

Steen 2003).

Even though the notions above are interpreted

differently by different authors (which suggests

a need to pay serious attention to clear terminol-

ogy), they do have in common that they stress

awareness of the usefulness of and the ability to

use mathematics in a range of different areas as

an important goal of mathematics education.

Furthermore, mathematical literacy and related

notions are associated with education for the

general public rather than with specialized

academic training while at the same time

stressing the connection between mathematical

literacy and democratic participation. As in

other combined phrases, such as “statistical liter-

acy” or “computer literacy,” the addition of

“literacy” may suggest some level of critical

understanding. In South Africa, the pursuit of

mathematical literacy has motivated the intro-

duction of a new stand-alone school mathematics

subject area available for learners in grades

10–12, which aims at allowing “individuals to

make sense of, participate in and contribute to

the twenty-first century world – a world charac-

terized by numbers, numerically based argu-

ments and data represented and misrepresented

in a number of different ways. Such competen-

cies include the ability to reason, make decisions,

solve problems, manage resources, interpret

information, schedule events and use and apply

technology” (DoBE 2011, p. 8). One motivation

for introducing this mathematical subject was to

increase student engagement with mathematics.

While “mathematical literacy,” “quantitative

literacy,” and “numeracy” focus on mathematics

as a tool for solving nonmathematical problems,

the notions of mathematical competence (and

competencies) and mathematical proficiency

focus on what it means to master mathematics at

large, including the capacity to solve mathemat-

ical as well as nonmathematical problems. The

notion of “mathematical proficiency” (Kilpatrick

et al. 2001) is meant to capture what successful

mathematics learning means for everyone and is

M 392 Mathematical Literacy



defined indirectly through five strands (concep-

tual understanding, procedural fluency, strategic

competence, adaptive reasoning, and productive

disposition). Furthermore, by referring to indi-

viduals’ mental capacities, dispositions, and atti-

tudes, the last two of these strands go beyond

mastery of mathematics and include personal

characteristics. The notion of “mathematical

competence” has been developed, explored, and

utilized in the Danish KOM Project (KOM is an

abbreviation for “competencies and mathematics

learning” in Danish) and elsewhere since the

late 1990s (Niss and Højgaard 2011). Mathemat-

ical competence is an individual’s capability

and readiness to act appropriately, and in

a knowledge-based manner, in situations and

contexts in which mathematics actually plays or

potentially could play a role. While mathematical

competence is the overarching concept, its con-

stituent components are, perhaps, the most

important features. There are eight such constit-

uents, called mathematical competencies:

mathematical thinking, problem posing and

solving, mathematical modeling, mathematical

reasoning, handling mathematical representa-

tions, dealing with symbolism and formalism,

communicating mathematically, and handling

mathematical aids and tools. Mathematical

competencies do not specifically focus on the

learners of mathematics nor on mathematics

teaching. Also, no personal characteristics

such as capacities, dispositions, and attitudes

are implicated in these notions.

Motivations for Introducing
Mathematical Literacy

There have always been endeavors amongst

mathematics educators to go against the idea

that the learning of basic or fundamental mathe-

matics could be characterized solely in terms of

facts and rules that have to be known (by rote)

and procedures that have to be mastered (by rote).

Mathematics educators have found this view

reductionist, since it overlooks the importance

of understanding when, and under what condi-

tions, it is feasible to activate the knowledge and

skills acquired, as well as the importance of flex-

ibility in putting mathematics to use in novel

intra- or extra-mathematical contexts and situa-

tions. For example, in the first IEA study on

mathematics, which later became known as the

First International Mathematics Study (FIMS),

published in 1967, we read that in addition to

testing factual and procedural knowledge and

skills related to a set of mathematical topics,

it was important to also look into five

“cognitive behaviors”: (1) knowledge and infor-

mation (recall of definitions, notations, concepts),

(2) techniques and skills (solutions), (3) transla-

tion of data into symbols or schema and vice

versa, (4) comprehension (capacity to analyze

problems and to follow reasoning), and (5) inven-

tiveness (reasoning creatively in mathematics

(our italics)). Another example is found in

the NCTM document An Agenda for Action:

Recommendations for School Mathematics of

the 1980s (NCTM 1980). The document is partly

written in reaction to the so-called “back-to-

basics” movement in the USA in the 1970s,

which in turn was a reaction to the “new mathe-

matics” movement in the 1950s and 1960s. The

document states:

We recognize as valid and genuine the concern
expressed by many segments of society that basic
skills be part of the education of every child. How-
ever, the full scope of what is basic must include
those things that are essential to meaningful
and productive citizenship, both immediate and
future (p. 5).

The document lists six recommendations,

including:

2.1. The full scope of what is basic should contain
at least the ten basic skill areas [. . .]. These areas
are problem solving; applying mathematics in
everyday situations; alertness to the reasonableness
of results; estimation and approximation; appropri-
ate computational skills; geometry; measurement;
reading, interpreting, and constructing tables,
charts, and graphs; using mathematics to predict;
and computer literacy. (p. 6–7)
2.6 The higher-order mental processes of logical
reasoning, information processing, and decision
making should be considered basic to the
application of mathematics. Mathematics curricula
and teachers should set as objectives the
development of logical processes, concepts, and
language [. . .]. (p. 8)
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These examples show that mathematics

educators have been concerned with capturing

“something more” (in addition to knowledge

and skills regarding mathematical concepts,

terms, conventions, rules, procedures, methods,

theories, and results), which resembles what is

indicated by the notion of mathematical literacy

as it is, for example, used in the PISA. On the one

hand, the arguments for broadening the scope of

school mathematics have been utility oriented,

based on the observation of students’ lack of

ability to use their mathematical knowledge for

solving problems that are contextualized in

extra-mathematical contexts, in school as well

as out of school, an observation corroborated by

a huge body of research. On the other hand, the

constitution of mathematics as a school discipline

in terms of “products” – concepts (definitions and

terminology), results (theorems, methods, and

algorithms), and techniques (for solving sets

of similar tasks) – became challenged. Product-

oriented curricula were complemented by, or

contrasted with, a conception of mathematics

that includes mathematical processes, such as

heuristics for mathematical problem solving,

mathematical argumentation, constructive and

critical mathematical reasoning, and communi-

cating mathematical matters.

There are different views about the amount of

mathematical knowledge and basic skills needed

for engagement in everyday practices and

nonmathematically specialized professions,

although it has been stressed that a certain level

of proficiency in mathematics is necessary for

developing mathematical literacy. The role of

general mathematical competencies that

transcend school mathematical subareas also has

been stressed in the newer versions of conceptu-

alizing mathematical literacy, most prominently

in the versions promoted by the OECD-PISA

(see above).

Critique and Further Research

Even though the notion of mathematical literacy

has gained momentum and is now widely

invoked and used in various contexts, it has also

encountered different sorts of conceptual and

politico-educational criticism.

Some reservations against using the very term

“mathematical literacy” concern the fact that it

lacks counterparts in several languages. No suit-

able translation exists, for example, into German

and Scandinavian languages, where there are

only words for “illiteracy,” which stands for the

fundamental inability to read or write any text.

Indeed, the term “literacy” (both mathematical

and quantitative literacy) has been interpreted

by some to connote the most basic and elemen-

tary aspects of arithmetic and mathematics, in the

same way as linguistic literacy is often taken to

mean the very ability to read and write, an ability

that is seen to transcend the social contexts and

associated values, in which reading and writing

occurs. However, the demands for reading and

writing substantially vary across a spectrum of

texts and contexts, as do the social positions of

the speakers or readers. The same is true for

a range of contexts and situations in which math-

ematics is used. People’s private, professional,

social, occupational, political, and economic

lives represent a multitude of different mathemat-

ical demands. So, today, for most mathematics

educators, the term mathematical literacy

signifies a competency far beyond a set of basic

skills.

Another critique, going against attempts at

capturing mathematical literacy in terms of

transferable general competencies or process

skills, consists in the observation that such

a conception tends to ignore the interests and

values involved in posing and solving particular

problems by means of mathematics. Jablonka

(2003) sees mathematical literacy as a socially

and culturally embedded practice and argues that

conceptions of mathematical literacy vary with

respect to the culture and values of the stake-

holders who promote it. Also, de Lange (2003)

acknowledges the need to take into account

cultural differences in conceptualizing mathe-

matical literacy. There is no general agreement

amongst mathematics educators as to the type of

contexts with which a mathematically literate

citizen will or should engage and to what ends.

However, there is agreement that mathematical
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literate citizens include nonexperts and that

mathematical literacy is based on knowledge

that is/should be accessible to all.

In the same vein, mathematics educators have

empirically and theoretically identified a variety

of intentions for pursuing mathematical literacy.

For example, Venkat and Graven (2007)

investigated pedagogic practice and learners’

experiences in the contexts of South African

classrooms, in which the subject mathematical

literacy is taught. They identified four different

pedagogic agendas (related to different peda-

gogic challenges) that teachers pursued in

teaching the subject. Jablonka (2003), through

a review of literature, identifies five agendas on

which conceptions of mathematical literacy are

based. These are as follows: developing human

capital (exemplified by the conception used in the

OECD-PISA), maintaining cultural identity,

pursuing social change, creating environmental

awareness, and evaluating mathematical applica-

tions. Some terms have been introduced as alterna-

tives to “mathematical literacy” in order to make

the agenda visible. Frankenstein (e.g., 2010) uses

critical mathematical numeracy, D’Ambrosio

(2003) writes about matheracy, and Skovsmose

(2002) refers to mathemacy. Relations of mathe-

matical literacy to scientific and technological

literacy have also been discussed (e.g., Keitel

et al. 1993; Gellert and Jablonka 2007).

As to the role of mathematical literacy in

assessment, discrepancies between actual assess-

ment modes and the intentions of mathematical

literacy have been pointed out by researchers in

different contexts (Jahnke and Meyerhöfer 2007;

North 2010). In the assessment literature, the con-

texts in which mathematically literate individuals

are meant to engage are often referred to in vague

or general terms, such as the “real-world,” “every-

day life,” “personal life,” “society,” and attempts to

categorize contexts often lack a theoretical founda-

tion. Identifying the demands and knowledge bases

for mathematically literate behavior in different

contexts remains a major research agenda.

As far as the teachingofmathematical literacy is

concerned, the transition between unspecialized

context-based considerations and problem solu-

tions that employ specialized mathematical

knowledge is a continuing concern. Studies of

curricula associated with teaching mathematics

through and for exploring everyday practices, for

example, have usefully drawn on theories of

knowledge recontextualization.

These observations suggest that the meanings

and usages associated with the notion of

mathematical literacy and its relatives have not

yet reached a stage of universally accepted

conceptual clarification nor of general agreement

about their place and role. Future theoretical and

empirical research and development are needed

for that to happen.
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Characteristics

The relevance of promoting applications and

mathematical modelling in schools is currently

consensus all over the world. The promotion of

modelling competencies, i.e., the competencies

to solve real-world problems using mathemat-

ics, is accepted as central goal for mathematics

education worldwide, especially if mathemat-

ics education aims to promote responsible cit-

izenship. In many national curricula, modelling

competencies play a decisive role pointing out

that the importance of mathematical modelling

is accepted at a broad international level.

However, beyond this consensus on the

relevance of modelling, it is still disputed

how to integrate mathematical modelling into

the teaching and learning processes; various

approaches are discussed and there is still

a lack of strong empirical evidence on the

effects of the integration of modelling exam-

ples into school practice.
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Theoretical Debate on Mathematical

Modelling: Historical Development and

Current State

Applications and modelling play an important role

in the teaching and learning of mathematics;

already in the nineteenth century, famous

mathematics educator made a strong plea for the

inclusion of contextual problems in mathematics

education, mainly in elementary schools for the

broad majority. At the turn to the twentieth

century, Felix Klein – the first president of

ICMI – laid out in the so-called syllabus from

Meran the necessity to include applications in

modelling in mathematics education for higher

achieving children in grammar schools; however,

he requested a strong balance between applications

and pure mathematics. During and after the Second

World War, applications lost significantly impor-

tance in many parts of the world. The claim to teach

mathematics in application-oriented way has been

put forth another time with the famous symposium

“Why to teach mathematics so as to be useful”

(Freudenthal 1968; Pollak 1968) which has been

carried out in 1968. Why and how to include appli-

cations and modelling in mathematics education

has been the focus of many research studies since

then. This high amount of studies has not led to

a unique picture on the relevance of applications

and modelling in mathematics education; in

contrast the arguments developed since then

remained quite diverse. In addition the discussion,

how to teach mathematics so as to be useful did not

lead to a consistent argumentation. There have been

several attempts to analyze the various theoretical

approaches to teach mathematical modelling and

applications and to clarify possible commonalities

and differences; a few are described below.

Nearly twenty years ago, Kaiser-Meßmer

(1986, p. 83) discriminated in her analysis of the

applications and modelling discussion of that

time various perspectives, namely, the following

two main streams:

• A pragmatic perspective, focusing on

utilitarian or pragmatic goals, i.e., the ability

of learners to apply mathematics for the

solution of practical problems. Henry Pollak

(see, e.g., 1968) can be regarded as a proto-

typical researcher of this perspective.

• A scientific-humanistic perspective, which

is oriented more towards mathematics as

a science and humanistic ideals of education

focusing on the ability of learners to create

relations between mathematics and reality.

The “early” Hans Freudenthal (see, e.g.,

1973) might be viewed as a prototypical

researcher of this approach.

The various perspectives of the discussion

vary strongly due to their aims concerning appli-

cation and modelling; for example, the following

goals can be discriminated (Blum 1996; Kaiser-

Meßmer 1986):

• Pedagogical goals: imparting abilities that

enable students to understand central aspects

of our world in a better way

• Psychological goals: fostering and enhance-

ment of the motivation and attitude of learners

towardsmathematics andmathematics teaching

• Subject-related goals: structuring of learning

processes, introduction of new mathematical

concepts andmethods including their illustration

• Science-related goals: imparting a realistic

image of mathematics as science, giving

insight into the overlapping of mathematical

and extra-mathematical considerations of the

historical development of mathematics

In their extensive survey on the state of the art,

Blum and Niss (1991) focus a few years later on

the arguments and goals for the inclusion of

applications and modelling and discriminate five

layers of arguments such as the formative argu-

ment related to the promotion of general compe-

tencies, critical competence argument, utility

argument, picture of mathematics argument, and

the promotion of mathematics learning argument.

They make a strong plea for the promotion of

three goals, namely, that students should be

able to perform modelling processes, to acquire

knowledge of existing models, and to critically

analyze given examples of modelling processes.

Based on this position, they analyze the vari-

ous approaches on how to consider applications

and modelling in mathematics instruction and

distinguish six different types of including appli-

cations and modelling in mathematics instruc-

tion, e.g., the separation approach, separating

mathematics, and modelling in different courses
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or the two-compartment approach with a pure

part and an applied part. A continuation of inte-

grating applications and modelling into mathe-

matics instruction is the islands approach, where

small applied islands can be found within the

pure course; themixing approach is even stronger

in fostering the integration of applications and

modelling, i.e., newly developed mathematical

concepts and methods are activated towards

applications and modelling; whenever possible,

however, in contrast to the next approach, the

mathematics used is more or less given from the

outset. In the mathematics curriculum-integrated

approach, the problems come first and mathe-

matics to deal with them is sought and developed

subsequently. The most advanced approach, the

interdisciplinary-integrated approach, operates

with a full integration between mathematics and

extra-mathematical activities where mathematics

is not organized as separate subject.

At the beginning of the twenty-first century,

Kaiser and Sriraman (2006) pointed out in their

classification of the historical and more recent

debate on mathematical modelling in school that

several perspectives on mathematical modelling

have been developed within the international dis-

cussion on mathematics education, partly new and

different from the historical ones. Despite several

commonalities, these strands of the discussion

framed modelling and its pedagogical potential in

different ways. In order to enhance the understand-

ing of these different perspectives on modelling,

Kaiser and Sriraman (2006) proposed a framework

for the description of the various approaches,

which classifies these conceptions according to

the aims pursued with mathematical modelling,

their epistemological background, and their

relation to the initial perspectives.

The following perspectives were described,

which continue positions already emphasized at

the beginning of the modelling debate:

• Realistic or applied modelling fostering prag-

matic-utilitarian goals and continuing traditions

of the early pragmatically oriented approaches

• Epistemological or theoretical modelling

placing theory-oriented goals into the fore-

ground and being in the tradition of the

scientific-humanistic approach

• Educational modelling emphasizing pedagog-

ical and subject-related goals, which are inte-

grating aspects of the realistic/applied and the

epistemological/theoretical approaches taking

up aspects of a so-called integrated approach

being developed at the beginning of the

nineties of the last century mainly within the

German discussion

In addition the following new approaches

have been developed:

• Model eliciting and contextual approaches,

which emphasize problem-solving and psy-

chological goals

• Socio-critical and sociocultural modelling

fostering the goal of critical understanding of

the surrounding world connected with the rec-

ognition of the sociol-cultural dependency of

the modelling activities

As kind of a meta-perspective, the following

perspective is distinguished,which has been devel-

oped in the last decade reflecting demands onmore

detailed analysis of the students’ modelling

process and their cognitive and affective barriers.

• Cognitive modelling putting the analysis of

students’ modelling process and the promo-

tion of mathematical thinking processes in

the foreground

This classification points on the one hand to

a continuity of the tradition on the teaching and

learning of mathematical modelling; there still

exist many commonalities between the historical

approach already developed amongst others by

Felix Klein and the new approaches. On the other

hand, it becomes clear that new perspectives

on modelling have been developed over the

last decades emphasizing new aspects such

as metacognition, the inclusion of socio-critical

or socio-cultural issues, a more process-oriented

view on modelling, and the modelling cycle.

The Modelling Process as Key Feature of

Modelling Activities

A key characteristic of these various perspectives

is the way how the mathematical modelling pro-

cess is understood, how the relation betweenmath-

ematics and the “rest of the world” (Pollak 1968) is

described. Analyses show that the modelling

processes are differently used by the various
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perspectives and streams within the modelling

debate, already since the beginning of the discus-

sion. The perspectives described above developed

different notions of the modelling process either

emphasizing the solution of the original problem,

as it is done by the realistic or applied modelling

perspective, or the development of mathematical

theory as it is done by the epistemological or

theoretical approach. So, corresponding to the dif-

ferent perspectives on mathematical modelling,

there exist various modelling cycles with specific

emphasis, for example, designed primarily for

mathematical purposes, research activities, or

usage in classrooms (for an overview, see

Borromeo Ferri 2006).

Although at the beginning of the modelling

debate, a description of the modelling process as

linear succession of the modelling activities was

common or the differentiation between mathemat-

ics and the real world was seen more statically

(e.g., by Burkhardt 1981), nowadays, despite

some discrepancies, one common and widespread

understanding of modelling processes has been

developed. In nearly all approaches, the idealized

process of mathematical modelling is described as

a cyclic process to solve real problems by using

mathematics, illustrated as a cycle comprising

different steps or phases.

The modelling cycle developed by Blum

(1996) and Kaiser-Meßmer (1986) is based

amongst others on work by Pollak (1968, 1969)

and serves as exemplary visualization of many

similar approaches. This description contains the

characteristics, which nowadays can be found in

various modelling cycles: The given real-world

problem is simplified in order to build a real

model of the situation, amongst other many

assumptions have to be made, and central

influencing factors have to be detected. To create

a mathematical model, the real-world model has

to be translated into mathematics. However, the

distinction between a real-world and a mathemat-

ical model is not always well defined, because the

process of developing a real-world model and

a mathematical model is interwoven, amongst

others because the developed real-world model

is related to the mathematical knowledge of the

modeller. Inside the mathematical model, math-

ematical results are worked out by using mathe-

matics. After interpreting the mathematical

results, the real results have to be validated as

well as the whole modelling process itself. There

may be single parts or the whole process to go

through again (Fig. 1).

The shown cycle idealizes the modelling pro-

cess. In reality, several mini-modelling cycles

occur that are worked out either in linear sequen-

tial steps like the cycle or in a less ordered way.

Most modelling processes include frequent

switching between the different steps of the

modelling cycles.

Other descriptions of the modelling cycle com-

ing from applied mathematics, such as the one by

Haines et al. (2000), emphasize the necessity to

report the results of the process and include more

explicitly the refinement of the model (Fig. 2).

Perspectives putting cognitive analyses in the

foreground include an additional stage within

Mathematical Modelling

and Applications in
Education, Fig. 1

Modelling process from

Kaiser-Meßmer (1986) and

Blum (1996)
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the modelling process, the understanding of the

situation by the students. The students develop

a situation model, which is then translated into

the real model; Blum in more recent work (e.g.,

2011) and others (e.g., Leiß, Borromeo Ferri)

have described modelling activities in such

a way (Fig. 3).

Detailed Description of One Modelling Cycle

Based on the Lighthouse Example

The problem how far a ship is away from

a lighthouse, when the crew sees the fire of the

lighthouse the first time, is a well-known sea

navigation problem with high relevance in former

times, before most ships were equipped with GPS.

This problem is proposed by protagonists of the

educational modelling perspective for the teaching

of mathematical modelling in school – especially

Blum and Leiß – due to its mathematical richness

and its easy accessibility and is adapted in the

following to a local situation, namely, a lighthouse

at the Northsea in Germany.

Westerhever Lighthouse

The Westerhever lighthouse was built in 1906 at

the German coast of the Northsea and is 41 m

high. The lighthouse should in former times

inform ships, which were approaching the coast,

about their position against the coastline. How far

off the coast is a ship when the crew is able to see

Real

world

problem

Refining

model
Evaluating

solution

Reporting

Interpreting

outcomes

Solving

mathematics

Formulating

model

Mathematical Modelling

and Applications in
Education, Fig. 2

Modelling process from

Haines et al. (2000)

Mathematical Modelling and Applications in Education, Fig. 3 Modelling process by Blum (2011)
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the light fire for the very first time over the hori-

zon? (Round off whole kilometers) (Fig. 4).

Development of a Real-World Model

The students have to develop a real-world model

based on different assumptions, i.e., they have to

simplify the situation and idealize and structure

it, taking into account the curvature of the earth as

key influential factor.

Development of a Mathematical Model

The first step can comprise the translation of the

real-world model into a two-dimensional mathe-

matical model describing the earth as a circle and

then using the Pythagorean Theorem to calculate

the required distance from the ship to the light-

house. Another attempt refers to the definition of

the cosine, which can be used instead of the

Theorem of Pythagoras.

An extension of this simple model takes into

account that the observer who sees the lighthouse

at first is not at the height of the waterline,

but a few meters higher, e.g., in a look-out.

A possible approach uses the Pythagorean Theo-

rem twice, firstly with the right-angled triangle

from the geocenter to the top of the lighthouse to

the boundary point, where the line of sight meets

the sea surface.

Interpretation and Validation

Afterwards the results need to be interpreted and

validated using knowledge from other sources.

The results need to be transferred back to reality

and need to be questioned.

Further Explorations and Extensions

The example of the lighthouse allows many inter-

esting explorations, for example, the reflection on

the reverse question, how far away is the horizon?

That well-known problem is similar to the

problem of the lighthouse, and its solution is

mathematically equivalent to the first elementary

model. However, from a cognitive point of view,

the real-world model is much more difficult to

develop, because the curvature and its central role

are psychologically difficult to grasp.

The example above is a typical modelling

example showing that there exists a rich variety

of modelling examples ranging from small text-

book examples to complex, authentic modelling

activities. Many extracurricular materials have

been developed in the last decades amongst

others by COMAP or the Istron Group; many

examples are nowadays included in textbooks

for school teaching.

Modelling Competencies and Their

Promotion

A central goal of mathematical modelling is the

promotion of modelling competencies, i.e., the

ability and the volition to work out real-world

problems with mathematical means (cf. Maaß

2006). The definition of modelling competencies

corresponds with the different perspectives of

mathematical modelling and is influenced by

the taken perspective. A distinction is made

between global modelling competencies and

sub-competencies of mathematical modelling.

Global modelling competencies refer to neces-

sary abilities to perform the whole modelling

Mathematical Modelling and Applications in

Education, Fig. 4 Task on Westerhever lighthouse

(photo by Thomas Raupach)
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process and to reflect on it. The sub-competencies

of mathematical modelling refer to the modelling

cycle; they include the different competencies

that are essential for performing the single steps

of the modelling cycle (Kaiser 2007). Based on

the comprehensive studies by Maaß (2006) and

Kaiser (2007), extensive work by Haines et al.

(2000), and further studies and by referring to the

various types of the modelling cycle as described

above, the following sub-competencies of model-

ling competency can be distinguished (Kaiser

2007, p. 111):

• Competency to solve at least partly a real

world problem through a mathematical

description (that is, a model) developed by

oneself;

• Competency to reflect about the modelling

process by activating meta-knowledge about

modelling processes;

• Insight into the connections between mathe-

matics and reality;

• Insight into the perception of mathematics as

process and not merely as product;

• Insight into the subjectivity of mathematical

modelling, that is, the dependence of

modelling processes on the aims and the avail-

able mathematical tools and students

competencies;

• Social competencies such as the ability to

work in groups and to communicate about

and via mathematics.

This list is far from being complete since

more extensive empirical studies are needed to

receive well-founded knowledge about model-

ling competencies.

Obviously the sub-competencies are an essen-

tial part of the modelling competencies. In addition

metacognitive competencies play a significant role

within themodelling process (Maaß 2006; Stillman

2011). Missing metacognitive competencies may

lead to problems during the modelling process, for

example, at the transitions between the single steps

of the modelling cycle or in situations where

cognitive barriers appear (cf. Stillman 2011).

In the discussion on the teaching and learning

of mathematical modelling, two different

approaches of fostering mathematical modelling

competencies can be distinguished: the holistic

and the atomistic approach (Blomhøj and Jensen

2003). The holistic approach assumes that the

development of modelling competencies should

be fostered by performing complete processes of

mathematical modelling, whereby the complex-

ity and difficulty of the problems should be

matched to the competencies of the learners.

The atomistic approach, however, assumes that

the implementation of complete modelling prob-

lems, especially at the beginning, would be too

time-consuming and not sufficiently effective at

fostering the individual modelling competencies.

It is nowadays consensus that both approaches

need to be integrated, although no secure empirical

evaluation on the efficiency of both approaches or

an integrated one has been carried out so far.

Obviously these two different approaches

necessitate different ways of organizing the

inclusion of modelling examples in schools: The

atomistic approach seems to be more suitable for

a “mixing approach,” i.e., “in the teaching of

mathematics, elements of applications and

modelling are invoked to assist the introduction

of mathematical concepts etc. Conversely, newly

developed mathematical concepts, methods and

results are activated towards applicational and

modelling situations whenever possible” (Blum

and Niss 1991, p. 61). The holistic approach can

either be realized in a “separation approach,” i.e.,

instead “of including modelling and applications

work in the ordinary mathematics courses, such

activities are cultivated in separate courses spe-

cially devoted to them” (Blum and Niss 1991,

p. 60). Of course variations of these approaches.

like the “two-compartment approach” or the

“islands approach” described by Blum and Niss

(1991) seem to be possible as well.

Results of Empirical Studies on the

Implementation of Mathematical

Modelling in School

Several empirical studies have shown that each

step in the modelling process is a potential cog-

nitive barrier for students (see, e.g., Blum 2011,

as overview). Stillman et al. (2010) describe in

their studies these potential “blockages” or “red

flag situations,” in which there is either no pro-

gress made by the students, errors occur and are
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handled, or anomalous results occur. Stillman

(2011) in her overview on the cognitively oriented

debate on modelling emphasizes the importance of

reflective metacognitive activity during mathemat-

ical modelling activities especially within transi-

tions between phases in the modelling process. She

identifies productive metacognitive acts promoting

students’ metacognitive competences at various

levels and distinguishes routine metacognition

responding to blockages or red flag situations

from meta-metacognition being brought in by

teachers trying to promote students’ development

of independent modelling competencies leading to

reflective metacognition.

So far the role of the teacher within modelling

activities has not been researched sufficiently:

Until now not enough secure empirical evidence

exists, how teachers can support students in inde-

pendent modelling activities, how can they sup-

port them in overcoming cognitive blockages,

and how can they foster metacognitive compe-

tencies. It is consensus that modelling activities

need to be carried out in a permanent balance

between minimal teacher guidance and maximal

students’ independence, following well-known

pedagogical principles such as the principal of

minimal help. Research calls for individual,

adaptive, independence-preserving teacher inter-

ventions within modelling activities (Blum

2011), which relates modelling activities to the

approach of scaffolding. Scaffolding can be

according to well-known definitions described

as a metaphor for tailored and temporary support

that teachers offer students to help them solve

a task that they would otherwise not be able to

perform. Although scaffolding has been studied

extensively in the last decades, it was found to be

rare in classroom practice. Especially for model-

ling processes, which comprise complex cogni-

tive activities, scaffolding seems to be especially

necessary and appropriate. But scaffolding has to

be based on a diagnosis of students’ understand-

ing of the learning content, which most teachers

did not ascertain; in contrast most teachers pro-

vided immediate support or even favoured their

own solution.

In the future, learning environments for

modelling need to be established, which support

independent modelling activities, for example, by

sense-making using meaningful tasks, model-

eliciting activities based on challenging tasks, or

the usage of authentic tasks.
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Definition

Argumentation, reasoning, and proof are con-

cepts with ill-defined boundaries. More precisely,

they are words that different people use in differ-

ent ways. What one can perhaps say is that rea-

soning is the concept with the widest compass.

Logic is usually taken to mean a more structured

form of reasoning, with its own subset, formal

logic, which is logic in its most rigidly structured

form. Though people most closely associate logic

with mathematics, all forms of reasoning have

had, and continue to have, valuable roles in math-

ematical practice. For that reason and, perhaps

even more important, because of their usefulness

in teaching, the many forms of reasoning have

also found their place in the mathematics

curriculum.

Characteristics

This entry will explore in more detail the

concepts of argumentation, reasoning, and proof

as understood by mathematicians and educators

and present some of their implications for

mathematics education. It will go on to describe

some more recent thinking in mathematics

education and in the field of mathematics itself.

Mathematical Proof

Mathematics curricula worldwide aim at teaching

students to understand and produce proofs, both

to reflect proof’s central position in mathematics

and to reap its many educational benefits. Most

documents addressed to teachers, such as that by

the National Council of Teachers of Mathematics

(NCTM 2000), give the following reasons for

teaching proof: (1) to establish certainty; (2) to

gain understanding; (3) to communicate ideas;

(4) to meet an intellectual challenge; (5) to create

something elegant, surprising, or insightful; and

(6) to construct a larger mathematical theory.

This list encompasses not only justification but

also considerations of understanding, insight, and

aesthetics and in so doing further reflects mathe-

matics itself. These additional considerations are

important not only in the classroom but in
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mathematical practice as well: for mathematicians,

too, a proof is much more than a sequence of

logical steps that justifies an assertion.

Proof also plays other significant roles in

mathematical practice. Proof can serve to present

new methods and demonstrate their value, to

inspire new hypotheses, and to show connections

between different parts of mathematics. For

practicing mathematicians, these too are valuable

aspects of proof; yet the mathematics curricula,

by and large, have failed to explore their

educational potential.

Proof pervades all mathematical work. Unless

it is considered an axiom, a mathematical asser-

tion without a proof must remain a conjecture. To

justify an assertion is the role of a proof. In the

purest sense, a mathematical proof is a logical

derivation of a given statement from axioms

through an explicit chain of inferences obeying

accepted rules of deduction. A “formal proof”

will employ formal notation, syntax, and rules

of inference (“axiomatic method”). Thus, strictly

formal derivations will consist of unambiguous

strings of symbols and conform to a mechanical

procedure that will permit the correctness of the

proof to be checked. Such proofs are considered

highly reliable.

However, proofs in mathematical journals

rarely conform to this pattern. As Rav (1999)

pointed out, mathematicians express “ordinary”

proofs in a mixture of natural and formal lan-

guage, employing passages of explicit formal

deductions only where appropriate. They bridge

between these passages of formal deduction

using passages of informal language in which

they provide only the direction of the proof, by

making reference to accepted chains of deduc-

tion. Consequently, most mathematicians would

characterize ordinary proofs as informal argu-

ments or “proof sketches.”

Nevertheless, these ordinary informal proofs

do provide a very high level of reliability,

because the bridges are “derivation indicators”

that are easily recognized by other mathemati-

cians and provide enough detail to allow easy

detection and repair of errors (Azzouni 2004).

In this way, the social process by which such

proofs are scrutinized and ultimately accepted

improves their validity. In fact, most accepted

mathematical proofs consist of valid arguments

that may not lend themselves to easy formaliza-

tion (Hanna 2000; Manin 1998; Thurston 1994).

To reflect mathematical practice, then,

amathematics curriculumhas to present both formal

and informal modes of proof. If they wish to teach

students how to follow and evaluate a mathematical

argument, make and test a conjecture, and develop

and justify their own mathematical arguments and

proofs, educators have to provide the students with

the entire gamut of mathematical tools, including

both the formal and informal ones. Without this

important double approach, students will lack

the body of mathematical knowledge that

enables practicing mathematicians to communicate

effectively by using “derivation indicators” and

other mathematical shorthand (cf. Hanna and de

Villiers 2012).

Reasoning and Proof

Most mathematics curricula recognize that

reasoning and proof are fundamental aspects of

mathematics. In fact, much of the literature on

mathematics teaching refers to them as one entity

called “reasoning and proof.”

We may take reasoning, in the broadest sense,

to mean the common human ability to make

inferences, deductive or otherwise. As Fischbein

(1999) noted, everyday reasoning may differ

from explicit mathematical reasoning in both

process and result. In everyday reasoning, for

example, we may even accept a statement with-

out any type of proof at all, because we judge it to

be self-evident or intuitively plausible, or at least

more plausible than its contradiction. However,

in many realms, including mathematics, such

everyday reasoning provides little help (e.g., it

is not intuitively clear that the sum of the angles

in any triangle is always 180�). In all such cases

we would need defined rules of reasoning in order

to reach a valid conclusion. We would need to

construct a correct chain of inference – that is, to

construct a proof.

Thus, all mathematics educators aim to teach

students the rules of reasoning. In the Western

tradition, the rules of reasoning are derived

from classical mathematics and philosophy and

Mathematical Proof, Argumentation, and Reasoning 405 M

M



include, for example, the syllogism and such

elementary rules asmodus ponens, modus tollens,

and reductio ad absurdum. Students typically

first encounter these basic concepts of logic in

the axiomatic proofs of Euclidean geometry.

Here the teacher’s role is crucial. In addition to

concepts specific to the mathematical topic, the

teacher must make the students familiar with

rules of reasoning, patterns of argumentation,

and appropriate terms (e.g., assumption, conjec-

ture, example, refutation, theorem, and axiom).

How students actually learn these concepts is

unfortunately a question of cognition that educa-

tors have yet to resolve, though researchers inves-

tigating this issue have proposed a number

of promising models of cognition. One such

model, the “cognitive development of proof,”

combines three worlds of mathematics: the con-

ceptual/embodied, the proceptual/symbolic, and

the axiomatic/formal (cf. Tall et al., chapter 2 in

Hanna and de Villiers 2012). Another, based on

extensive observations of college-level students

learning mathematics, uses a psychological

framework of “proof schemes” (Harel and

Sowder 1998). Yet another (Balacheff 2010)

aims at analyzing the learning of proof by con-

sidering how three “dimensions” – the subject,

the milieu, and the problem – can be used to build

a bridge between knowing and proving. Duval’s

(2009) model stresses that the cognitive pro-

cesses needed to understand and devise a proof

depend on students’ learning “how proof really

works” (learning its syntactic and deductive ele-

ments) and “how to be convinced by proof.”

Stylianides (2008) proposes that the processes

of reasoning and proving encompass three “com-

ponents” – mathematical, psychological, and

pedagogical – while Reid and Knipping (2010)

discuss still other variations.

Argumentation and Proof

Many researchers in mathematics education have

chosen to use the term “argumentation,” which

encompasses the various approaches to logical dis-

putation, such as heuristics, plausible, and diagram-

matic reasoning, and other arguments of widely

differing degrees of formality (e.g., inductive,

probabilistic, visual, intuitive, and empirical).

Essentially, argumentation includes any technique

that aims at persuading others that one’s reasoning

is right. As used by its proponents, the concept also

implies exchange and cooperation in forming and

criticizing arguments so as to arrive at the best

conclusion despite imperfect knowledge. Evi-

dently, the broad concept of argumentation encom-

passes mathematical proof as a special case.

In recent years, however, mathematics educa-

tors have been accustomed to use “argumenta-

tion” to mean “not yet proof” and “proof” to

mean “mathematical proof.” Consequently, opin-

ion remains divided on the usefulness of encour-

aging students to engage in “argumentation” as

a step in learning proof. Boero (in La lettre de la

preuve 1999) and others see a great benefit in

having students engage in conjecturing and argu-

mentation as they develop an understanding of

mathematical proof. Others take a quite different

view, claiming that argumentation, because it

aims only to establish plausibility, can never be

more than a distraction from the task of teaching

proof (e.g., Balacheff 1999; Duval – in La lettre

de la preuve 1999). Despite these differences of

opinion, however, the practice of teaching stu-

dents the techniques of argumentation has

recently been gaining ground in the classroom.

Durand-Guerrier et al. (Chapter 15 in Hanna

and de Villiers 2012) reported on over 100 recent

studies on argumentation in mathematics education

that discuss the complex relationships between

argumentation and proof from various mathemati-

cal and educational perspectives. Most of these

studies reported that students can benefit from argu-

mentation’s openness of exploration and flexible

validation rules as a prelude to the stricter uses

of rules and symbols essential in constructing

amathematical proof. They also showed that appro-

priate learning environments can facilitate both

argumentation and proof in mathematics classes.

Furthermore, some studies provided evidence

that students who initially embarked upon heu-

ristic argumentation in the classroom were nev-

ertheless capable of going on to construct a valid

mathematical proof. By way of explanation,

Garuti et al. (1996) introduced the notion of

“cognitive unity,” referring to the potential con-

tinuity between producing a conjecture through
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argumentation and constructing its proof. Several

other researchers have provided support for this

idea and for other benefits or limitations of argu-

mentation, particularly argumentation based on

Toulmin’s (1958) model of argument.

Toulmin’s model, the one nowmost commonly

used in mathematics education, proposes that an

argument is best seen as comprising six elements:

the Claim (C), which is the statement to be proved

as a theorem or the conclusion of the argument; the

Data (D), the premises; the Warrant (W) or justifi-

cation, which is the connection between the Claim

and the Data; the Backing (B), which gives author-

ity to the Warrant; the Qualifier (Q), which indi-

cates the strength of the Warrant by terms such as

“necessarily,” “presumably,” “most,” “usually,”

“always,” and so on; and the Rebuttal (R), which

specifies conditions that preclude the Claim (e.g.,

if the Warrant is not convincing).

Clearly, Toulmin’s model reflects practical and

plausible reasoning. It includes several types of

inferences, admits of both inductive and deductive

reasoning, andmakes explicit both the premises and

the conclusion, as well as the support that led from

premises to conclusion. It is particularly relevant to

mathematical proof in that it can include formal

derivations of theorems by logical inference.

Practical Classroom Approaches

In addition to argumentation, a number of other

approaches have been investigated for their value

in teaching mathematical reasoning. Educators

have debated, for example, whether the study of

symbolic logic, more particularly the proposi-

tional calculus, would help students understand

and produce proofs. Durand-Guerrier et al.

(Chapter 16 in Hanna and de Villiers 2012)

have examined this question and provide some

evidence for the value of integrating techniques

of symbolic logic into the teaching of proof.

Visualization, and diagrammatic reasoning in

particular, is another technique whose value in

teaching mathematics, and especially proof, has

been discussed extensively in the literature and in

conferences, albeit inconclusively. After examining

numerous research findings, Dreyfus et al.

(Chapter 8 in Hanna and de Villiers 2012)

concluded that the issue required further research;

in fact, both philosophers ofmathematics andmath-

ematics educators are still debating the contribution

of visualization to the production of proofs. Current

computing technologies have offered mathemati-

cians an array of powerful tools for experiments,

explorations, and visual displays that can enhance

mathematical reasoning and limit mathematical

error. These techniques have classroom potential

as well. Borwein (Chapter 4 in Hanna and de

Villiers 2012) sees several roles for computer-

assisted exploration, many of them related to

proof: graphing to expose mathematical facts, rigor-

ously testing (and especially falsifying) conjectures,

exploring a possible result to see whether it merits

formal proof, and suggesting approaches to formal

proof. Considerable research has demonstrated that

the judicious use of dynamic geometry software can

foster an understanding of proof at the school level

(de Villiers 2003; Jones et al. 2000).

Physical artifacts (such as abaci, rulers, and

other ancient and modern tools) provide another

technique for facilitating the teaching of proof.

Arzarello et al. (Chapter 5 in Hanna and de

Villiers 2012) demonstrate how using such mate-

rial aids can help students make the transition

from exploring to proving. In particular, they

show that students who use the artifacts improve

their ability to understand mathematical con-

cepts, engage in productive explorations, make

conjectures, and come up with successful proofs.

Trends in Proof

In mathematical practice, as we have seen, ordi-

nary informal proofs are considered appropriate

and suitable for publication. Still, mathemati-

cians would like to have access to a higher level

of certainty than those informal proofs afford. For

this reason, contemporary mathematical practice

is trending toward the production of proofs much

more rigorous and formal than those of a century

ago (Wiedijk 2008). In practice, however, one

cannot write out in full any formal proof that is

not trivial, because it encompasses far too many

logical inferences and calculations.

The last 20 years have seen the advent of

several computer programs known as “automatic

proof checkers” or “proof assistants.” Because

computers are better than humans at checking
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conformance to formal rules and making massive

calculations, these new programs can check the

correctness of a proof to a level no human can

match. According to Wiedijk (2008), such pro-

grams have been successful in confirming the

validity of several well-known theorems, such

as the Fundamental Theorem of Algebra

(2000) and the Prime Number Theorem (2008).

Mathematics educators and students have

already benefitted greatly from educational soft-

ware packages in areas other than proof, such as

Dynamic Geometric Software (DGS) and Com-

puter Algebra Systems (CAS), and researchers

are working on advanced proof software specifi-

cally for mathematics education. For example,

there is now a fully functional version of Theo-

rem-Prover System (TPS) appropriate for the

school and undergraduate levels, named eduTPS

(Maric and Neuper 2011). The role of Artificial

Intelligence in mathematics education, and in

particular that of automated proof assistants,

has already been the subject of several doctoral

dissertations. Unfortunately, mathematics edu-

cators have not yet tested the proof software or

tried it in the classroom, so its usefulness for

teaching mathematics has not yet been firmly

established.

Cross-References
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Definitions

Asmost commonly interpreted in education,math-

ematical representations are visible or tangible

productions – such as diagrams, number lines,

graphs, arrangements of concrete objects ormanip-

ulatives, physical models, mathematical expres-

sions, formulas and equations, or depictions on

the screen of a computer or calculator – that

encode, stand for, or embody mathematical ideas

or relationships. Such a production is sometimes

called an inscription when the intent is to focus

on a particular instance without referring, even

tacitly, to any interpretation. To call something

a representation thus includes reference to some

meaning or signification it is taken to have. Such

representations are called external – i.e., they are

external to the individual who produced them, and

accessible to others for observation, discussion,

interpretation, and/or manipulation.

The term representation is also used very

importantly to refer to a person’s mental or

cognitive constructs, concepts, or configurations.

Then the mathematical representation is called

internal to the individual. Examples include

individuals’ visual and/or spatial representation

of geometrical objects or mathematical patterns,

operations, or situations; their kinesthetic encoding

of operations, shapes, and motions; their internal

conceptual models of mathematical ideas; the lan-

guage that they use internally to describe mathe-

matical situations; their heuristic plans and

strategies for problem solving; and their affective

states in relation to mathematical problems and

situations. The idea of external representation is

expressible in German as Darstellung and that of

internal representation as Vorstellung.

Representation also refers to the act or process

of inventing or producing representations – so that

“mathematical representation” is something that

students and others do. Reference may be to the

physical production of external representations as

well as to the cognitive or mental processes

involved in constructing internal or external repre-

sentations. The term also describes the semiotic

relation between external productions and the inter-

nal mathematical ideas they are said to represent.

Finally, it may refer specifically to the mathemati-

cal encoding of nonmathematical patterns – i.e.,

using the ideas and notations of mathematics

as a language to represent concepts in physics,

chemistry, biology, and economics, to describe

quantitatively the laws that govern phenomena, to

make predictions, and to solve problems.

Characteristics

Representations are considered to be mathemati-

cally conventional, or standard, when they are

based on assumptions and conventions shared by

the wider mathematical community. Examples of

such conventional mathematical representations

include base ten numerals, abaci, number lines,

Cartesian graphs, and algebraic equations written

using standard notation. In contrast, mathematical

representations created on specific occasions by

students are frequently idiosyncratic. Examples

may include pictures, diagrams, illustrative

gestures, physical movements, and original or non-

standard notations invented by the individual.

Even when they are unconventional,

mathematical representations can be shared and

not simply personal. That is, the forms and mean-

ings of representations may be negotiated during

class discussions or group problem solving.
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Concrete structured manipulativematerials such as

geoboards, Cuisenaire rods, base ten blocks,

pegboards, and attribute blocks, as well as

calculators, graphing calculators, and a wide

variety of computer environments, facilitate stu-

dents’ construction, discussion, interpretation, and

sharing of many different kinds of external repre-

sentations, both standard and idiosyncratic.

Likewise internal mathematical representa-

tions, depending on their degree of consistency

with the internal representations of others, can be

characterized as conventional or idiosyncratic,

shared or personal.

In discussion one often refers to

a mathematical representation “in the abstract.”

For instance, to talk about “examining the

graph of the equation y ¼ 3x�2” is to suggest

(among other things) a kind of idealized or

generic external representation in which

a straight line has been drawn intersecting the

horizontal x-axis at the point x ¼ 2/3 and the

vertical y-axis at the point y ¼ �2. This is in

contrast to discussing a particular instance of

the graph as it might occur in a textbook illustra-

tion (with particular scales, ranges of values,

and so forth), in a blackboard drawing (perhaps

imperfect), or on a graphing calculator.

Internal representations are frequently consid-

ered “in the abstract,” as one refers, for example,

to idealized mathematical ideas, concept images,

or visualized symbol configurations.

An essential feature of mathematical represen-

tations is that not only do they have signification

but they belong to or are situated within structured

systems of representation within which other con-

figurations have similar signifying relationships.

This is analogous to the way words and sentences

occur, not as discrete entities in isolation from each

other, but within natural languages endowed with

grammar, syntax, and networks of semantic rela-

tionships. Furthermore, representational systems

(like languages) evolve. And previously developed

systems of mathematical representation serve up

to a point as “scaffolds” or “templates” for the

development of new systems, making reference to

the representing relationship between configura-

tions in the new system and their meanings in the

prior system.

For example, algebra as a representational

system entails the interpretation of letters as

variables that can assume numerical values. But it

also involves algebraic expressions, operational

symbols, and equality and inequality symbols,

configured according to fairly precise syntactic

rules, as well as processes for manipulating and

transforming them. Up to a point, the prior

arithmetic system of representation serves as

a kind of template for the development of algebraic

notation. The system evolved historically, and it

evolves within learners in interaction with external

environments. Asmathematics is learned, the struc-

tured nature of the mathematical representations

creates a certain tension between a student’s inter-

pretation of meanings, acquisition of procedures,

and eventual apprehension of underlying structures

(e.g., Gravemeijer et al. 2010).

Characteristics of conventional structured

mathematical representational systems can often

be described in considerable detail. A particular

written or printed numeral may represent

a natural number, but it does so within our

base ten Hindu-Arabic system of notation,

a representational system of numeration involving

the conventional signs {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},

rules for writing multidigit numerals, and conven-

tions for interpreting “place value.” A particular

Cartesian graph of an equation in two variables

occurs within the wider conventional system of

graphical representation based on two orthogonal

coordinate axes in the plane, a method of locating

points in the plane corresponding to ordered

pairs of coordinates, the use of certain letters to

signify variables that can take on numerical values,

and conventions involving positive and negative

directions.

The precision of such characterizations is,

of course, a prized feature of mathematics.

Furthermore, an important aspect of the power

of abstract mathematics is that mathematical con-

structs map to other constructs (i.e., can be

represented) in ways that respect or preserve the

mathematical structure. When the structure thus

respected is algebraic, such maps are called

homomorphisms or isomorphisms. For example,

in mathematics a group representation is a

precisely defined notion: a homomorphism from
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a given, abstract mathematical group to a group

of linear operators acting on a vector space.

However the mathematical representations

that occur in educational contexts, even when

conventional, are extremely varied. They are

most often incomplete and almost always

highly ambiguous. Indeed, ambiguity and con-

text-dependence are characteristic features of

the interpretation of mathematical representa-

tions and systems of representation. Resolution

of ambiguity in the process of interpreting

a representation often entails making use of

contextual and/or tacit information that is outside

the representational system within which the

ambiguity has occurred.

Mathematical representations and systems of

representation are frequently characterized

according to the nature of the representing

configurations – e.g., internal or external;

enactive, iconic, or symbolic; verbal, visual, spa-

tial, auditory, or kinesthetic; concrete or abstract/

symbolic; and static or dynamic. Mathematical

metaphors are representations that typically

involve words or phrases, visual imagery, and

some enactive or kinesthetic encoding of

mathematical ideas. Different representational

systems may be linked; and (with today’s

computer technology) external, dynamic systems

of representation may be multiply linked for

purposes of mathematics teaching.

Research

Contrasting philosophical views that have greatly

influenced mathematics education sometimes

exclude or limit the study of representations

as such within their respective paradigms.

Behaviorism is based on the idea that mental

states of any kind are inadmissible as explana-

tions of observable learning or problem solving.

This permits external productions or configura-

tions and their manipulation to be discussed, but

not to be regarded as representing internal

mathematical conceptualizations or as being

represented by them. External configurations

might only have some possible observable corre-

spondence with other external ones. Radical con-

structivism is based on the tenet that each of us

has access only to his or her own world of

experience and none to the “real world.” The

exclusive emphasis on “experiential reality”

permits internal configurations only to

“re-present” other internal mathematical experi-

ence in different ways. Still other viewpoints are

based on the idea that the external-internal

distinction itself entails a Cartesian mind-body

dualism that is not tenable.

Nevertheless research on representations and

systems of representation in mathematics educa-

tion has been ongoing for well over half a century

and continues apace. Jerome Bruner, whose

thinking contributed to some of the visionary

ideas proposed by advocates of the “new mathe-

matics” during the 1960s, characterized and

discussed three kinds of representation by

learners – enactive, iconic, and symbolic – seen

as predominant during successive stages of

a child’s learning a concept (Bruner 1966).

Semiotic and cognitive science approaches to

mathematics education incorporated mathemati-

cal representation in its various interpretations

(e.g., Palmer 1978; Skemp 1982; Davis 1984).

During the 1980s and 1990s, continuing

research on representation by many (e.g., Janvier

1987; Goldin and Kaput 1996; Goldin and

Janvier 1998) helped lay the groundwork for the

inclusion by the National Council of Teachers

of Mathematics (NCTM) in the United States of

“Representations” as one of the major strands

in its Principles and Standards for School

Mathematics (NCTM 2000). The NCTM also

devoted its 2001 Yearbook to the subject

(Cuoco and Curcio 2001).

The NCTM’s standards included many of the

different meanings of mathematical representa-

tion described here:

The term representation refers both to process and
to product – in other words, to the act of capturing
a mathematical concept or relationships in
some form and to the form itself. . . . Moreover,
the term applies to processes and products that
are observable externally as well as those that
occur ‘internally,’ in the minds of people doing
mathematics. (NCTM 2000, p. 67)

Continuing research on mathematical repre-

sentation in education has included work on

cognition and affect, on the affordances for
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mathematics learning offered by technology-

based dynamic representation and linked repre-

sentations, on sociocultural contexts and their

influences, and on the role of representations in

particular conceptual domains of mathematics

(e.g., Goldin 1998, 2008; Hitt 2002; Kaput et al.

2002; Lesh and Doerr 2003; Duval 2006;

Moreno-Armella et al. 2008; Anderson et al.

2009; Roth 2009; Gravemeijer et al. 2010).

Teachers and researchers try to infer features of

students’ internal representations from the external

representations they produce or with which they

are presented. The representing relationship is

usually understood in research to be in principle

two-way, “bridging” the external and the internal.

In addition, distinct external representations can

represent each other (e.g., equations, graphs, and

tables of values) in a student’s thinking, and distinct

internal representations can do likewise (e.g., as the

student visualizes or imagines a function of a real

variable as a formula, a graph, a machine generat-

ing outputs from inputs, or a set of ordered

pairs satisfying some conditions). However in any

particular situation, one cannot simply assume

a close or one-to-one correspondence between

external and internal representations or between

distinct external or internal ones. Different

researchers have offered different perspectives on

what it is that representations actually represent and

the nature of the representing relationship.

Much research on mathematical representa-

tion in education is devoted to the study of

particular conceptual domains, such as number,

fractions or rational numbers, integers (positive

and negative), algebra, geometry and spatial

concepts, and functions and graphs. The goal is

frequently to study, in a specific domain, how

students generate representations, interact and

move within various representations, translate

between representations, or interpret one repre-

sentation using another. Researchers seek to

characterize students’ understandings in terms

of multiple representations, to infer students’

thinking from the representations they produce

and manipulate, to identify the affordances and

obstacles associated with particular kinds of

representation, and to develop new representa-

tional teaching methods using new media.

When representations are embodied in differ-

ent media, different features of a conceptual

domain of mathematics may become the most

salient. Thus the mathematical meanings may

be regarded as distributed across various

representational media in which they are

encoded. With the advent of increasingly diverse

and sophisticated technological environments,

dynamic and linkedmathematical representations

are becoming increasingly important. These are

built to respond to learners’ actions, touches, or

gestures according to preestablished structures

and may eventually lead not only to novel

teaching methods but to quite new interpretations

of what it means to understand mathematics.

When a mathematical representation is first

introduced, it is typically assigned a particular

meaning or signification. For instance, a specific

number-word may correspond to the result of

counting fingers or objects; a positive whole

number exponent may be defined as a way to

abbreviate repeated multiplication; or the letter

x may stand for an unknown number in

a problem. Sometimes the initial signification is

taken to be so fundamental that it poses

a cognitive or epistemological obstacle to rein-

terpretation or later generalization. Certain

misconceptions or alternative conceptions can

be understood in this way. But particular repre-

sentations do not exist in isolation from each

other; and as relationships develop their

meanings evolve, transfer to new contexts, and

eventually may change profoundly. Such pro-

cesses occur across the history of mathematics,

within particular cultures, and within individual

learners (e.g., Moreno-Armella et al. 2008;

Anderson et al. 2009; Moreno-Armella and

Sriraman 2010).
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Definition

Classroom assessment refers to the activities

undertaken by teachers in eliciting and

interpreting evidence of student learning and

using this evidence to inform subsequent action.
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Classroom assessment can be distinguished

from external assessment, which often involves

standardized tests carried out on a large scale.

The most important difference between class-

room assessment and external assessment arises

from their different purposes. Wiliam (2007)

summarizes the main purposes of assessment as:

1. Certifying the achievement or level of perfor-

mance of individual students (summative)

2. Supporting students’ learning and informing

teachers’ instructional decisions (formative)

3. Evaluating the quality of educational

programs or institutions (evaluative)

Although teachers may design classroom

assessments for both summative and formative

purposes, it is more common to use this term to

refer to assessment that is intended to support

learning and teaching, in other words, formative

assessment (Van den Heuvel-Panhuizen and

Becker 2003; Wilson and Kenney 2003). On the

other hand, external assessment is most often

used for summative or evaluative purposes.

Background

Throughout the twentieth century, educational

assessment was increasingly associated with exter-

nally administered tests that measure the perfor-

mance of students, as well as teachers, schools, and

whole school systems. This measurement para-

digm continues to influence classroom assessment

practices, despite the emergence of new theories

of learning and curriculum that require new

approaches to assessment. Shepard (2000) argues

that classroom assessment should be epistemolog-

ically consistent with instruction, and indeed this

was the case for much of the twentieth century

when social efficiency models of curriculum and

associationist and behaviorist theories of learning

informed educational thinking and practice. These

psychological theories assumed that learning is

most efficient when knowledge and skills are bro-

ken into small steps and accumulated sequentially.

Closely aligned with such theories is the idea of

scientific measurement of skill mastery, which led

to development of the “objective” test as the dom-

inant method of assessing student achievement.

Time-restricted objective tests that require only

recall of previously learned facts and rehearsed

procedures are still a common form of mathemat-

ics classroom assessment inmany countries. How-

ever, this traditional approach to assessment is out

of alignment with the broadly social-constructivist

conceptual frameworks that shape current under-

standings of learning and curriculum. Learning

mathematics is now viewed as a process of

constructing knowledge within a social and cul-

tural context, and deep understanding, problem

solving, and mathematical reasoning have become

valued curricular goals. As the goals of mathemat-

ics education change, along with understanding of

how students learn mathematics, new approaches

to classroom assessment are called for that

make students’ thinking visible while enhancing

teachers’ assessment abilities (Van den Heuvel-

Panhuizen and Becker 2003).

A Social-Constructivist Approach to
Classroom Assessment

Work on developing a social-constructivist

approach to mathematics classroom assessment

is less advanced than research on mathematics

learning, but key principles informing a new

approach to assessment are well established

and have been promulgated via research reports

(Shepard 2000; Wiliam 2007; Wilson and

Kenney 2003), curriculum documents (National

Council of Teachers of Mathematics 1995,

2000), and professional development resources

(Clarke 1997). Three overarching principles

that correspond to each of the elements of the

definition of assessment provided above are

shown in Table 1, with particular reference to

classroom assessment in mathematics.

Eliciting Evidence of Student Learning

The principle of modeling good mathematical

practice in classroom assessment is consistent

with curriculum goals that value sophisticated

mathematical thinking (abstraction, contextuali-

zation, making connections between concepts

and representations) and appropriate use of

mathematical language and tools.
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Classroom assessment can provide insights into

students’ mathematical thinking through tasks that

havemore than one correct answer ormore than one

solution pathway, require application of knowledge

in familiar and unfamiliar contexts, and invite mul-

tiple modes of communication and representation

for demonstrating understanding. Time-restricted

tests are usually unsuitable for revealing students’

thinking in these ways.While investigative projects

and mathematical modeling tasks provide rich

opportunities for students to demonstrate under-

standing of significant mathematics, so too do

more modest tasks such as “good” questions

(Sullivan and Clarke 1991). Good questions are

open-ended, elicit a range of responses, and can

reveal what a student knows before and after study-

ing a topic. These questions can easily be adapted

from more conventional tasks that have only one

correct answer, as demonstrated in Table 2.

Assessment is something that teachers are

doing all the time, not only through tasks

designed for assessment purposes but also in

classroom discussion. In mathematics education,

social-constructivist research carried out by

Cobb, Forman, Lampert, O’Connor, and Wood

has investigated the teacher’s role in initiating

students into mathematical discourse and

practices (Lampert and Cobb 2003; Forman

2003). From an assessment perspective, a

teacher purposefully orchestrating classroom

discussion is collecting evidence of students’

understanding that can inform subsequent

instruction.

Interpreting Evidence of Student Learning

Teachers do not have direct access to students’

thinking, and so assessment relies on interpreta-

tion of observable performance to enable judg-

ments to be made about the quality of students’

learning. Shepard (2000) notes that teachers are

often reluctant to trust qualitative judgments

because they believe that assessment needs to

be “objective”, requiring formula-based methods

that rely on numerical marks or scores. This is

a reductionist approach more consistent with the

scientific measurement paradigm of assessment

than the social-constructivist paradigm, where

the goal of assessment is to provide a valid

portrayal of students’ learning (Clarke 1997).

The validity of teachers’ assessment judgments

can be strengthened by ensuring that assessment

practices are aligned with curriculum goals and

Mathematics Classroom Assessment, Table 1 Classroom assessment principles

Definition of classroom assessment Assessment principle Assessment examples

Classroom assessment involves teachers in . . .

eliciting evidence of student learning
Assessment should model good
mathematical practice

Tasks

Classroom discussion
and questioning

Classroom assessment involves teachers in . . .

interpreting evidence of student learning
Assessment should promote valid
judgments of the quality of student learning

Alignment

Multiple forms of
evidence

Explicit criteria and
standards

Classroom assessment involves teachers in . . .

acting on evidence of student learning
Assessment should enhance mathematics
learning

Feedback

Self-assessment

Mathematics Classroom Assessment,

Table 2 Converting conventional questions to “good”
questions

Conventional question
Open-ended “good”
question

Find the mean of these three
numbers: 12, 16, 26

The mean age of three
people is 18. What might
their ages be?

Find the area of a rectangle
with length 3 units and
width 4 units

Draw a triangle with an area
of 6 square units

Find the equation of the line
passing through the points
(2, 1) and (�1, 3)

Write the equations of at
least five lines passing
through the point (2, 1)
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instruction. Thismeans that the form and content of

mathematics classroom assessments should reflect

the ideas about good mathematical practice

envisioned in curriculum documents and (ideally)

enacted in classrooms. Assessment promotes valid

judgments when it draws on multiple forms of

evidence, as no single assessment tool can reveal

the full range of student learning.

Validity is also enhanced when teachers explic-

itly communicate to students the criteria and stan-

dards that will be used to judge the quality of their

performance (Wiliam 2007). Sadler’s (1989) work

on ways of specifying achievement standards has

been influential in stimulating the development of

assessment rubrics that use verbal descriptors to

communicate the characteristics of task perfor-

mance that will be assessed (criteria) and the

benchmarks for describing the quality of perfor-

mance (standards). A well-constructed rubric can

make explicit the mathematical practices that

teachers value, but students will not necessarily

understand the verbal descriptors in the same way

as the teacher. There is an opportunity here for

teachers to engage students in discussion about

the meaning of the criteria and what counts as

good quality performance. Some researchers

suggest that teachers can involve students in the

development of rubrics in the process of looking at

samples of their own or other students’ work

(Clarke 1997; Wiliam 2007). In this way, students

can become familiar with notions of quality and

develop the metacognitive ability to judge the

quality of their own mathematical performances.

Acting on Evidence of Student Learning

One of the most important ways in which assess-

ment can enhance mathematics learning is through

the provision of feedback that can be used by

students to close the gap between actual and

desired performance. The notion of feedback had

its origins in engineering and cybernetics, but finds

extensive application in education. Ramaprasad’s

(1983) definition of feedback makes it clear that

feedback is only formative if the information pro-

vided to the student is used in someway to improve

performance. Reviews of research on feedback

have identified characteristics of effective forma-

tive feedback in relation to quantity, timeliness, and

strategies for engaging students in task-related

activities that focus on improvement (Bangert-

Drowns et al. 1991). However, Shepard (2000),

arguing from a social-constructivist perspective,

points out that these studies are mostly of little

value because they are informed by behaviorist

assumptions about learning and assessment. Draw-

ing on Vygotsky’s idea of the zone of proximal

development, she calls for more research on

dynamic assessment where the teacher uses

scaffolded feedback to guide students through the

solution process for a problem.

Involving students in self-assessment can

enhance metacognitive self-regulation and help

students become familiar with the criteria and stan-

dards that will be used to judge their performance.

Controlled experiments have shown that structured

self-assessment improves students’ mathematics

performance, but classroom self-assessment can

also be used informally to gain insights into

how students experience mathematics lessons.

The IMPACT (Interactive Monitoring Program

for Accessing Children’s Thinking) procedure

described by Clarke (1997) is one such approach.

It invites students to write about important things

they have learned in mathematics in the past

month, problems they have found difficult, what

they would like more help with, and how they feel

in mathematics classes at the moment. This is

a self-assessment tool that makes assessment

a more open process and recognizes the important

role of student affect in mathematics learning.

Issues in Classroom Assessment

A social-constructivist approach to classroom

assessment places significant demands on

mathematics teachers’ knowledge and expertise.

This includes knowing:

• How to design tasks and orchestrate classroom

discussions that elicit students’ mathematical

thinking

• How to formulate assessment criteria and stan-

dards that reflect valued mathematical activity

• How to make balanced judgments about the

quality of student performance across a range

of different tasks
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• How to provide contingent, “real-time”

feedback that moves students forward in their

learning

• How to encourage students to share ownership

of the assessment process

Teachers’ beliefs about what counts as “fair”

or “objective” assessment also need to be taken

into consideration, since the scientific measure-

ment paradigm still exerts a strong influence

on teachers’ assessment practices. Although

there are many research studies investigating

social-constructivist mathematics teaching, the

possibilities for introducing new approaches

to mathematics classroom assessment require

further research focusing in particular on

supporting teacher development and change.
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Definition

Mathematics curriculum evaluation is the process

of collecting and analyzing data with the purpose

of making decisions about whether to keep,

Mathematics Curriculum Evaluation 417 M

M

http://dx.doi.org/10.1007/978-94-007-4978-8_27
http://dx.doi.org/10.1007/978-94-007-4978-8_27
http://dx.doi.org/10.1007/978-94-007-4978-8_61
http://dx.doi.org/10.1007/978-94-007-4978-8_61
http://dx.doi.org/10.1007/978-94-007-4978-8_101
http://dx.doi.org/10.1007/978-94-007-4978-8_101
http://dx.doi.org/10.1007/978-94-007-4978-8_166
http://dx.doi.org/10.1007/978-94-007-4978-8_132
http://dx.doi.org/10.1007/978-94-007-4978-8_136
http://dx.doi.org/10.1007/978-94-007-4978-8_156
http://dx.doi.org/10.1007/978-94-007-4978-8_156


modify, or completely change a mathematics cur-

riculum or some of its components.

Notions and Meanings

Though the definition above provides a sense of

what mathematics curriculum evaluation means,

the fact is that because of evasive meanings of

the terms involved, it is difficult to adopt one

agreed-upon definition. Defining mathematics

curriculum evaluation draws on the more general

concepts of curriculum and curriculum evalua-

tion, taking into consideration the specific

characteristics of mathematics as a discipline.

Curriculum

Historically, the term curriculum has been used

in different meanings, including one or more of

the following: goals and objectives determining

the expectations of learning that are set by

policy makers, textbooks used to guide teaching,

instructional methods, plan of experiences, and/

or actual experiences that learners go through in

order to reach the specified learning goals. Larger

meanings of curriculum include, in addition, the

pedagogical framework or philosophy underlying

the teaching practices and materials, training

programs for supporting teachers, and/or guide-

lines for assessing students’ learning. There is,

however, a wide agreement that a curriculum may

not be limited to a syllabus or list of topics set for

teaching and learning.

The different processes involved at any point

in the design, development, and implementation

of a curriculum affect the ways the intentions of

the curriculum are conceptualized, actualized,

and implemented (Stein et al. 2007). As a result,

educators distinguish different manifestations

of a curriculum. Bauersfeld (1979) introduced

the distinction between three entities, the

matter meant, the matter taught, and the matter

learnt, the first referring to the expectations set

for learning mathematics, usually reflected in

official documents such as a curriculum plan,

standards, and/or textbooks; the second referring

to the curriculum as taught and actualized by

teachers through their classroom practices; and

the third referring to what is actually learned by

students. This distinction has later been used

under different names and sometimes with

added curriculum manifestations. The Interna-

tional Association for the Evaluation of Educa-

tional Achievement (IEA) used the names

intended, implemented, and attained curricula,

which have subsequently been widely used in

mathematics education (e.g., Akker 2003; Cai

2010). The assessed curriculum came to be

added to the threesome, to refer to the contents

and mathematical processes that are addressed in

assessments such as achievement tests.

Akker (2003) identifies two more specific

aspects for the intended curriculum, which are

the ideal curriculum (philosophical foundations)

and the formal/written curriculum (intentions as

specified in curriculum documents); two for the

implemented curriculum, the perceived curricu-

lum (interpretations by users, e.g., teachers) and

the operational curriculum (as enacted in the

classroom); and two for the attained curriculum,

the experiential curriculum (learning experiences

as pupils perceive them) and the learned curric-

ulum (achieved learner outcomes).

Curriculum Evaluation

This complexity and the manifold nature of the

notion of curriculum make it even more difficult to

capture the notion of curriculum evaluation. It is

frequently found in implicit or informal forms,

inherent to making decisions about daily teaching

practices, interpretations of students’ results on tests,

and actions of developing or supplementing

teaching materials. Such actions may be taken by

individuals (e.g., teacher, school principal) or groups

(e.g., teachers in a math department, parents,

employers). More explicit and formal aspects of

evaluation are adopted when decisions need to be

made aboutmore general curriculum components at

the institutional or national level (e.g., school board,

educational committees, Ministry of Education).

With such actions, “there is a need to convince the

community, educators, teachers, parents, etc.”

(Howson et al. 1981), hence the need for explicit

and evidence-based curriculum evaluation.

Curriculum evaluation always has, to various

extents, dimensions of institutional, social, cultural,
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and political nature. Designing, developing,

implementing, and evaluating a curriculum involve

different actors and are affected by social, econom-

ical, and political forces as well as by different

cultural groups in the community. This is, for

instance, made clear in Artigue and Bednarz

(2012) where the authors compare the results of

several case studies of math curriculum design,

development, and follow-up in some French-

speaking countries or regions, namely, Belgium,

Burkina Faso, France, Québec, Romand Switzer-

land, and Tunisia, using as a filter the notion of

social contract due to Rousseau. The social

contract considered here is determining, explicitly

but also partly implicitly, the relationships between

school and nation (or region), by fixing the author-

ities and obligations of the different institutions

involved in the educational endeavor, the rights

and duties of the different actors, as well as the

respective expectations.

Though the terms evaluation and assessment

are sometimes used interchangeably, their

meanings came gradually to be more precisely

defined and distinguished. Niss (1993) refers to

the Discussion Document of the 1990 ICMI

study on Assessment in mathematics education

and its effects to highlight this distinction:

“Assessment in mathematics education is

taken to concern the judging of the mathemat-

ical capacity, performance and achievement –

all three notions to be taken in their broadest

sense – of students whether as individuals or

in groups (. . .). Evaluation in mathematics

education is taken to be the judging of educa-

tional or instructional systems, in its entirety or

in parts, as far as mathematics teaching is

concerned.” (p. 3).

Evaluation is often perceived as an integral

phase of the curriculum development process

seen as a cycle. Sowell (2005) identifies four

phases: (1) planning, that is, determining

curriculum aims and objectives, naming the key

issues and trends as global content areas, and

considering the needs; (2) developing curriculum

content or subject matter according to specific

criteria or standards; (3) implementing, through

teaching strategies that convert the written

curriculum into instruction; and (4) evaluating,

based on criteria that help in identifying the

curriculum’s strengths and weaknesses.

When a curriculum evaluation action is to be

taken, the complexity of the curriculum, its numer-

ous components and actors involved, leads to rais-

ing many questions as to the aspects to be

evaluated, for example, the quality of textbooks,

students’ learning, teaching practices, and consis-

tency between specific components. For evaluating

these different aspects, different techniques, tools,

and instruments are needed. Other questions would

be about the criteria on which to base the evalua-

tion. Talmage (1985) identified five types of “value

questions” to be considered for the evaluation of

a curriculum: (a) the question of intrinsic value,

related to the appropriateness and worth of the

curriculum; (b) the question of instrumental

value, related to whether the curriculum is achiev-

ing what it is supposed to achieve, and concerned

with the consistency of the program components

with its goals and objectives and with its philo-

sophical or psychological orientation; (c) the ques-

tion of comparative value, asked when comparing

a new program to the old one or comparing differ-

ent curricula; (d) the question of idealization

value posed throughout the delivery of the new

program and concerned with finding ways to

make the program the best possible; and (e) the

question of decision value asking about whether to

retain, modify, or eliminate the curriculum.

Particularly, the concept of curriculum

alignment is used in many sources and evaluation

studies (e.g., Romberg et al. 1991; Schmidt

et al. 2005; Osta 2007). According to Schmidt

et al. (2005), alignment is the degree to which

various “policy instruments,” such as standards,

textbooks, and assessments, accord with

each other and with school practice. Curriculum

alignment may also be defined as the consistency

between the various manifestations of a curricu-

lum: the intended, the implemented (also called

enacted), the assessed, and the attained curricu-

lum. Porter (2004) defines curriculum assessment

as “measuring the academic content of the

intended, enacted, and assessed curricula as well

as the content similarities and differences among

them. (. . .) To the extent content is the same, they

are said to be aligned” (p. 12).
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Alignment is also referred to as curriculum

coherence. The term coherence received more

attention with the studies motivated by TIMSS

results, especially in the USA. Schmidt and

Prawat (2006) claim that the term curriculum

coherence was defined as alignment in most of

the studies that were conducted before the release

of TIMSS results in 1997. In their study

on “curriculum coherence and national control

of education,” several types of alignment

were measured: “Alignment between content

standards and textbooks, alignment between

textbooks and teacher coverage, and alignment

between content standards and teacher coverage”

(p. 4). Globally, a curriculum is said to be

coherent if its components are aligned with

one another.

Evaluation may be formative or summative.

Formative evaluation takes place during the

process of development of the curriculum.

It includes pilot studies of teaching units,

interviews with teachers, and/or tests to assess

students’ learning from those units. Its aim is to

adjust the process of development based on the

results. Procedures used for formative evaluation

are usually informal, unsystematic, and some-

times implicit. Summative evaluation is

conducted to determine the worth or quality of

a curriculum that is completely developed and

implemented. Its main purpose is to make

decisions about the continuation, alteration, or

replacement of the curriculum or some of

its components.

Models of Mathematics Curriculum
Evaluation

Many types of activities conducted throughout

the years, in formal and/or informal ways, in

different regions of the world, have aimed at

the evaluation of mathematics curricula. Such

activities contributed to shaping the meaning of

math curriculum evaluation as used today and to

the development and refinement of techniques

and instruments used. As this process evolved in

different places of the world and in different

societies and communities, different models

emerged that may be distinguished by their

level of formality, the level of rigidity of the

tools or instruments they use, and the scope of

factors and actors they involve in the analysis.

The following examples may provide a sense of

these differences:

Since the first large-scale projects of curricular

reform and evaluation in the USA and other

Anglo-Saxon societies, the experiences in math-

ematics curriculum evaluation tended toward

more and more systematization and control by

sets of criteria and detailed guidelines. Guides

for curriculum evaluation are abundant. In their

guide for reviewing school mathematics pro-

grams, for example, Blume and Nicely (1991)

provided a list of criteria that characterize “an

exemplary mathematics program” (p. 7), which

should systematically develop mathematical

concepts and skills; be sequential, articulated,

and integrated; help students develop problem-

solving skills and higher-order thinking; encour-

age students to develop their full potential in

mathematics; promote a belief in the utility and

value of mathematics; relate mathematics to stu-

dents’ world; use technology to enhance instruc-

tion; and be taught by knowledgeable, proficient,

and active professionals. The guide then provides

rubrics that help in determining the extent to

which each one of those criteria is met by the

mathematics curriculum under evaluation. Simi-

larly, Bright et al. (1993) insist, in their “guide to

evaluation,” on the importance of examining the

quality of curricula in a systematic and an ongo-

ing way, based on selected criteria. For specific

aspects of mathematics – problem solving, tran-

sition from arithmetic to algebra, materials for

teaching statistics, and manipulative resources

for mathematics instruction – the guide provides

ways to focus the evaluation, pose evaluation

questions, collect and analyze data, and report

results.

Other models of math curriculum evaluation

use more flexible approaches that take into

consideration the rapport that the different actors

(teachers, principals, educational authorities,

etc.) have with the curriculum. For instance, the

curricular reform in Québec, started in 1995 and

presented by Bednarz et al. (2012), is qualified by
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these authors as a hybridmodel, characterized by

its long-term span, the involvement of actors with

different perspectives, creating multiple interac-

tions among them, and the involvement of

teachers and school personnel. The evaluation

model presented is formative and rather informal,

regulated by the roles assigned to the actors, and

perceiving the curriculum as being in continuous

development, according to the experiences lived

by different groups of practice. Concurrently,

programs for raising teachers’ awareness of the

major directions and principles are created,

aiming at teachers’ appropriation of, and adher-

ence to, a curriculum that is “alive” and open to

debate.

The examples above show the richness and

complexity of tasks of curriculum evaluation.

They also show that these tasks cannot be sepa-

rated from the culture and the characteristics of

societies in which they emerge and develop.

Mathematics Curriculum Evaluation and
Large-Scale Reforms

The notion of mathematics curriculum evaluation

has been, since its first-known instances in the

history of mathematics education, associated with

major reforms in mathematics contents, teaching

materials, and methods. When stakeholders, deci-

sion makers, governmental or nongovernmental

agencies, educators, or mathematicians start

questioning mathematics teaching practices and

materials currently in effect, actions are usually

undertaken for evaluating their worth and develop-

ing alternative programs, which in turn call

for evaluation.

Following are briefly some of the major

landmark reforms and evaluation initiatives that

had a considerable international impact.

The 1960s witnessed the wave of New

Mathematics curricula, based on the Bourbakist

view of mathematics. New Math programs were

worldwide taught in schools in most countries.

They resulted in a proliferation of textbooks to

support instruction. They were also paralleled

with large projects for piloting those textbooks

as they were developed, especially in the USA

(e.g., SMSG, School Mathematics Study Group)

and in the UK (e.g., SMP, School Mathematics

Project). Those projects resulted in a consider-

able body of research, widely disseminating

a culture of evidence-based evaluation of mathe-

matics curriculum materials. But serious prob-

lems of credibility and validity were raised,

since many of the evaluative studies were

conducted by the same groups which participated

in the development of the curriculum materials.

SMSG, for example, undertook a large enterprise

of curriculum development and conducted

a large-scale evaluation in the context of the

National Longitudinal Study of Mathematical

Abilities (NLSMA). The NLSMA study adopted

a model that was based on two dimensions of

analysis. The first is by categories of mathemat-

ical content (number systems, geometry,

and algebra), and the second is by levels of

behavior (namely, computation, comprehension,

application, and analysis). Such two-entry model

will later, with different extents of modification,

guide many of the mathematics curriculum

evaluation studies around the world.

According to Begle and Wilson (1970), the

major research design adopted for the pilot

studies was the experimental design, by which

student achievement in experimental classes,

where the tested materials were used, was

compared to achievement in control classes that

used “traditional” materials. Two types of tests

were used and administered to both groups, stan-

dardized tests and tests to evaluate mathematical

knowledge according to the new math content.

Major concerns about the validity of those

comparisons were raised, especially because

they use, with both groups, tests developed to

assess the learning of the new content, which

privileged the experimental group. The use of

standardized tests was also contested, as these

only provide scores which don’t uncover the

real learning problems, and which focus on

recalling information and computation skills

rather than mathematical thinking.

During and after their implementation,

New Math curricula motivated debates and

evaluation actions, formal as well as informal,

in various parts of the world, because of their
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elitism and extreme mathematical formalism and

because of the difficulties faced by teachers who

were not prepared to cope with them. Most of

those evaluation actions were motivated by

the two opposing positions that arose in the

mathematics education community. While one

position advocated the New Math curricula as

improving student learning, the other maintained

that they were causing a drastic loss of students’

basic mathematical skills.

Other landmarks that motivated many studies

for evaluating mathematics curricula worldwide

were the NCTM’s Standards (NCTM 1989,

1995). These documents were influential, not

only in the USA but in the conception of mathe-

matics curricula in many other countries. Many

research studies were conducted that tried to

evaluate the alignment of mathematics curriculum

materials and textbooks with the Standards.

The beginnings of the twenty-first century

witnessed a new wave of calls for reform,

characterized by increase of state control, core

requirements, and systematic evidence-based eval-

uation of mathematics curricula, because of the

international assessments and studies. An extensive

body of worldwide research for evaluating mathe-

matics curricula was motivated by the Third Inter-

national Mathematics and Science Study (TIMSS),

later known asTrends in InternationalMathematics

and Science Study, conducted since 1995 on

a regular 4-year cycle, and the Program for Inter-

national Student Assessment (PISA), conducted

since 2000 on a regular 3-year cycle. Many of

those studies used the rich cross-national data to

compare and evaluate participating countries’ cur-

ricula. Schmidt et al. (2005) advocated that “the

presence of content standards is not sufficient to

guarantee curricula that lead to high-quality

instruction and achievement” (p. 525). The lack

of coherence between the intended and the enacted

curricula was found to be one of the main reasons

for relatively low scores in international compara-

tive tests. Houang and Schmidt (2008) present the

1995 TIMSS ICA (International Curriculum

Analysis) cross-national study which “captures”

the curriculum from the participating countries,

using the tripartite model of curriculum: the

intended, implemented, and attained curricula.

The study established methodological procedures

and instruments to encode curriculum documents

and textbooks (Houang and Schmidt 2008).

As a reaction to the results of international

assessments in mathematics and science (TIMSS

and PISA), we see many countries tending to more

standardization and centralization in their math

curricular procedures and practices. Central gov-

ernments are taking more and more control in

countries where more freedom and authority used

to be left to states, districts, cantons, or even smaller

communities. The concern of accountability of

educational systems and the pressure of interna-

tional assessments are prevalent. A compulsory

common core is imposing itself as a solution in

countries where no central curriculumwas adopted

before. For example, many USA states have

already started implementing the Common Core

State Standards (CCSS 2010).

The international assessments, especially

PISA, motivated, on the other hand, an increasing

trend in many countries toward designing

mathematics curricula, according to a set of

mathematical competencies, to be used for

student learning assessment. This influence is

made clear in the study by Artigue and Bednarz

(2012) already mentioned. In Denmark as well,

the eight mathematical competencies set by the

KOM project (Niss 2003) aiming at an “in-depth

reform of mathematics education” are very

close, almost identical for some, to the PISA

framework’s cognitive competencies.

The increase of governmental control and

the rise of calls for evidence-based judgments

of educational systems’ performance, added

to the increasing pressure of the international

assessments, are expected to motivate new waves

of curriculum monitoring and evaluative proce-

dures. Crucial questions and new problems will

be awaiting investigation. Particularly the rise

of the “evaluation by competencies” trend for

assessing students’ learning will lead to

changes in the ways the evaluation of mathe-

matics curricula is approached. These changes

will raise new types of research questions

and create a need for rethinking the different

techniques, categories, and criteria used for

mathematics curriculum evaluation.
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l’espace francophone. In: Dorier JL, Coutat S (eds)
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Rationale

Analogous to mathematics power as goal for

student learning, mathematics teachers learn to

increase their pedagogical power of identifying

challenges in a specific classroom environment

and properly applying strategies to solve those

challenges. Nurturing the power requires a

complex and lifelong learning process through

which teachers gradually go beyond themselves

as they dig into the essences of mathematics

learning and have ability to structure lessons for

students to experience the learning accordingly.

Research on teacher learning can be generally

categorized into two trends. One is tied to person,

inheriting the research in psychology. Fuller

(1969) conceptualized teacher concern into three

major phases: nonconcern, concern with self, and

concern with pupils. Clarke and Hollingsworth

(2002) elaborated teacher growth as a nonlinear

and interconnected learning process involving

personal attributes, teaching experimentation,

perception of professional communities, and the

observation of salient outcomes.

Another trend originates from Vygotsky’s

work, focusing on interpersonal relationships and

identities in teaching and learning interactions as

well as the modes of thinking linked to forms of

social practices. Learning inherently is viewed as

increasing participation in socially organized prac-

tices (Lave and Wenger 1991). The conception,

Zone of Proximal Development (ZPD), is also

adopted to describe teacher learning in relation

to the social setting and the goals and actions of

tiers of participants (e.g., Goos and Geiger 2010).

Additionally, Putnam and Borko (2000) combined

both psychology and sociocultural perspectives,

stating that teacher learning involves a process of

enculturation and construction, which can be

investigated by lines of research with roots in

various disciplines (e.g., anthropology).

Reflection and enaction have been treated as

crucial and inseparable mechanisms for teacher

growth. Reflective thinking instead of routine

thinking can effectively help teachers to overcome

challenges (Dewey 1933). The distinction between

reflection-in-action and reflection-on-action further

presents how both mechanisms interact and lead to

the learning (Schön 1983). Specifically, the power

of institutional learning where school teachers

work together as a term for their growth should be

highlighted because school-based environments

entail the norms and rationality for teachers

to frequently implement new ideas into teaching

practices and have ample opportunities to learn

from each other in their daily-life teaching.

Sources and Strategies

A variety of sources and strategies have been pro-

posed to facilitate teacher learning. Narrative cases

offer teachers opportunities to situate their teaching

for detecting and challenging the pedagogical prob-

lems. Analyzingmathematics tasks allows teachers

to evaluate cognitive complexity of the tasks, con-

verse the tasks into lesson structures, and properly

enact them with students in class. Research find-

ings can be materials as well to facilitate teachers’

understanding of students’ cognitive behaviors and

improve the teaching quality. Strategies such as

peer coaching or lesson study also make possible

the learning of teachers by observing and analyzing

peers’ teaching experiences.

Of importance are the design-based profes-

sional development programs in which teachers

can learn from educators, peer teachers, and stu-

dents. Design-based approach has the capacity of

encompassing all strengths for the facilitation of

teacher learning listed above. By participating in

designing tasks, teachers actively challenge the
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pedagogical problems that they concern. Design-

ing tasks and enacting them with students also

develops teachers’ competence in coordinating

experiences from different learning environments

into the refinement of the tasks and the teaching.

Particularly, as any of the existing instructional

materials (e.g., test items) can be the sources to

initiate new designs for promoting students’

active thinking, this strategy is powerful to engen-

der the ongoing learning journeys of teachers.

Teacher Learning Theory

Theories of student learning have been used to

construct models and frameworks to facilitate

teacher learning. Nevertheless, fundamental the-

ories for teacher learning have not been well

established yet. In light with the perspective

viewing mathematics as the core for the learning

of educators, teachers, and students (Mason

2008), it is particularly important to develop

teachers’ mathematical pedagogical thinking,

the notion created by making analogy to

mathematical thinking, and use the pedagogi-

cal thinking as principles to solve teachers’

teaching problems (e.g., the use of specializing

and generalizing thinking for probing students’

error patterns across different mathematics

topics).
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Characteristics

Tatto et al. (2010) stated: “We know little about

the organization of the opportunities to learn

mathematics and mathematics pedagogy offered
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to prospective and practicing teachers across the

world and their relative effectiveness.” (p. 313).

The quote comes from a paper based on reports

from 20 participating countries collected as part of

the 2005Conference of the International Commis-

sion on Mathematics Instruction (ICMI-15)

(see Tatto et al. 2009). Since then the Teacher

Education and Development Study in Mathemat-

ics or TEDS-M* (see Tatto et al. 2012) was

implemented in 2008 to begin to answer such

questions.

In the 7 years between the ICMI-15 and the

TEDS-M studies, the education of teachers has

become an important policy issue. While we

knowmore about the structure and characteristics

of teacher education, the image that emerges is

one of increased complexity. On the one hand,

there are efforts by supranational institutions

(e.g., European Union) to unify the system

of teacher education, while on the other hand,

countries and regions under the influence of glob-

alization forces struggle to implement fast-paced

reforms that may threaten or end up reaffirming

more traditional teacher preparation systems. The

fast development of information technologies,

growth of multiculturalism, economic develop-

ment, and globalization – all these place a great

deal of pressure on education systems and also

on teacher education. Educators, politicians,

sociologists, as well as the general public all

over the world ask the same questions: what

skills, knowledge but also attitudes, and values

should be passed on to the new generation? How

can children, young people, and their teachers be

prepared for what they can expect in their future

everyday life and career? More specifically

regarding teachers, what are the characteristics

of teacher education programs that can prepare

their graduates effectively for what is now

needed? How can the outcomes of teacher edu-

cation programs for teachers of mathematics be

measured in ways that are reliable and valid?

What kinds of policies are effective in recruiting

qualified teachers of mathematics from diverse

backgrounds?

In contrast to the above-quoted studies, this

text is an encyclopedia entry which only outlines

the main ideas but can never be exhaustive.

The reader is advised to consult the sources we

cite here and other relevant sources to obtain

more exhaustive information on a whole range

of questions concerning mathematics teacher

education.

Institutions

The range of institutions preparing future

teachers is large and includes secondary as well

as tertiary schools (universities, national teacher

colleges, both public and private). In some coun-

tries it is also possible to read a course in math-

ematics and, only after having graduated and

having made the decision to teach, to take a

course in pedagogy and pedagogical content

designed for in-service teachers who lack

pedagogical education.

In many countries teachers can also achieve

credentials in practice (such as the notable Teach

for America program in the US and its variants

now making inroads in many other countries).

In some countries it is possible to begin to

teach without a proper teacher credential, but

the situation is changing rapidly.

In some countries preservice and in-service

teachers can also attend distance courses

(increasingly offered on-line), usually organized

by universities. They may be attended either by

in-service unqualified teachers or by in-service

teachers who make the decision to extend their

qualification by another subject. They may also

be selected by anybody else who is working else-

where but wants to prepare for the teaching

profession.

In-service training is necessary also for prac-

ticing teachers who have already achieved cre-

dentials but want professional development and

support. In many countries these development

programs are supported by the government and

authorities as it is understood that in the teachers’

professional lifetime, they cannot be expected to

teach the same contents using the same methods

(see Schwille and Dembélé 2007; Tatto 2008).

Just as doctors are expected to follow the newest

trends and technologies, teachers must be

expected to keep up with the latest developments,

both in content and pedagogical content. That is

why some countries financially motivate their
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teachers to develop, offering better salaries to

those who are willing to learn by engaging in

further study. It is also true that many in-service

teachers welcome the possibility for further

training as it gives them confidence, self-esteem,

motivation, and a feeling of belonging to

a professional community.

Study Programs

In general, there are two possibilities of organi-

zation of teacher education. Programs may be

concurrent which means that the preservice

teacher takes at the same time mathematics,

didactics, and general pedagogy seminars and

lectures of. This system is sometimes criticized

because it may fail to provide future teachers with

in-depth content knowledge, considered as

a prerequisite to mastering teaching methods,

and by an overly formal pedagogical training.

The other possible model is consecutive, which

means that the preservice teachers first study

the content and only subsequently methodology,

psychology, and pedagogy. This may work well

if it does not result in neglect of pedagogy

and pedagogical content knowledge, which is

sometimes the case especially among preservice

teachers for secondary schools. This also depends

on who teaches the future teachers, which will be

discussed later.

The advantage of some consecutive programs

is that it enables the structuring of university stud-

ies to include a bachelor’s and master’s degree,

where the preservice teachers spend their time

in the bachelor’s studies focusing only on mathe-

matics, and the master’s course focusing on

the study of pedagogical content knowledge.

This organization may be a way of preventing

recent reform efforts emerging in some countries

to shorten the study time of preservice preparation

(e.g., to 3 years), claiming that a bachelor’s degree

is sufficient to become a teacher.

The preparation of primary school teachers, on

the other hand, tends to be concurrent as the

general belief is that teachers for this stage should

be real experts in pedagogical disciplines. The

scope of subjects future primary school teachers

study often results on superficial knowledge

across all the disciplines.

Teacher education programs typically include

teaching practice or practicum which may take

various forms. It may be one semester spent on an

affiliated school supervised by an accredited

practicing teacher. It may include a couple of

hours a week for a longer period of time. Or

it may be few years following graduation, the

so-called induction, when the fresh teacher is

supervised and supported until he/she gets more

experience of classroom and school practice (see

Britton et al. 2003). This part of teacher education

is considered very important under the assump-

tion that only hands-on experience and advice

of an experienced practitioner would enable mas-

tering the necessary skills and that theoretical

knowledge, albeit of pedagogical content and

pedagogy, will never make a complete teacher.

Who Teaches Future Teachers?

For the most part, future teachers of mathematics

are taught by mathematicians, mathematics edu-

cators (usually with a degree in mathematics and

pedagogy), and teacher educators. In practical

experience, future teachers are often supervised

by experienced practitioners. Comprehensive

teacher education requires the combination of

all these aspects.

Countries that offer in-service teacher profes-

sional development sometimes organize them

outside university walls in various kinds of ped-

agogical centers. They hire trainers (from peda-

gogical centers, experience practitioners, etc.) to

deliver different seminars and courses. One must

stress that even these trainers must be trained too.

The value of trainer training through formal pro-

grams of professional development and support

has emerged as an area of concern. It may seem

strange, even unnecessary, to suggest that the

training of trainers (“trainer education” or

“formal professional development” for trainers)

needs to be justified. But while the value of the

professional development opportunities for

teacher educators is significant, it is rarely done

or documented. If in-service teachers report the

need of growing self-esteem, the team spirit, it

would follow that the same must apply to teacher

trainers and educators. While the academic

world of universities and many international
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conferences and projects offer university teacher

educators the chance to grow, develop, exchange

information, and cooperate at the international

level, teacher trainers still need other more formal

avenues of professional development.

Who Enters the Profession?

The study programs offered by universities and

national teacher preparation institutions may be

selective or nonselective. This means that some

institutions require from their participants to pass

entrance exams or to have passed certain school

leaving exams at the secondary school level. We

have no knowledge that the candidates would be

asked to pass any aptitude tests to show their

predisposition for the profession in any countries

although they are asked to demonstrate academic

proficiency in the disciplines. It is a question

whether or not it would help the education

systems if only candidates of certain skills

and talents were accepted to study education

programs. It would definitely not be easy to

specify which predispositions are essential for

success in future work with pupils.

In case of nonselective admittance to univer-

sities, personal choice is what matters, but even if

admittance is restrictive, only people with talent

for the subject are likely to enrol. The problem in

many countries is that teaching is not the most

glamorous career, the job is poorly paid and the

reputation of teachers is low. The unfortunate

consequence then is that education programs

are entered only by those candidates who failed

in other entrance exams to more demanding and

desirable fields of study.

The TEDS-M study found that different coun-

tries’ policies designed to shape teachers’ career

trajectories have a very important influence on

who enters teacher education and eventually who

becomes a teacher. These policies can be charac-

terized as of two major types (with a number of

variations in between): career-based systems

where teachers are recruited at a relatively

young age and remain in the public or civil

service system throughout their working lives

and position-based systems where teachers are

not hired into the civil or teacher service but

rather are hired into specific teaching positions

within an unpredictable career-long progression

of assignments. In a career-based system there is

more investment in initial teacher preparation,

knowing that the education system will likely

realize the return on this investment throughout

the teacher’s working life. While career-based

systems have been the norm in many countries,

increasingly the tendency is toward position-

based systems. In general, position-based sys-

tems, with teachers hired on fixed, limited-term

contracts, are less expensive for governments to

maintain. At the same time, one long-term policy

evident in all TEDS-M countries is that of requir-

ing teachers to have university degrees, thus

securing a teaching force where all its members

have higher education degrees. These policy

changes have increased the individual costs

of becoming a teacher while also increasing the

level of uncertainty of teaching as a career.

Professional Teacher’s Competences

What skills, abilities, knowledge, and attitudes

should graduate of teacher preparation programs

master? For a long time, designers of teacher

preparation programs have struggled to balance

the theoretical with the practical knowledge and

skills (Ball and Bass 2000). However, there is no

consensus on the proportion of the different

teacher preparation “ingredients.”

It is clear that a good teacher of mathematics

must understand more than the mathematical dis-

cipline. They must master other skills in order to

be able to plan and manage their lessons, to

transmit knowledge, and especially to facilitate

their pupils’ learning. They must get introduced

to various types of classroom management

(whole class, group work, pair work, individual

work) and understand the advantages and

disadvantages in different activities; they must

learn how to work with pupils with specific learn-

ing needs and problems and how to work with

mixed-ability classes to answer the needs of the

talented as well as below average students. They

must learn to pose motivating and challenging

questions, learn how to facilitate pupils’ work,

must be aware of the difference in pupils’ learn-

ing styles, and must be experts in efficient

communication and appropriate language use.
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They must be able to work with mistakes. They

must also know the demands in the output, what

the pupils will be expected to master, and in what

form they will be expected to show their knowl-

edge and skills. They must be able to mediate the

increasing demands for excelling in examinations

and developing deep and relevant learning. They

should be able to manage the development and

the administration of summative or formative

assessments to inform and plan their teaching;

they should be able to understand the advantages

of each of these types of assessments (Even

and Ball 2009). These of course cannot be

acquired in purely mathematical courses and

preservice teachers must undergo more extensive

preparation.

According to Shulman (1987) the knowledge

that teachers must master consists of content

knowledge (in this case mathematics), pedagog-

ical content knowledge (didactics and methodol-

ogy of the studied subject, the ability to act

adequately directly in the course of lessons) and

pedagogy (philosophy of education, history of

education, educational psychology, sociology of

education), knowledge of pupils, and knowledge

of context. In several studies, knowledge, beliefs,

and attitudes toward mathematics and practical

skills are highlighted (see, e.g., Nieto 1996).

Whatever classification or division we choose,

the fact remains that it is at this point impossible

to give one answer to the question of how much

time and attention should be paid to each of the

components. The problem is that it is impossible

to state objectively which part of this knowledge

makes a really good teacher. In general terms it

can be said that usually future primary school

teachers get much more training in pedagogy

and psychology, while future secondary school

teachers get more training in the mathematics

itself. The problem of the first situation is the

lack of the teacher’s knowledge of mathematics

which often results in lack of self-confidence.

Unaware of the underlying mathematical

structures, the teacher may be hardly expected

to identify the sources of pupils’ mistakes

and misconceptions, let alone correct them.

Primary school teachers report that this lack of

self-confidence in the discipline prevents them

from adequate reactions to their pupils’ questions

and problems. If it is true that mathematics

that has already been discovered is “dead”

mathematics and is brought to life by teachers

(Sarrazy and Novotná to be published),

the teacher must know it and be able to assist in

this rediscovery.

In contrast, if teachers are not trained

adequately in pedagogy and pedagogical content

knowledge, they may fail to pinpoint the sources

of their pupils’ problems as they may be related to

their cognitive abilities, age, and methods used in

lessons, among others.

The problem with mathematical content

knowledge is that there is wide disagreement

regarding the extent and depth of the mathemati-

cal content pupils should be taught to make use of

in their future life. If there is disagreement regard-

ing what pupils need to know, there is also dis-

agreement on the mathematics their teachers

need. The current trend emphasizing transversal-

horizontal skills (learning to learn, social compe-

tences, cross-curricular topics) seems to put more

emphasis on everything but the mathematical

content. However, there is no doubt that pupils

must learn also mathematics as they will be using

it in many everyday situations in their future.

Calculators and computers will never really

substitute human mathematical thinking.

This problem of lack of agreement of what

mathematics to teach and how much of it to teach

well known to those involved in mathematics edu-

cation at all levels. One of the strategies recently

introduced to solve this problem is the development

of content standards currently implemented in

a considerable number of countries. They might

differ in form, in the degree of obligation, and in

the level of details included, but they certainly

share one characteristic: they define the framework

for the volume of mathematics that teachers will

have to teach and consequently the bases for the

mathematical content to be included in the teacher

education curriculum.

The TEDS-M study shows that there are topics

and areas that can be found in the curricula of

teacher education programs in a considerable

number of countries and may therefore be

regarded as the cornerstones of mathematics
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education. These topics are numbers; measure-

ment; geometry; functions, relations, and equa-

tions; data representation, probability, and

statistics; calculus; and validation, structuring,

and abstracting. The opportunity to learn these

topics varies according to the grade levels future

teachers are prepared to teach with primary

teachers predominantly studying topics such as

numbers, measurement, and geometry. As pro-

grams prepare teachers for higher grades, the

proportion of areas reported as having been stud-

ied increases. Importantly TEDS-M found that

the Asian countries and other countries whose

future teachers did well on the TEDS-M assess-

ments did offer algebra and calculus as part of

future primary and lower secondary teacher edu-

cation (see Tatto et al. 2012).
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Mathematics Teacher Educators:
Definition

Mathematics teacher educators in postsecondary

institutions are academics educating prospective

or practicing teachers; in many cases they

do both. Thus, teacher educators initiate,

guide, and support teacher learning across the

teacher’s professional lifespan (see also the

entry “▶Education of Mathematics Teacher

Educators” and, Even and Ball 2009). Most

teacher educators have the task not only to teach

(and to evaluate their teaching) but also to do

research (including systematic and self-critical

evaluation) and to do organizational administra-

tive work. The quality of teaching, research, and

organization is based on teacher educators’ atti-

tude towards and competence in continuous

learning. The more complex teacher education

activities are (e.g., running a challenging mas-

ter’s program or leading a professional develop-

ment program for a couple of schools), the more

the components of teaching, research, and orga-

nization are interwoven and influence each other.

Since teachers also have the task to teach, to

critically reflect on their work (and maybe to do

or be involved in research), and to do administra-

tive work, observing teacher educators’ actions

may serve as a learning opportunity for teachers.

Thus, teacher educators can be seen as role

models for teachers. This makes teacher educa-

tion a complex endeavour (see Krainer and

Llinares 2010) since a serious teacher educator

needs to live the goals he or she is claiming to his

or her participants: it would be inconsistent and

an obstacle for the learning process if, for exam-

ple, a teacher educator stresses students’ active

learning but mainly designs his or her courses in

a way where passive learning (listening to lec-

tures) is dominating. This affords teacher educa-

tors to reflect the (explicit or implicit) “learning

theory” underlying their teaching and – in best

case – to make it transparent and discussable in

the teacher education process. One of the chal-

lenges of teacher educators is to create genuine

learning situations for teachers, often through

carefully designed tasks, in which teachers expe-

rience as learners the kind of learning that the

mathematics teacher educator wishes to convey

(Zaslavsky 2007).

Mathematics Teacher Educators’ Learning

Through Research

Research on teacher educators’ learning as

practitioners is sparse, however increasing (see,

e.g., in general: Russell and Korthagen 1995;

Cochran-Smith 2003; Swennen and van der

Klink 2009; directly related to mathematics

teacher education: Zaslavsky and Leikin 2004;

Even 2005; Jaworski andWood 2008) with grow-

ing interest in the mathematics education com-

munity evidenced by discussion groups in recent
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international mathematics education conferences

(e.g., PME 35 proceedings and ICME 12

preconference proceedings). Most opportunities

for teacher educators to learn are not offered as

formal courses. Such formats are discussed in the

entry “▶Education of Mathematics Teacher

Educators.” The emphasis here is on teacher edu-

cators’ autonomous efforts to learn, in particular,

through reflection and research on their practice.

Teachers’ ability to critically reflect on their

work is a crucial competence (see, e.g., Llinares

and Krainer 2006). Teacher educators need to

evoke this inquiry stance (link to entry

“▶ Inquiry-Based Mathematics Education”) of

teachers as a basis of their learning. From this

perspective, teacher educators learn from their

practice through ongoing reflection on their

thinking and actions as an inherent aspect of

their work with teacher (i.e., as reflective practi-

tioners – Schön 1983) and/or through systematic,

intentional inquiry of their teaching in order to

create something new or different in terms of

their knowledge, “practical theories” (see

Altrichter et al. 2008, pp. 64–72), and teaching.

However, this dual role of researcher and instruc-

tor when educators inquire into their own practice

puts a special focus on the question of how

teacher education and research are interwoven.

A survey of recent research in mathematics

teacher education published in international

journals, handbooks, and mathematics education

conference proceedings (see Adler et al. 2005)

claims that most teacher education research is

conducted by teacher educators studying the

teachers with whom they are working. Such

studies could involve studying characteristics of

their students or the instructional approaches in

which they engage their students. This presents

a challenging situation for educator-researchers

who need to reflect on their dual role to guard

against unintentional biases that could influence

the outcome of the research and their learning.

For example, “success stories” that dominate the

research literature may suggest that teacher

educators’ learning generally involves situations

that improve teachers’ learning and knowledge.

However, this could be explained at least by

two reasons: such published research of teacher

education projects might be planned more

carefully than others, and the readability to

publish successful projects is higher than to

publish less successful ones.

In spite of this challenge, there are good

reasons for teacher educators to study teachers’

learning through their own courses and programs.

In system theory it is taken for granted that

we only have a chance to understand a system

(e.g., teachers in a mathematics teacher education

course) if we try to bring about change in this

system. This means that trying to understand is

important to achieve improvement, and trying to

improve is important to increase understanding.

However, the researcher needs to reflect carefully

on the strengths and weaknesses of distance and

nearness to the practical field being investigated.

For example, telling a “rich story”, taking into

account systematic self-reflection on one’s own

role as a teacher educator and researcher in

the process, being based on a viable research

question and building on evidence and critical

data-analysis, is an important means to gather

relevant results in teacher education research.

Mathematics Teacher Educators’ Learning

Through Action Research and Intervention

Research

Action research and intervention research are two

of the common methods mathematics teacher

educators might engage in when conducting

research as a basis of their learning. These

methods allow them to investigate their own

practice in order to improve it. This investigation

process might be supported by other persons, but it

is the teacher educators who decide which problem

is chosen, which data are gathered, which interpre-

tations and decisions are taken, etc. Action research

challenges the assumption that knowledge is sepa-

rate from and superior to practice. Thus, through it,

teacher educators’ production of “local knowledge”

is seen as equally important as general knowledge,

and “particularization” (e.g., understanding a

specific student’s mathematical thinking) is seen

as equally important as “generalization” (e.g.,

working out a classification of typical errors).

“Intervention research” (see, e.g., Krainer

2003) done by teacher educators to investigate
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teachers’ learning can take place in their class-

rooms influenced by interventions of their

colleagues or often – as research shows – by

their own interventions (e.g., see Chapman

2008) or in the field where it does not only

apply knowledge that has been generated within

the university, but much more, it generates “local

knowledge” that could not be generated outside

the practice. Thus, this kind of research is mostly

process oriented and context bounded, generated

through continuous interaction and communica-

tion with practice. Intervention research tries to

overcome the institutionalized division of labor

between science and practice. It aims both

at balancing the interests in developing and

understanding and at balancing the wish to par-

ticularize and generalize. Action research as

intervention research done by practitioners them-

selves (first-order action research) can also pro-

vide a basis for teacher educators to investigate

their own intervention practice (second-order

action research, see, e.g., Elliott 1991).

Worldwide, there is an increasing number of

initiatives in mathematics education based on

action research or intervention research. How-

ever, most of them are related to teachers’ action

research (see, e.g., Chapman 2011; Crawford and

Adler 1996; papers in JMTE 6(2) and 9(3); Benke

et al. 2008; Kieran et al. 2013). In some cases,

even the traditional role names (teachers vs.

researchers) are changed in order to express that

both, individual learning and knowledge produc-

tion for the field, are a two-way street. For exam-

ple, in the Norwegian Learning Communities in

Mathematics (LCM) project (Jaworski et al.

2007), the team decided to replace “researchers

and practitioners” with “teachers and educators”

(“both of whom are also researchers”). There are

a lot of projects in which teachers document

their (evidence-based) experiences in reflecting

papers. In Austria, for example, nearly 1,000

papers – written by teachers for teachers – have

been gathered since the 1980s within the context

of programs like PFL (see, e.g., Krainer 1998)

and IMST (Pegg and Krainer 2008; Krainer and

Zehetmeier 2013) and can be searched by key

word in an Internet database (http://imst.ac.at).

The most extensive and nationally widespread

version of action research by teachers is practiced

in Japan within the framework of “lesson study”

(see, e.g., Hart et al. 2011). In general, teacher

educators who participate directly or indirectly in

such cases of teachers’ action research are

afforded opportunities to learn in and from these

experiences.

Cross-References

▶Education of Mathematics Teacher Educators

▶ Inquiry-Based Mathematics Education
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identity

Definition

Mathematics teacher identity (MTI) is commonly

“defined” or conceptualized in recent publica-

tions of the mathematics education research

community as ways of being, becoming, and

belonging, as developing trajectories, and in

narrative and discursive terms.

Characteristics

A Brief History

The concept of identity can be traced to Mead

(1934) and Erikson (1968), the former seeing

identity as developed in interaction with the envi-

ronment, and thus multiple, though it appears

more unified to the individual (Lerman 2012).

The latter saw identity as something that

develops throughout one’s life and is seen as

more unified. The study of teacher identity is

more recent. Perspectives focus on images of

self (Nias 1989) as determining how teachers

develop or on roles (Goodson and Cole 1994).

One can argue that societal expectations and
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perceptions and at the same time the teacher’s

own sense of what matters to them play key roles

in teachers’ professional identity. Beijaard et al.

(2004) argue, in their review, that 1988 saw the

emergence of teacher identity as a research field.

Perhaps the key impetus for this focus on identity

in mathematics education can be attributed to

Jean Lave and Etienne Wenger who wrote, “We

have argued that, from the perspective we have

developed here, learning and a sense of identity

are inseparable: They are aspects of the same

phenomenon.” (Lave and Wenger 1991, p. 115).

Research on teacher identity has gained

prominence over the past decade. Special issues

of teacher education journals focusing on

teacher identity attest to this (e.g., Teaching and

Teacher Education 21, 2005; Teacher Education

Quarterly, June 2008). Related issues revealed

across the literature include “the problem of

defining the concept; the place of the self, and

related issues of agency, emotion, narrative and

discourse; the role of reflection; and the influence

of contextual factors” (Beauchamp and Thomas

2009, p. 175). As Grootenboer and Zevenbergen

(2008, p. 243) argue, in relation to understanding

the learning of mathematics, identity is “a unify-

ing and connective concept that brings together

elements such as life histories, affective qualities

and cognitive dimensions.”

Despite increasing engagement with mathe-

matical learning and identity, many have argued

that researchers working with the notion of

mathematics teacher identity have not clearly

defined and operationalized the notion (e.g.,

Sfard and Prusak 2005). MTI is increasingly

accepted as a dynamic rather than a fixed con-

struct even while debates continue as to whether

an individual has one identity with multiple

aspects or multiple identities (see Grootenboer

and Ballantyne 2010). These post-structuralist

interpretations of identity are more “contingent

and fragile than previously thought and thus open

to reconstruction” (Zembylas 2005, p. 936). The

agency of the teacher to reconstruct or reauthor

her story in relation to participation within class-

room, pre- and in-service practices in which

teachers participate, is a central opportunity for

much of the literature focused on identity in

relation to mathematics teacher support (e.g.,

Hodgen and Askew 2007; Lerman 2012). In con-

texts where mathematics teacher morale is low

and teacher identities are portrayed as mathemat-

ically deficient (supported by poor results on

international studies such as TIMMS), this frame-

work opens the space for teacher education to

focus explicitly on the reauthoring of negative

and damaging narratives (e.g., Graven 2012).

Clusters of issues illuminated in recent

published mathematics teacher education research

include:

• Discipline specialization is widely considered

to be highly significant in teacher identity

both generally and in mathematics teacher

research specifically (Hodgen and Askew

2007). Relating teacher identity and teacher

emotion is argued by some to be particularly

important in relation to mathematics teacher

identity where many teachers teach the

subject without disciplinary specialization in

their teacher training and with histories of

negative experiences of learning mathematics

within their own schooling (Graven 2004;

Hodgen and Askew 2007; Grootenboer and

Zevenbergen 2008; Lerman 2012). For other

literature outside of mathematics education

that connects teacher identity with researching

teacher emotions, see the special issue no. 21

of Teaching and Teacher Education which

focused on this relationship (e.g., Zembylas

2005).

• Research into mathematics teacher identities

often deals separately with primary

nonspecialist teachers, who teach across sub-

jects, and with secondary teachers, who teach

only or predominantly mathematics and who

may or may not have specialized in mathemat-

ics in their preservice education. The nature of

the way in which the discipline specificity

of mathematics influences evolving teacher

identities differs in relation to whether one

is identified as a generalist teacher or

a mathematics teacher. While it can be inter-

nationally accepted that many more secondary

mathematics teachers have discipline specific

training in their preservice studies, the extent

to which this is the case differs across
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countries. As Grootenboer and Zevenbergen

(2008) point out, depending on the extent

of the shortage of qualified mathematics

teachers, secondary school mathematics clas-

ses are often taught by nonspecialist teachers.

Shortage of qualified mathematics teachers

can be particularly high for developing coun-

tries (for example in South Africa). In this

respect research into supporting such teachers

to strengthen their mathematics teacher

identities becomes important. Graven (2004)

engages with how teachers in a longitudinal

mathematics education in-service program

transformed their identities from accidental

“teachers of mathematics” (they specialized

in other subjects in their training) to “profes-

sional mathematics teachers” with long term

trajectories of further learning and increasing

specialization in the subject. Research also

tends to deal separately with either preservice

or in-service teachers as the way in which

identities emerge for these groups of teachers

differs in relation to the different practices in

which they participate.

• Mathematics teacher identity is also increas-

ingly being considered in relation to studies

researching mathematics teacher retention.

The ICME-12 Discussion Group (DG11)

on teacher retention included as a key

theme the notion of identity and mathemat-

ics teacher retention and several of the

papers presented in this DG highlighted the

role of strengthened professional identities,

increasing sense of belonging and develop-

ing leadership identities and trajectories

as enabling factors contributing to teacher

retention. Presenters in this discussion

group were from the USA, South Africa,

Israel, New Zealand, Norway, and India.

Research on mathematics teacher identity

seems to be of particular interest in these

countries as well as in the UK and Australia

(see reference list). Similarly research into

the relationship between teacher identity

and sustaining commitment to teaching

(more generally than only for mathematics

teaching) has been argued across US and

Australian contexts (e.g., Day et al. 2005).

• A growing area of research in MTI explores

the relationship between mathematics

“teacher change” or teacher learning and rad-

ical curriculum change (e.g., Schifter 1996;

Van Zoest and Bohl 2005). Similarly research

is beginning to investigate the relationship

between teacher identity/positions and the

increasing use of national standardized assess-

ments across various contexts (Morgan et al.

2002). As in Lasky’s (2005) research across

subject teachers this research often points

to disjuncture between mathematics teacher

identities and expectations (and contradictory

messages) of reform mandates and to the ways

in which these constrain teacher identities.

As Wenger (1998) notes, national education

departments can design roles but they cannot

design (local) identities of teachers.

In this respect the work of Bernstein becomes

useful in providing a more macro perspective on

teacher identity and the way policy, curriculum,

and assessment practices shape this. His work com-

plements localized case study analyses of identity

within teacher communities with a broader concept

of identity connected to macro structures of power

and control. Bernstein’s model (1996) shows:

how the distribution of power and principles of
control translate into pedagogic codes and their
modalities. I have also shown how these codes are
acquired and so shape consciousness. In this way,
a connection has been made between macro struc-
tures of power and control and the micro process of
the formation of pedagogic consciousness. (p. 37).

Bernstein first introduced the concept of iden-

tity in 1971 (Bernstein and Solomon 1999). This

analysis did not focus on identity in terms of

regulation and realization in practice but rather

on identity in terms of the “construction of

identity modalities and their change within an

institutional level” (p. 271). Thus Bernstein

approaches identity from a broader systemic

level, which of course impacts on enabling and

constraining the emergence of localized individual

teacher identities. Bernstein’s notion of “Projected

Pedagogic Identities” (Bernstein and Solomon

1999) provides a way of analyzing macro pro-

moted identities within contemporary curriculum

change which is the context within which teacher
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roles are elaborated in curriculum documents.

South African and British Mathematics Educators

have particularly drawn on the work of Bernstein

to analyze positions available to teachers within

often contradictory and shifting “official” dis-

courses (see, e.g., Parker and Adler 2005; Graven

2002; Morgan et al. 2002).

Conclusion

The references seem to suggest that “identity” as

an alternative way of identifying teacher learning

is not necessarily a global perspective. Research

on international interpretations of the relevance of

the notion is needed. At the same time the notion is

ubiquitous in the social sciences, and mathematics

education researchers working with “identity”

need to specify how they are using the term,

what the sources are for their perspectives, and

the relevance for the teaching and learning of

mathematics.
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Definition and Historical Background

The word curriculum has had several meanings

over time and has been interpreted broadly not

only as a project about what should be learned

by students but, in the context of teachers and

curriculum, as all the experiences which occur

within a classroom. These different meanings are

grounded in different assumptions about teaching

and the nature of interactions of the teacher

with ideas that support curriculum guidelines

(Clandinin and Connelly 1992). These different

meanings have defined several roles of teachers in

mathematics curriculum development. Regarding

these roles, the relationship between teachers and

curricula can be described as the history of a shift

from teachers as curriculum users to teachers with

roles as curriculum interpreters and/or curriculum

makers. Whereas the former view assumes curric-

ula to be “teacher-proof,” the latter includes

teachers’ activities like reflecting, negotiating issues

of curricula, and disseminating to their peers. This

shift mirrors acknowledgement of the centrality of

the teacher in curricula issues in particular

(Clarke et al. 1996; Hershkowitz et al. 2002;

Lappan et al. 2012) and viewing teachers as key

stakeholders of educational change in general

(Krainer 2011). These meanings are located along

a continuum from a view of curricula as fixed,

embodying discernible and complete images of

practice, to a view of curricula guidelines as possible

influencing forces in the construction of practice.

In the 1970s, Stenhouse (1975) defined curric-

ulum as “an attempt to communicate the essential

principles and features of an educational proposal

in such a form that it is open to critical scrutiny

and capable of effective translation into practice”

(p. 4). The teacher is central to this translation into

practice. A model that is commonly used for anal-

ysis in mathematics education sees curricula as

located at three levels: the intended curriculum (at

the system level, the proposal), the implemented

curriculum (at the class level, the teacher’s role),

and the attained curriculum (at the student level,

the learning that takes place) (Clarke et al. 1996).

Focusing on the implemented curriculum,

Stenhouse began the “teachers as researchers”

movement. He believed that the “development

of teaching strategies can never be a priori.

New strategies [principled actions] must be

worked out by groups of teachers collaborating

within a research and development framework

[. . .] grounded in the study of classroom practice”

(p. 25). The development of this idea in the

mathematics education field illustrated the com-

plexity of teaching and the key roles played by

teachers in students’ learning, underlining the

importance of teachers’ processes of interpreta-

tion of curricula materials (Zack et al. 1997).
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Different Cultures Shaping Different Forms of

Interaction Between Teachers and Curricula

The relation between teacher and curricula

depends on internal and external influences. For

example, teachers frame their approach to

curricula differently dependent on their concep-

tions of different components of curricula (Lloyd

1999) and/or through the different structures of

professional development initiatives. Locally,

teachers’ knowledge and pedagogical beliefs are

influences as they engage with curricula mate-

rials. Furthermore, the content and form of cur-

ricula materials influence the ways in which

teachers interpret, evaluate, and adapt these

materials considering their students’ responses

and needs in a specific institutional context.

Globally, countries have different curricular tra-

ditions shaping different conditions for teachers’

roles in curriculum development. Thus, the diver-

sity of cultures and features of each country’s

system generates different modes of interaction

between teachers and curricula, as well as differ-

ent needs and trends in teacher professional

development related to curriculum reform

(Clarke et al. 1996). The main elements which

have been proved to affect the relation between

teachers and curricula are, for instance, the dis-

tance that usually exists between the intended

curriculum and the implemented curriculum;

whatever the level of detail and prescription

of the curriculum description, for years after

curriculum reform, the implemented curriculum

remains a subtle composition of the old and the

new, differing between one teacher and another.

In this sense, curricula are related with teacher

practice, and curricula change is linked to

how teachers continuously further develop or

change their current practice, in particular with

regard to teaching and assessment and profes-

sional development initiatives (Krainer and

Llinares 2010).

Teachers and CurriculaWithin a Collaborative

Perspective

From this view of interaction between teacher and

curriculum, curricula development initiatives are

a context for teacher professional development

reconstructing wisdom through inquiry. There is

a long tradition of teachers developing curricula

materials in collaborative groups.

In the United Kingdom in the late 1970s and

early 1980s, Philip Waterhouse’s research (2001,

updated by Chris Dickinson), supported by the

Nuffield Foundation, led to the founding of

a number of curricula development organizations

called Resources for Learning Development

Units. In these units, the mathematics editor

(one of a cross-curricular team of editors) worked

with groups of not more than ten teachers,

facilitating their work on either developing mate-

rials related to government initiatives or from

perceived needs of teachers themselves. The

explicit focus for the teachers was on the

development and then production of materials

that had been tried out in their classrooms.

However, the implicit focus of the editor was on

the professional development of those teachers in

the groups. It was still important for the materials

to be designed, printed, and distributed.

Also, in France, since the 1970s, the IREM

network has functioned on the basis of mixed

groups of academics, mathematicians, and

teachers inquiring, experimenting in classrooms,

producing innovative curriculum material, and

organizing teacher professional development

sessions relying on their experience (cf. www.

univ-irem.fr/ ). In recent views of how teachers

interact with, draw on, refer to, and are

influenced by curricula resources, teachers are

challenged to express their professional knowl-

edge keeping a balance between the needs of

their specific classrooms and their conceptions.

In many countries, as mathematics education

research has matured, there is increasingly

development of curricula materials by teachers

themselves working collaboratively in groups,

possibly in association with researchers, and

the organization of teacher professional develop-

ment around such collaborative actions based on

a more developed idea of the teacher.

Barbara Jaworski, working in Norway from

2003 to 2010, has led research projects in part-

nership with teachers to investigate “Learning

Communities in Mathematics” and “Teaching

Better Mathematics” (see, e.g., Kieran et al.

2013). In Canada, led by Michael Fullan, there is
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a large-scale project supporting professional devel-

opment of teachers through curriculum reform in

literacy and numeracy based on in-school collabo-

rative groupings of teachers attending a central

“fair” to present their inquiry work once a year.

This project, Reach Every Student, energizing

Ontario Education, works on the attained curricu-

lum through the implemented one and has led to

Fullan’s (2008) book Six Secrets of Change.

More recently, with the spread of ideas through

international conferences, meetings, and research

collaborations, ideas such as the Japanese “lesson

study” have spread widely (Alston 2011). Lesson

study is a professional development process that

teachers engage in to systematically examine their

practice. It is considered to be ameans of supporting

the dissemination of documents like standards,

benchmarks, and nationally validated curricula.

Other collaborative groups take many forms, fre-

quently facilitated by a university academic or

sometimes with university mathematicians and

mathematics teacher educators forming part of the

group. These multiple views define distinctive

professional development pathways through curric-

ula reforms. These pathways influence teachers’

professional identities and work practices.

Social perspectives on the role of teachers in

curricula reforms are being reported by Kieran

and others (2013), where the major focus is on the

role and nature of teachers’ interactions within

a group of teachers. From this perspective, teachers

are motivated by collaborative inquiry activities

(teams, communities, and networks) aiming at

interpreting and implementing curricula materials,

“participation with.” How do teachers actively

engage or collaborate with curricular resources

(Remillard 2005)? How do teachers collaborate

with other groups of participants (Pegg andKrainer

2008)? Both engagements must be understood in

light of their particular local and global contexts.

Teachers’ learning through collaborative

inquiry activities, contextualized in curriculum

development initiatives, has allowed the contex-

tual conditions in which curriculum is

implemented in different traditions to be made

explicit. Pegg and Krainer (2008) reported exam-

ples of large-scale projects involving national

reform initiatives in mathematics where the

focus was initiating purposeful pedagogical

change through involving teachers in rich

professional learning experiences. The motiva-

tion for these initiatives was a perceived

deficiency in students’ knowledge of mathemat-

ics (and science) understood as the attained

curriculum. In all of these programs, collabora-

tion, communication, and partnerships played

a major role among teachers and university staff

members of the program and within these groups.

In these programs, the teachers were seen not

only as participants but crucial change agents

who were regarded as collaborators and

experts (Pegg and Krainer 2008). This view of

teachers as change agents emerged from the close

collaboration among groups of stakeholders

and the different forms of communications that

developed.

Open Questions

The relationship between teacher and curricula

defines a set of open questions in different

realms. These questions are linked to the fact

that the relationship between teachers and

curricula is moving, due to a diversity of

factors: the increasing autonomy and power

given to teachers regarding curriculum design

and implementation in some countries at least,

the development of collaborative practices

and networks in teachers’ communities, the

evolution of relationships between researchers

and teachers, the explosion of curriculum

resources and their easier accessibility thanks

to the Internet. . . . So, some open questions

are:

1. What are the implications of the school-based

partial transfer of power in curriculum

decision-making to teachers based on

teachers’ practical, personal reflective experi-

ence and networks?

2. What role do collegial networks play in how

ideas about curricula change are shared (e.g.,

using electronic communications, practical

coaching)?

3. How are new kinds of practices and teaching

objectives emerging as a consequence of new

resources influencing the relation between

teacher and curricula?
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4. How can reform initiatives cope with the

balance between national frameworks for

curricula (e.g., educational standards as

expressions of societal demands) and local

views on curricula as negotiated between the

teachers of one school?

5. What role students play in bringing in ideas

related to curricula (e.g., starting topics based

on students’ interests, questions)?
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Definition

Mathematization refers to the formatting of pro-

duction, decision-making, economic manage-

ment, means of communication, schemes for

surveilling and control, war power, medical tech-

niques, etc. by means of mathematical insight and

techniques.

Mathematization provides a particular chal-

lenge for mathematics education as it becomes

important to develop a critical position to math-

ematical rationality as well as new approaches to

the construction of meaning.

Characteristics

Mathematization and Demathematization

The notions of mathematization and demathema-

tization, the claim that there is mathematics

everywhere, and mathematics in action are

addressed, before we get to the challenges that

mathematics education is going to face.

It is easy to do shopping in a supermarket.

One puts a lot of things into the trolley and pushes

it to the checkout desk. Here an electronic device

used by the cashier makes a pling-pling-pling

melody, and the total to be paid is shown.

One gets out the credit card, and after a few

movements by the fingers, one has bought what-

ever. No mathematics in this operation.

However, if we look at the technologies that

are configuring the practice of shopping, one

finds an extremely large amount of advanced

mathematics being brought in operation: The

items are coded and the codes are read mechan-

ically; the codes are connected to a database

containing the prices of all items; the prices are

added up; the credit card is read; the amount is

subtracted from the bank account associated to

the credit card; security matters are observed;

schemes for coding and decoding are taking

place.

We have to do with a mathematized daily

practice, and we are immersed in such practices.

We live in a mathematized society (see

Keitel et al. 1993, for an initial discussion of

such processes). Gellert and Jablonka (2009)

characterize the mathematization of society in

the following way: “Mathematics has penetrated

many parts of our lives. It has capitalised on its

abstract consideration of number, space, time,

pattern, structure, and its deductive course of

argument, thus gaining an enormous descriptive,

predictive and prescriptive power” (p. 19).

However, most often the mathematics that is

brought into action is operating beneath the

surface of the practice. At the supermarket there

is no mathematics in sight. In this sense,

as also emphasized by Jablonka and Gellert

(2007), a demathematization is accompanying

a mathematization.

There Is Mathematics Everywhere

Mathematization and the accompanying

demathematization have a tremendous impact on

all forms of practices. Mathematics-based technol-

ogy is found everywhere.

One can see the modern computer as

a materialized mathematical construct. Certainly

the computer plays a defining part of a huge range

of technologies. It is defining for the formation of

databases and for the processing of information

and knowledge.

Processes of production are continuously taking

new forms due to new possibilities for automatiza-

tion,which in turn can be considered amaterialized

mathematical algorithm. Any form of production –

being of TV sets, mobile phones, kitchen utensils,

cars, shoes, whatever – represents a certain com-

position of automatic processes and manual labor.

However, this composition is always changing due

to new technologies, new needs for controlling

the production process, new conditions for

outsourcing, and new salary demands. Crucial for

such changes is not only the development of

mathematics-based technologies of automatization

but also of mathematics-based procedures for

decision-making.

In general mathematical techniques have

a huge impact on management and

decision-making. As an indication, one can

think of the magnitude of cost-benefit analyses.

Such analyses are crucial, in order not only to

identify new strategies for production and

marketing but to decision-making in general.
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Complex cost-benefit analyses depend on the

calculation power that can be executed by the

computer. The accompanying assumption is that

a pro et contra argumentation can be turned into

a straightforward calculation. This approach to

decision-making often embraces an ideology of

certainty claiming that mathematics represents

objectivity and neutrality. Thus in decision-

making we find an example not only of a broad

application of mathematical techniques but also

an impact of ideological assumptions associated

with mathematics.

Mathematics-based technologies play crucial

roles in different domains, and we can think

of medicine as an example. Here we find

mathematics-based technologies for making diag-

noses, for defining normality, for conducting

a treatment, and for completing a surgical operation.

Furthermore, the validation of medical research is

closely related to mathematics. Thus any new type

of medical treatment needs to be carefully

documented, and statistics is crucial for doing this.

Not only medicine but also modern warfare is

mathematized. As an example one can consider

the drone, the unmanned aircraft, which has been

used by the USA, for instance, in the war in

Afghanistan. The operation of the drone includes

a range of mathematics brought in action.

The identification of a target includes complex

algorithms for pattern recognition. The operation

of a drone can only take place through the most

sophisticated channels of communication, which

in turn must be protected by advanced cryptogra-

phy. Channels of communication as well as

cryptography are completely mathematized. The

decision of whether to fire or not is based on cost-

benefit analyses: Which target has been identi-

fied? How significant is the target? What is the

probability that the target has been identified

correctly? What is the probability that other peo-

ple might be killed? What is the price of the

missile? Mathematics is operating in the middle

of this military logic.

Mathematics in Action

The notion of mathematics in action – that can be

seen as a further development of “formatting

power of mathematics” (Skovsmose 1994) – can

be used for interpreting processes of mathemati-

zation (see, for instance, Christensen et al. 2009;

Skovsmose 2009, 2010, in print; Yasukawa et al.

in print). Mathematics in action can be character-

ized in terms of the following issues:

Technological imagination refers to the con-

ceptualization of technological possibilities. We

can think of technology of all kinds: design and

construction of machines, artifacts, tools, robots,

automatic processes, networks, etc.; decision-

making concerning management, advertising,

investments, etc.; and organization with respect

to production, surveillance, communication,

money processing, etc. In all such domains math-

ematics-based technological imagination has

been put into operation. A paradigmatic example

is the conceptualization of the computer in terms

of the Turing machine. Even certain limits of

computational calculations were identified before

any experimentation was completed. One can

also think of the conceptualization of the Internet,

of new schemes for surveilling and robotting

(see, for instance, Skovsmose 2012), and of new

approaches in cryptography (see, for instance,

Skovsmose and Yasukawa 2009). In all such

cases mathematics is essential for identifying

new possibilities.

Hypothetical reasoning addresses conse-

quences of not-yet-realized technological con-

structions and initiatives. Reasoning of the form

“if p then q, although p is not the case” is essential

to any kind of technological enterprise. Such hypo-

thetical reasoning is most often model based: one

tries to grasp implications of a new technological

construct by investigating a mathematical repre-

sentation (model) of the construct. Hypothetical

reasoning makes part of decision-making about

where to build an atomic power plant, what

investment to make, what outsourcing to

make, etc. In all such cases one tries to provide

a forecasting and to investigate possible

scenarios using mathematical models. Naturally

a mathematical representation is principally

different from the construct itself, and the real-

life implication might turn out to be very different

from calculated implications. Accompanied by

(mischievous) mathematics-based hypothetical

reasoning, we are entering the risk society.
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Legitimation or justification refers to possible

validations of technological actions. While the

notion of justification includes an assumption that

some degree of logical honesty has been exercised,

the notion of legitimation does not include such an

assumption. In fact, mathematics in action might

blur any distinction between justification and legit-

imation. When brought into effect, a mathematical

model can serve any kind of interests.

Realization refers to the phenomenon thatmath-

ematics itself comes to be part of reality, as was the

case at the supermarket. A mathematical model

becomes part of our environment. Our lifeworld is

formed through techniques as well as through

discourses emerging from mathematics. Real-life

practices become formed through mathematics in

action. It is this phenomenon that has been referred

to as the formatting power of mathematics.

Elimination of responsibility might occur

when ethical issues related to implemented action

are removed from the general discourse about

technological initiatives. Mathematics in action

seems to be missing an acting subject. As

a consequence, mathematics-based actions easily

appear to be conducted in an ethical vacuum.

They might appear to be determined by some

“objective” authority as they represent a logical

necessity provided by mathematics. However,

the “objectivity” of mathematics is a myth that

needs to be challenged.

Mathematics in action includes features of imag-

ination, hypothetical reasoning, legitimation, justi-

fication, realization including a demathematization

of many practices, as well as an elimination of

responsibility. Mathematics in action represents

a tremendous knowledge-power dynamics.

New Challenges

Mathematics in action brings about several

challenges to mathematics education of which

I want to mention some.

Over centuriesmathematics has been celebrated

as crucial for obtaining insight into nature, as being

decisive for technological development, and as

being a pure science. Consistent or not, these

assumptions form a general celebration of mathe-

matics. This celebration can be seen as almost

a defining part of modernity. However, by

acknowledging the complexity of mathematics in

action such celebration cannot be sustained. Math-

ematics in action has to be addressed critically in all

its different instantiations. Like any form of action,

mathematics in action may have any kind of qual-

ities, such as being productive, risky, dangerous,

benevolent, expensive, dubious, promising, and

brutal. It is crucial for any mathematics education

to provide conditions for reflecting critically on any

form of mathematics in action.

This is a challenge to mathematics education

both as an educational practice and research. It

becomes important to investigate mathematics in

action as part of complex sociopolitical processes.

Such investigations have been developed with

reference to ethnomathematical studies, but many

more issues are waiting for being addressed (see,

for instance, D’Ambrosio’s 2012 presentation of

a broad concept of social justice).

Due to processes of mathematization and

not least to the accompanying processes of

demathematization, one has to face new challenges

in creating meaningful activities in the classroom.

Experiences ofmeaning have to dowith experiences

of relationships. How can we construct classroom

activities that, on the one hand, acknowledge the

complex mathematization of social practices and,

on the other hand, acknowledge the profound

demathematization of such practices? This general

issue has to be interpreted with reference to particu-

lar groups of students in particular sociopolitical

contexts (see, for instance, Gutstein 2012).

To break from any general celebration of

mathematics, to search for new dimensions of

meaningful mathematics education, and to open

for critical reflections on any form of mathemat-

ics in action are general concerns of critical

mathematics education (see also “▶Critical

Mathematics Education” in this Encyclopedia).

Cross-References

▶Critical Mathematics Education

▶Critical Thinking in Mathematics Education

▶Dialogic Teaching and Learning in

Mathematics Education

▶Mathematical Literacy
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Definition

Any knowledge or cognitive activity that takes as

its object, or monitors, or regulates any aspect of

cognitive activity; that is, knowledge about, and

thinking about, one’s own thinking.

Characteristics

Although the construct, metacognition, is used

quite widely and researched in various fields of

psychology and education, its history is relatively

short beginningwith the early work of John Flavell

on metamemory in the 1970s. Metamemory was

a global concept encompassing a person’s

knowledge of “all possible aspects of information

storage and retrieval” (Schneider and Artelt 2010).

Flavell’s (1979) model of metacognition and cog-

nitive monitoring has underpinned much of the

research on metacognition since he first articulated

it. It was a revised version of his taxonomy of

metamemory that he had developed with Wellman

(Flavell and Wellman 1977). According to his

model, a person’s ability to control “a wide variety

of cognitive enterprises occurs through the actions

and interactions among four classes of phenomena:

(a) metacognitive knowledge, (b) metacognitive

experiences, (c) goals (or tasks), and (d) actions

(or strategies)” (p. 906).Metacognitive knowledge

incorporates three interacting categories of knowl-

edge, namely, personal, task, and strategy
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knowledge. It involves one’s (a) sensitivity to

knowing how and when to apply selected forms

and depths of cognitive processing appropriately to

a given situation (similar to subsequent definitions

of partly what is called procedural metacognitive

knowledge), (b) intuitions about intra-individual

and inter-individual differences in terms of beliefs,

feelings, and ideas, (c) knowledge about task

demands which govern the choice of processed

information, and (d) a stored repertoire of the nature

and utility of cognitive strategies for attaining

cognitive goals. The first of these is mostly implicit

knowledge, whereas the remaining three are

explicit, conscious knowledge. Metacognitive

experiences are any conscious cognitive or

affective experienceswhich control or regulate cog-

nitive activity. Achieving metacognitive goals are

the objectives of any metacognitive activity.

Metacognitive strategies are used to regulate and

monitor cognitive processes and thus achieve

metacognitive goals.

In the two decades that followed when Flavell

and his colleagues had initiated research into

metacognition (Flavell 1976, 1979, 1981), the

use of the term became a buzzword resulting in

an extensive array of constructs with subtle

differences in meaning all referred to as metacog-

nition (Weinert and Kluwe 1987). This work was

primarily in the area of metacognitive research on

reading; however, from the early 1980s, work in

mathematics education had begun mainly related

to problem solving (Lester and Garofalo 1982)

particularly inspired by Schoenfeld (1983, 1985,

1987) and Garofalo and Lester (1985). Cognition

and metacognition were often difficult to distin-

guish in practice, so Garofalo and Lester (1985)

proposed an operational definition distinguishing

cognition and metacognition which clearly demar-

cates the two, namely, cognition is “involved in

doing,” whereas metacognition is “involved in

choosing and planning what to do and monitoring

what is being done” (p. 164). This has been used

subsequently by many researchers to be able to

delineate the two.

Today, the majority of researchers in

metacognitive research in mathematics education

have returned to the roots of the term and

share Flavell’s early definition and elaborations

(Desoete and Veenman 2006). The field has firmly

established the foundations of the construct and by

building on these foundations, several researchers

have extended Flavell’s work usefully and there is

an expanding body of knowledge in the area.

The elements of his model have been extended

by others (e.g., elaborations of metacognitive

experiences, see Efklides 2001, 2002) or are the

subject of debate (e.g., motivational and emotional

knowledge as a component of metacognitive

knowledge, see Op ‘t Eynde et al. 2006). Subse-

quently, it has led to many theoretical elaborations,

interventions, and ascertaining studies inmathemat-

ics education research (Schneider and Artelt 2010).

Flavell did not expect metacognition to be evi-

dent in students before Piaget’s stage of formal

operational thought, but more recent work by

others has shown that preschool children already

start to develop metacognitive awareness. Work in

developmental and educational psychology as

well as mathematics education has shown that

metacognitive ability, that is, the ability to gain-

fully apply metacognitive knowledge and strate-

gies, develops slowly over the years of schooling

and there is room for improvement in both adoles-

cence and adulthood. Furthermore, studying the

developmental trajectory of metacognitive exper-

tise in mathematics entails examining both fre-

quency of use and the level of adequacy of

utilization of metacognition. Higher frequency of

use does not necessarily imply higher quality

of application, with several researchers reporting

such phenomena as metacognitive vandalism,

metacognitive mirage and metacognitive misdirec-

tion. Metacognitive vandalism occurs when the

response to a perceived metacognitive trigger

(“red flag”) involves taking drastic and destructive

actions that not only fail to address the difficulty but

also could change the nature of the task being

undertaken. Metacognitive mirage results when

unnecessary actions are engaged in, because

a difficulty has been perceived, but in reality, it

does not exist. Metacognitive misdirection is

the relatively common situation where there is

a potentially relevant but inappropriate response

to ametacognitive trigger that is purely inadequacy

on the part of the task solver not deliberate vandal-

ism. Recent research shows that as metacognitive
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abilities in mathematics develop, not only is there

increased usage but also the quality of that usage

increases.

The popularity of the metacognition construct

stems from the belief that it is a crucial part of

everyday reasoning, social interaction as occurs

in whole class and small group work and more

complex cognitive tasks such as mathematical

problem solving, problem finding and posing,

mathematical modeling, investigation, and

inquiry based learning.

Cross-References

▶ Problem Solving in Mathematics Education
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Definition

Etymologically metaphor means “transfer,” from

the Greek meta (trans) + pherein (to carry).

Metaphor is in fact “transfer of meaning.”

Introduction

Metaphors are very likely as old as humankind.

Recall Indra’s net, a 2,500-year-old Buddhist

metaphor of dependent origination and intercon-

nectedness (Cook 1977; Capra 1982), consisting

of an infinite network of pearls, each one

reflecting all others, in a never-ending process

of reflections of reflections, highly appreciated

by mathematicians (Mumford et al. 2002).
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It was Aristotle, however, with his taxonomic

genius, who first christened and characterized

metaphors c. 350 BC in his Poetics: “Metaphor

consists in giving the thing a name that belongs

to something else; the transference being either

from genus to species, or from species to genus,

or from species to species, on the grounds of

analogy” (Aristotle 1984, 21:1457b). Interest-

ingly for education, Aristotle added:

The greatest thing by far is to be a master of
metaphor. It is the one thing that cannot be learned
from others; it is also a sign of genius, since a good
metaphor implies an eye for resemblance. (loc. cit.
21:1459a)

But time has not passed in vain since Aristotle.

Widespread agreement has been reached

(Richards 1936; Black 1962, 1979; Ortony

1993; Ricoeur 1977; Reddy 1993; Gibbs 2008,

2008; Indurkhya 1992, 2006; Johnson and Lakoff

2003; Lakoff and Núñez 2000; Wu 2001; Sfard

1994, 1997, 2009) that metaphor serves as the

often unknowing foundation for human thought

(Gibbs 2008) since our ordinary conceptual

system, in terms of which we both think and act,

is fundamentally metaphorical in nature (Johnson

and Lakoff 2003).

Characteristics

Metaphors for Metaphor

“There is no non metaphorical standpoint from

which one could look upon metaphor” remarked

Ricoeur (1977). To Bruner (1986) “Metaphors

are crutches to help us to get up the abstract

mountain,” but “once up we throw them away

(even hide them) . . . (p. 48). Empirical evidence

suggests however that metaphor is a permanent

resource rather than a temporary scaffold

becoming later a “dead metaphor” (Chiu 2000).

We find also theory-constitutive metaphors that

do not “worn out” like literary metaphors and

provide us with heuristics and guide our research

(Boyd 1993; Lakoff and Núñez 1997). Recall the

“tree of life” metaphor in Darwin’s theory

of evolution or the “encapsulation metaphor”

in Dubinsky’s APOS theory (Dubinsky and

McDonald 2001).

In the field of mathematics education proper,

it has been progressively recognized during the

last decades (e.g., Chiu 2000, 2001; van

Dormolen 1991; Edwards 2005; English 1997;

Ferrara 2003; Gentner 1982, 1983; Lakoff and

Núñez 2000; Parzysz et al. 2007; Pimm 1987;

Presmeg 1997; Sfard 1994, 1997, 2009;

Soto-Andrade 2006, 2007) that metaphors are

powerful cognitive tools that help us in grasping

or building new mathematical concepts, as well

as in solving problems in an efficient and friendly

way: “metaphors we calculate by” (Bills 2003).

According to Lakoff and Núñez (2000),

(conceptual) metaphors appear as mappings

from a source domain into a target domain,

carrying the inferential structure of the first

domain into the one of the second, enabling us

to understand the latter, often more abstract and

opaque, in terms of the former, more down-to-

earth and transparent. In the classical example

“A teacher is a gardener,” the source is

gardening, and the target is education.

Figure 1 maps metaphors, analogies, and

representations and their relationships (Soto-

Andrade 2007).

We thus see metaphor as bringing the target

concept into being rather than just shedding

a new light on an already existing notion, as

Target domain:

higher, more abstract

Target domain:

higher, more abstract

Metaphor

Metaphor
Metaphor

Metaphor
Representation

Analogy

Analogy

Representation

Source domain:

down-to-earth

Source domain:

down-to-earth

Metaphors in

Mathematics Education,

Fig. 1 A topographic
metaphor for metaphors,
representations, and
analogies
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representation usually does, whereas analogy

states a similarity between two concepts already

constructed (Sfard 1997). Since new concepts

arise from a crossbreeding of several metaphors

rather than from a single one, multiple meta-

phors, as well as the ability to transiting between

them, may be necessary for the learner to make

sense of a new concept (Sfard 2009). Teaching

with multiple metaphors, as an antidote to

unwanted entailments of one single metaphor,

has been recommended (e.g., Low 2008; Sfard

2009; Chiu 2000, 2001).

Metaphor and Reification

Sfard (1994) named reification the metaphorical

creation of abstract entities, seen as the transition

from an operational to a structural mode of

thinking. Experientially, the sudden appearance

of reification is an “aha!” moment, the birth of

a metaphor that brings a mathematical concept

into existence. Reification is however a double-

edged sword: Its poietic (generating) edge brings

abstract ideas into being, and its constraining

edge bounds our imagination and understanding

within the confines of our former experience and

conceptions (Sfard 2009). This “metaphorical

constraint” (Sfard 1997) explains why it is not

quite true that anybody can invent anything,

anywhere, anytime, and why metaphors are

often “conceptual recycling.” For instance, the

construction of complex numbers was hindered

for a long time by overprojection of the metaphor

“number is quantity” until the new metaphor

“imaginary numbers live in another dimension”

installed them in the “complex plane.” “To

understand a new concept, I must create an appro-

priate metaphor. . .” says one of the mathemati-

cians interviewed by Sfard (1994).

Metaphor, Embodied Cognition,

and Gestures

Contemporary evidence from cognitive neurosci-

ence shows that our brains process literal and

metaphorical versions of a concept in the same

localization (Knops et al. 2009; Sapolsky 2010).

Gibbs and Mattlock (2008) show that real and

imagined body movements help people create

embodied simulations of metaphorical meanings

involving haptic-kinesthetic experiences. The

underlying mechanism of cross-domain map-

pings may explain how abstract concepts can

emerge in brains that evolved to steer the body

through the physical, social, and cultural world

(Coulson 2008). It has been proposed that acquir-

ing metaphoric items might be facilitated by

acting them out, as in total physical response

learning (Low 2008).

The didactical chasm existing between the

ubiquitous motion metaphors in the teaching of

calculus and the static and timeless character of

current formal definitions (Kaput 1979) is in fact

bridged by the often unconscious gestures (Yoon

et al. 2011) that lecturers enact in real time while

speaking and thinking in an instructional context

(Núñez 2008). So gestures inform mathematics

education better than traditional disembodied

mathematics (Núñez 2007).

Metaphors for Teaching and Learning

When confronted with the metaphor “teaching

is transmitting knowledge,” many teachers say:

This is not a metaphor, teaching is transmitting

knowledge! What else could it be? Unperceived

here is the “Acquisition Metaphor,” dominant in

mathematics education, that sees learning as acquir-

ing an accumulated commodity. The alternative,

complementary, metaphor is the Participation

Metaphor: learning as participation (Sfard 1998).

Plutarch agreed when he said “Amind is a fire to be

kindled, not a vessel to be filled” (Sfard, 2009).

Educational Metaphors

Grounding and linking metaphors are used in

forming mathematical ideas (Lakoff and Núñez

2000). The former “ground” our understanding of

mathematics in familiar domains of experience, the

latter link one branch of mathematics to another.

Lakoff and Núñez (1997) point out that often

mathematics teachers attempt to concoct ad hoc

extensions of grounding metaphors beyond their

natural domain, like “helium balloons” or “anti-

matter objects” for negative numbers. Although

the grounding “motion metaphor” extends better

to negative numbers: �3 steps means walking

backwards 3 steps and multiplying by �1 is

turning around, they consider this extension
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a forced “educational metaphor.” For an explicit

account of such educational metaphors, see Chiu

(1996, 2000, 2001). Negative numbers arise more

naturally, however, via flows in a graph:

A “negative flow” of 3 units from agent A to

agent B “is” a usual flow of 3 units from B to A.

Metaphoring (Metaphorical Thinking)

in Mathematics Education

Presmeg (2004) studied idiosyncratic metaphors

spontaneously generated by students in problem-

solving as well as their influence on their sense

making. Students generating their ownmetaphors

increase their critical thinking, questioning, and

problem-solving skills (Low 2008). There are

however potential pitfalls occasioned by invalid

inferences and overgeneralization.

Building on their embodied prior knowledge,

students can understand difficult concepts

metaphorically (Lakoff and Núñez 1997). Explicit

examples have been given by Chiu (2000, 2001),

e.g., students using their knowledge of motion to

make sense of static polygons through the “poly-

gons are paths” metaphor, and so “seeing” that the

sum of the exterior angles is a whole turn and that

exterior angles are more “natural” than interior

angles! “Polygons are enclosures between crossing

sticks” elicits different approaches. Source under-

standing overcomes age to determine metaphoring

capacity, since 13-month infants can already

metaphorize (Chiu 2000). Also, a person’s prior

(nonmetaphorical) target understanding can curtail

or block metaphoring (loc. cit.).

Examples of Metaphors for Multiplication

Chiu (2000) indicates the following:

“Multiplication A�B is replacing the original

A pieces by B replications of them.”

“Multiplication A � B is cutting each of the

current A objects into B pieces.”

“Area metaphor” and “Branching metaphor”

for multiplication (Soto-Andrade 2007) are

illustrated in Fig. 2.

In the area metaphor, commutativity is per-

ceived as invariance of area under rotation. We

“see” that 2 � 3 ¼ 3 � 2, without counting and

knowing that it is 6. In the branching metaphor,

commutativity is less obvious unless this meta-

phor becomes a “met-before” (McGowen and

Tall 2010) because you know trees very well.

Our trees also suggest a “hydraulic metaphor,”

useful to grasp multiplication of fractions: A litre

of water drains evenly from the tree apex, through

the ducts. Then 1/6 appears as 1/3 of 1/2 in the left

tree and also as 1/2 of 1/3 in the right tree. Our

hydraulic metaphor enables us to see the “two

sides of the multiplicative coin”: 2 � 3 is bigger

but 1/2 � 1/3 is smaller than both factors. It also

opens up the way to a deeper metaphor for

multiplication: “multiplication is concatenation”,

a generating metaphor for category theory in

mathematics.

On the Metaphorical Nature of Mathematics

Lakoff and Núñez’s claim that mathematics

consists entirely of conceptual metaphors has

stirred controversy among mathematicians and

mathematics educators. Dubinsky (1999) sug-

gests that formalism can be more effective than

metaphor for constructing meaning. Goldin

(1998, 2001) warns that the extreme view that

all thought is metaphorical will be no more

helpful than earlier views that it was proposi-

tional and finds that Lakoff and Núñez’s

“ultrarelativistism” dismisses perennial values

central to mathematics education like mathemat-

ical truth and processes of abstraction, reasoning,

and proof among others (Goldin 2003).

However some distinguished mathematicians

dissent. Manin (2007), referring to Metaphor and

Metaphors in Mathematics Education, Fig. 2 Two metaphors for commutativity of multiplication
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Proof, complains about the imbalance between

various basic values which is produced by the

emphasis on proof (just one of the mathematical

genres) that works against values like “activi-

ties”, “beauty” and “understanding”, essential in

high school teaching and later, neglecting which

a teacher or professor tragically fails. He also

claims that controverted Thom’s Catastrophe

Theory “is one of the developed mathematical

metaphors and should only be judged as such”.

Thom himself complains that “analogy, since

positivism, has been considered as a remain of

magical thinking, to be condemned absolutely,

being nowadays hardly considered as more than

a rhetorical figure (Thom, 1994). He sees catas-

trophe theory as a pioneering theory of analogy

and points out that narrow minded scientists

objecting the theory because it provides nothing

more than analogies and metaphors, do not

realize that they are stating its true purpose: to

classify all possible types of analogical situations

(Porte, 2013).

The preface to Mumford et al. (2002) reads:

“Our dream is that this book will reveal to our

readers that mathematics is not alien and remote

but just a very human exploration of the patterns

of the world, one which thrives on play and

surprise and beauty.”

McGowen and Tall (2010) argue that even

more important than metaphor for mathemati-

cal thinking are the particular mental structures

built from experience that an individual has

“met-before.” Then one can analyze the met-

befores of mathematicians, mathematics educa-

tors, and developers of theories of learning to

reveal implicit assumptions that support their

thinking in some ways and hinder it in others.

They criticize the top-down nature of Lakoff

and Núñez “mathematical idea analysis” and

their unawareness of their own embodied back-

ground and implicit met-befores that shape

their theory.

Open Ends and Questions

Further research is needed on methods and tech-

niques of teaching metaphor.

Facts on how the neural substrate of per-

ception and action is co-opted by higher-level

processes suggest further research on

comparing visual, auditory, and kinesthetic

metaphors.

How can teachers facilitate the emergence

of idiosyncratic metaphors in the students?

May idiosyncratic metaphors be voltaic arcs

that spring when didactical tension is high

enough in the classroom?

How and where do students learn relevant

metaphors: from teachers, textbooks, or sources

outside of the classroom?

How can we facilitate students’ transiting

between metaphors?

How can teaching trigger change in students’

metaphors?

What roles should the teacher play in meta-

phor teaching?

What happens when there is a mismatch

between teacher and student’s metaphors?

Do experts continue using the same metaphors

as novices? If yes, do they use them in the

same way?
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Definition

The term “misconception” implies incorrectness or

error due to the prefix “mis.” However its conno-

tation never implies errors from a child’s perspec-

tive. From a child’s perspective, it is a reasonable

and viable conception based on their experiences in

different contexts or in their daily life activities.

When children’s conceptions are deemed to be in

conflict with the accepted meanings in mathemat-

ics, the term misconceptions has tended to be used.

Therefore some researchers or educators prefer to

use the term “alternative conception” instead of

“misconception.” Other terms sometimes used for

misconceptions or terms related to misconceptions

include students’ mental models, children’s arith-

metic, preconceptions, naı̈ve theories, conceptual

primitives, private concepts, alternative frame-

works, and critical barriers.

Some researchers avoid using the term “mis-

conceptions,” as they consider them as misappre-

hensions and partial comprehensions that

develop and change over the years of school.

For example, Watson (2011), based on an exten-

sive program of research, identifies developmen-

tal pathways that can be observed as middle

school students move towards more sophisticated

understandings of statistical concepts, culminat-

ing in a hierarchical model incorporating six

levels of statistical literacy (p. 202).
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Characteristics

Research on misconceptions in mathematics and

science commenced in the mid-1970s, with the

science education community researching the

area much more vigorously. This research care-

fully rejected the tabula rasa assumption that chil-

dren enter school without preconceptions about

a concept or topic that a teacher tries to teach in

class. The first international seminar Misconcep-

tions and Educational Strategies in Science and

Mathematics was held at Cornell University, Ith-

aca, NY, in 1983, with researchers from all over

the world gathering to present research papers in

this area – although themajority of research papers

were in the field of science education.

In mathematics education, according to

Confrey (1987), research on misconceptions

began with the work of researchers such as

Erlwanger (1975), Davis (1976), and Ginsburg

(1976), who pioneered work focusing on stu-

dents’ conceptions. In the proceedings of the

second seminar: Misconceptions and Educational

Strategies in Science and Mathematics, Confrey

(1987) used constructivism as a framework for

a deep analysis of research on misconceptions.

Almost two decades later, Confrey and Kazak

(2006) identified examples of misconceptions

which have been extensively discussed by

the mathematics education community – for

example, “Multiplication makes bigger, division

makes smaller,” “The graph as a picture of

the path of an object,” “Adding equal amounts

to numerators and denominators preserves

proportionality,” and “longer decimal number

are bigger, so the 1.217 > 1.3” (pp. 306–307).

Concerning decimals, a longitudinal study by

Stacey (2005) showed that this misconception

is persistent and pervasive across age and

educational experience. In another extensive

study, Ryan and Williams (2007) examined

a variety of misconceptions among 4–15-year-

old students in number, space and measurement,

algebra, probability, and statistics, as well as

preservice teachers’ mathematics subject matter

knowledge of these areas.

From the teacher’s perspective, a misconception

is not a trivial error that is easy to fix, but rather it is

resilient or pervasive when one tries to get rid of it.

The reason whymisconceptions are stubborn is that

they are viable, useful, workable, or functional in

other domains or contexts. Therefore, it is important

for teachers not only to treat misconceptions with

equal importance tomathematical concepts but also

to identify what exactly the misconception is in the

learning context and to clarify the relationship

between the misconception and the mathematical

concept to be taught. In other words, the teacher

needs to construct the task for the lesson taking the

misconception into consideration in order to resolve

the conflict between the misconception and the

mathematical concept. By doing this the lesson

may open up a new pathway to children’s deeper

and wider understanding of the mathematical con-

cept to be taught.

So far many misconceptions have been identi-

fied at the elementary and secondary levels, how-

ever only a few of them are considered for

inclusion in actual teaching situations. While very

few of these are incorporated in mathematics text-

books, one exception is the misconception that

figures with the same perimeter have the same

area. For example, Takahashi (2006) describes

an activity used in a fourth-grade Japanese

textbook to introduce the formula for the

area of a rectangle that asks students to com-

pare the areas of carefully chosen figures that

have the same perimeter – for example, 3 cm

� 5 cm and 4 cm � 4 cm rectangles.

Further research is needed to develop how

to incorporate misconceptions into textbook or

teaching materials in order to not only resolve

the misconception but also to deepen and

expand children’s understanding of mathematical

concepts.
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Essentially ongoing improvement in learning is

connected to the knowledge of the teacher.

This knowledge can be about the mathematics

they will teach, communicating that mathemat-

ics, finding out what students know and what

they find difficult to learn, and managing the

classroom to maximize the learning of students.

This entry is about approaches to in-service

mathematics teacher education and highlighting

where emphases are placed. The basic organizer

is around teacher decision making since effective

classroom teaching is essentially about planning

experiences that engage students in activities that

are mathematically rich, relevant, accessible, and

the management of the learning that results. As

Zaslavsky and Sullivan (2011) propose, educat-

ing practising teachers involves facilitating

growth from “uncritical perspectives on teaching

and learning to more knowledgeable, adaptable,

judicious, insightful, resourceful, reflective and

competent professionals ready to address the

challenges of teaching” (p. 1).

The entry is structured around an adaptation of

the Clark and Peterson (1986) schematic in which

three background factors – specifically teacher

knowledge; the constraints they anticipate they

will experience; and their attitudes, beliefs, and

self-goals – influence each other and together

inform teachers’ intentions to act and ultimately

their classroom actions. Because the schematic

essentially connects background considerations

with practice, it is ideal for structuring the

education of practising mathematics teachers.

The first of these background factors refers

to teacher knowledge. A model informing the

design of practising teacher education directed

at improving their knowledge was proposed by

Hill et al. (2008) in which there were two major

categories: subject matter knowledge and peda-

gogical content knowledge. Hill et al. described

Subject Matter Knowledge as consisting of com-

mon content knowledge, specialized content

knowledge, and knowledge at the mathematical

horizon. For each of these, the emphasis is on

developing in teachers the capacity not only to

learn any new mathematics they need but also to

view the mathematics they know in new ways.

Generally, both of these orientations are facili-

tated by connecting this learning to the further

development of their pedagogical content knowl-

edge. Hill et al. argued that Pedagogical Content

Knowledge includes knowledge of content and

teaching, knowledge of content and students,

and knowledge of curriculum. In addressing

knowledge of content and teaching, Zaslavsky

and Sullivan (2011) proposed focusing teacher

learning on experiences such as those involving
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comparing and contrasting between and across

topics to identify patterns and make connections,

designing and solving problems for use in their

classrooms, fostering awareness of similarities

and differences between tasks and concepts, and

developing the capacity of teachers to adapt

successful experiences to match new content.

Knowledge of content and students is primarily

about the effective use of data to inform planning

and teaching. Essentially, the goal is to examine

what students know, as distinct from what they

do not. In terms of knowledge of curriculum,

Sullivan et al. (2012) described processes where

teachers evaluate resources, draw on the

experience of colleagues, analyze assessment

data to make judgments on what the students

know, and interpret curriculum documents to

identify important ideas (Charles 2005) as the

first level of knowing the curriculum. The subse-

quent levels involve selecting, sequencing, and

adapting experiences for the students, followed

by planning the teaching. All of these can inform

the design of practising teacher education.

The second background factor refers to the

constraints that teachers anticipate they may con-

front. Such constraints can be exacerbated by the

socioeconomic, cultural, or language background

of the students, geographic factors, and gender.

A further constraint is the diversity of readiness

that teachers experience in all classes, even those

grouped to maximize homogeneity. Sullivan

et al. (2006) described a planning framework that

includes accessible tasks, explicit pedagogies, and

specific enabling prompts for students experienc-

ing difficulty. Such prompts involve slightly low-

ering an aspect of the task demand, such as the form

of representation, the size of the number, or the

number of steps, so that a student experiencing

difficulties can proceed at that new level; and then

if successful can proceed with the original

task. Teacher educators can encourage practising

teachers to examine the existence and sources of

constraints and strategies that can be effective in

overcoming those constraints.

The third background factor includes

teachers’ beliefs about the nature of mathematics

and the way it is learned. Particularly important is

whether teachers believe that all students can

learn mathematics or whether such learning is

just for some (Hannula 2004). Also important is

whether teachers see their own and students’

achievement as incremental and amenable to

improvement through effort (Dweck 2000).

Teacher education can include experiences that

address this by, for example, examining forms of

affirmation, studying tasks that foster inclusion,

and developing awareness of threats such as self-

fulfilling prophecy effects (Brophy 1983).

Having formed intentions, teachers act in

classrooms. Rather than compartmentalizing the

elements of the background factors described

above, it is preferable that the education of prac-

tising teachers incorporate all elements together,

a suitable framework for which is the study of

practice. The most famous example of teacher

learning from the study of practice is Japanese

Lesson Study which is widely reported in the

Japanese context (e.g., Fernandez and Yoshida

2004; Inoue 2010) and has been adapted to West-

ern contexts (e.g., Lewis et al. 2004). Other

examples of learning through the study of

practice include realistic simulations offered by

videotaped study of exemplary lessons (Clarke

and Hollingsworth 2000); interactive study of

recorded exemplars (e.g., Merseth and Lacey

1993); case methods of teaching dilemmas that

problematize aspects of teaching (e.g., Stein et al.

2000); and Learning Study which is similar to

Japanese Lesson Study but which focuses on

student learning (Runesson et al. 2011).

An associated factor is the need for

effective school-based leadership of the math-

ematics teachers. If the focus is on sustainable,

collaborative school-based approaches to

improving teaching, this needs active and sen-

sitive leadership. Such leaders can be assisted

to study processes for leadership, as well

as developing their confidence to lead the

aspects of planning, teaching, and assessment

described above.
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Definition

Models of preservice teacher education are

understood as structures of professional learning

set up by intention for prospective mathematics

teachers.

Characteristics

Preservice teacher education is widely consid-

ered as necessary for preparing prospective

mathematics teachers for mastering the chal-

lenges of the mathematics classroom. To this

end, models of preservice teacher education

have been developed and are subject to ongoing

investigations. For the profession of teaching

mathematics, specific professional knowledge

is necessary. In particular, designing learning

opportunities and exploring the students’

understanding or adaptive strategies of fostering

mathematical competency require not only math-

ematical knowledge and pedagogical knowledge

but also pedagogical content knowledge

(Shulman 1986; Ball et al. 2008; Bromme

1992). This knowledge encompasses declarative

and procedural components (e.g., Baumert et al.

2010; Ball et al. 2008), as well as prescriptive

views and epistemological orientations (e.g.,

Pajares 1992; McLeod 1989; Törner 2002); it
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ranges from rather global components (cf. Törner

2002) to content-specific or even classroom

situation-specific components (Kuntze 2012;

Lerman 1990).

The goal of developing such a multifaceted

professional knowledge underpins the signifi-

cance of specific and structured environments

for initial professional learning. However, it is

widely agreed that models of preservice teacher

education have to be seen as subcomponents in

the larger context of continued professional

learning throughout the whole working period

of teachers rather than being considered as an

accomplished level of qualification. Even though

these models of preservice teacher education are

framed by various institutional contexts and

influenced by different cultural environments

(Leung et al. 2006; Bishop 1988), the following

fundamental aspects which are faced by many

such models of preservice teacher education

may be considered:

• Theoretical pedagogical content knowledge

is essential for designing opportunities of

rich conceptual learning in the classroom.

Hence, in models of preservice teacher educa-

tion, theoretical knowledge such as knowl-

edge about dealing with representations or

knowledge about frequent misconceptions of

learners (cf. Ball 1993) is being supported in

particular methodological formats which

may take the form, e.g., of lectures, seminars,

or focused interventions accompanying

a learning-on-the job phase (Lin and Cooney

2001).

• Linking theory to practice is a crucial

challenge of models of preservice teacher

education. The relevance of professional

knowledge for acting and reacting in the

classroom is asserted to be supported by an

integration of theoretical knowledge with

instructional practice. In models of preservice

teacher education, this challenge is addressed

by methodological approaches such as school

internships, frequently with accompanying

seminars and elements of coaching (cf. Joyce

and Showers 1982; Staub 2001; Kuntze

et al. 2009), and specific approaches such as

lesson study (Takahashi and Yoshida 2004),

video-based work (e.g., Sherin and Han 2003;

Seago 2004; Dreher and Kuntze 2012;

Kuntze 2006), or work with lesson transcripts.

For several decades, approaches such as

“microteaching” (e.g., Klinzing 2002) had

emphasized forms of teacher training centered

in practicing routines for specific instructional

situations. Seen under today’s perspective, the

latter approach tends to underemphasize the

goal of supporting reflective competencies of

prospective teachers which tend to be trans-

ferable across contents and across specific

classroom situations (Tillema 2000).

• Developing competencies of instruction- and

content-related reflection is a major goal in

preservice teacher education. Accordingly,

learning opportunities such as the analysis

and the design of mathematical tasks (e.g.,

Sullivan et al. 2009, cf. Biza et al. 2007), the

exploration of overarching ideas linked to

mathematical contents or content domains

(Kuntze et al. 2011), or the analysis of

videotaped classroom situations (Sherin and

Han 2003; Reusser 2005; Kuntze et al. 2008)

are integrated in models of preservice mathe-

matics education, supporting preservice

teachers to build up reflective competencies

or to become “reflective practitioners” (e.g.,

Smith 2003; Atkinson 2012).

The scenarios mentioned above indicate that

there are a wide variety of possible models of

preservice teacher education, as it has also been

observed in comparative studies of institutional

frameworks (König et al. 2011; Tatto et al. 2008).

In contrast, research on the effectiveness of dif-

ferent models of preservice teacher education is

still relatively scarce. Studies like TEDS-M

(Tatto et al. 2008) constitute a step into this

direction and set the stage for follow-up research

not only in processes of professional learning in

the settings of specific models of preservice

teacher education but also into effects of specific

professional learning environments, as they can

be explored in quasi-experimental studies. In

addition to a variety of existing qualitative case

studies, especially quantitative evidence about

models of preservice teacher education is still

needed (cf. Adler et al. 2005). Such evidence
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from future research should systematically iden-

tify characteristics of effective preservice teacher

education. Moreover empirical research about

models of preservice teacher education should

give insight how characteristics of effective

professional development for in-service mathe-

matics teachers (Lipowsky 2004) may translate

into the context of the work with preservice

teachers, which differs from professional devel-

opment of in-service teachers (da Ponte 2001).
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Disposition

Definition

The impetus for and maintenance of mathemati-

cal activity. Mathematics learning, as goal-

directed behavior, involves the development of

expectations, values, and habits that constitute

the reasons why people choose to engage and

persevere on the one hand or disengage and

avoid on the other, in mathematics and mathe-

matically related pursuits.

Characteristics and Findings from
Various Theoretical Perspectives

The history of motivation research applied to

mathematics learning began with the study of
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biological drives and incentive in the first

decades of the twentieth century (see Brownell

1939 for a good review of this perspective as

applied to education). Following the tenets of

classical and operant (instrumental) conditioning,

it was found that if a reinforcer was provided for

successfully completing a behavior, the probabil-

ity of that behavior occurring in the future under

similar circumstances would increase. Addition-

ally, Thorndike found that the intensity of the

behavior would increase as a function of the

reinforcement value (1927). These general theo-

ries of the use of incentives to motivate student

learning dominated educational theory roughly

until the middle of the 1960s.

They are still valuable to educators today,

particularly in the use of behavior modification

techniques, which regulate the use of rewards and

other reinforcers contingent upon the learner’s

successive approximation of the desired

behavioral outcomes, which could be successful

skill attainment or increase in positive self-

statements to reduce math anxiety and so on

(Bettinger 2008).

Since the mid-1960s, research on motiva-

tion in the psychology of learning has focused

on six different, but not distinct, theoretical

constructs: Attributions, Goal Theory, Intrinsic

Motivation, Self-Regulated Learning, Social

Motivation, and Affect. These factors grew

out of a general cognitive tradition in psychol-

ogy but recently have begun to explain the

impact of social forces, particularly classroom

communities and teacher-student relationships

on student enjoyment and engagement in math-

ematical subject matter (see Middleton and

Spanias 1999 for a review comparing these

perspectives).

Attribution Theory

Learners’ beliefs about the causes of their

successes and failures in mathematics determine

motivation based on the locus of the cause (inter-

nal or external to the learner) and its stability

(stable or unstable). Productive motivational

attributions tend to focus on internal, stable

causes (like ability and effort) for success as

these lead to increased persistence, self-efficacy,

satisfaction, and positive learning outcomes.

Lower performing demographic populations

tend to show more external and unstable attribu-

tional patterns. These appear to be caused by

systematic educational biases (Kloosterman

1988; Pedro et al. 1981; Weiner 1980).

Goal Theory

Goal theories focus on the stated and unstated

reasons people have for engaging in mathemati-

cal tasks. Goals can focus on Learning (also

called Mastery), Ego (also called Performance),

or Work Avoidance. People with learning goals

tend to define success as improvement of their

performance or knowledge. Working towards

these kinds of goals shows results in the valuation

of challenge, better metacognitive awareness,

and improved learning than people with ego

goals. Work avoidance goals are debilitating,

psychologically, as they result from learned

helplessness and other negative attributional

patterns (Wolters 2004; Covington 2000; Gentile

and Monaco 1986).

Intrinsic Motivation and Interest

The level of interest a student has in mathematics,

the more effort he or she is willing to put out, the

more he or she thinks the activity is enjoyable,

and the more they are willing to persist in the

face of difficulties (Middleton 1995; Middleton

and Spanias 1999; Middleton and Toluk 1999).

Intrinsic Motivation and Interest theories

have shown that mathematical tasks can be

designed to improve the probability that

a person will exhibit task-specific interest

and that this task-specific interest, over time,

can be nurtured into long-term valuation of

mathematics and its applications (Hidi and

Renninger 2006; Köller et al. 2001; Cordova

and Lepper 1996).

Self-Regulated Learning

Taken together, these primary theoretical per-

spectives can be organized under a larger

umbrella concept: Self-Regulated Learning

(SRL). Internal, stable attributions are a natural

outcome of Learning Goals, and Interest is

a natural outcome of internal, stable, attributions.
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Each of these perspectives contributes to the

research on the others such that the field of moti-

vation in general, and in mathematics education

specifically, is now able to use these principles to

design classroom environments, tasks, and

interventions to improve mathematics motivation

and performance (Zimmerman and Schunk 2011;

Eccles and Wigfield 2002; Wolters and

Pintrich 1998).

Social Motivation

In addition to the aforementioned psychologi-

cal theories, study of students in classrooms

has recently yielded principles for understand-

ing how social groups motivate themselves.

In general these theories show that needs for

affiliation and relatedness with peers, fear

of disapproval, and the need to demonstrate

competence interact in complex ways in the

classroom (Urdan and Schoenfelder 2006).

Intellectual goals and social needs therefore

are integrally related. Additionally, the need

for social concern is a critical motivator

for student prosocial learning (Jansen 2006).

Students who feel a concern for the struggles

of others are able to provide support for the

learning of others. This is a key component of

effective group work and social discourse in

mathematics classrooms.

Affect

The outcomes of learning environments consist

of cognitive as well as affective responses. Peo-

ple tend to enjoy mathematics more when they

find it interesting and useful, and they tend to

dislike or even fear engagement in mathematics

when they believe they will not be successful

(Hoffman 2010). Goldin et al. (2011) have

shown that people build affective structures

which allow them to predict the emotional con-

tent and probable outcomes of mathematical

activity. Activity forms a physiological feedback

loop between behavior and goals and therefore

has both an informational role as well as

a reinforcement role (Hannula 2012). These

cognitive structures are integral to self-regulation

and decision-making regarding when and how

deeply to engage in mathematics tasks.
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Definition

Noticing is a term used in everyday language to

indicate the act of observing or recognizing

something, and people engage in this activity

regularly while they navigate a perceptually

complex world. At the same time, individual

professions have strategic ways of noticing,

and understanding and promoting productive

noticing by mathematics teachers has become

a growing area of inquiry among researchers

(For a compilation, see Sherin et al. 2011).

The field currently embraces a range of concep-

tualizations of noticing, but many researchers use

as their foundation Goodwin’s ideas about

professional vision (1994), Mason’s (2002)

discipline of noticing, and research on expertise.

Conceptualizations and Contributions
of Mathematics Teacher Noticing

Teachers, in particular, have always been

confronted with a “blooming, buzzing confusion

of sensory data” (B. Sherin and Star in

M.G. Sherin et al. 2011), and so they need to

find ways to distinguish between more produc-

tive and less productive noticing. This task

has been made even more complex as mathe-

matics teaching has increasingly become asso-

ciated with in-the-moment decisions whereby

teachers take into account the variety of

students’ conceptions that arise. Thus, the con-

ceptualization and study of teacher noticing

contributes to national efforts to decompose

the practice of teaching into specific compo-

nents that might be studied and learned

(Grossman et al. 2009).

Current conceptualizations of mathematics

teacher noticing have generally been associated

with two components: attending and making

sense. Researchers differ on what constitutes

making sense, with some focusing exclusively

on teachers’ interpretations of events whereas

others also include consideration of teachers’

instructional responses. For example, Jacobs

et al. (2010) consider instructional responses

in conceptualizing professional noticing of

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
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children’s mathematical thinking as comprised of

three interrelated skills: (a) attending to chil-

dren’s strategies, (b) interpreting children’s

understandings, and (c) deciding how to respond

on the basis of children’s understandings.

Another difference in how researchers conceptu-

alize noticing is whether the focus is on

documenting everything teachers find notewor-

thy or documenting whether teachers notice

particular aspects of instruction identified as

important by researchers, such as students’ math-

ematical thinking or specific mathematical

content knowledge.

Noticing differs from constructs such as

knowledge and beliefs because noticing names

an interactive, practice-based process rather

than a category of cognitive resource. Specif-

ically, the focus of mathematics-teacher

noticing is on how teachers interact with

a mathematical instructional situation, and

this practice-based nature of noticing makes

it complex and thereby challenging to develop.

However, professional development has been

found to support teachers while they learn to

notice differently. One particularly promising

approach to enhancing mathematics-teacher

noticing has been through the work of video

clubs (e.g., M.G. Sherin and van Es 2009),

whereby teachers collaboratively view and

analyze classroom videos.

Learning to notice in new, more sophisticated,

ways supports teachers while they learn to teach

more effectively. As such, learning to notice pro-

ductively in an instructional setting is an impor-

tant, but often hidden, teaching skill. Sherin et al.

(2011) noted that classrooms are too complex

for teachers to ever be able to notice every-

thing before responding. They suggested that

instead of focusing on all possible contingen-

cies, professional developers focus on ways of

helping teachers develop new understandings

of their learning environments so that they can

make more informed instructional decisions.

In this way, teachers’ changing practices are

driven by enhanced teacher noticing whereby

they are “seeing and making sense differently

of things that are happening in the classroom”

(p. 11).
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Characteristics

Number lines figure prominently in mathematics

education. They may take various shapes and
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forms, from a clothesline with number cards

in the early grades, to straight lines on paper

representing rational numbers or integers.

Number lines may feature all numbers under

consideration or just a selection, depending on

the function the number line has to fulfill. The

1st-grade number cards, for instance, are to sup-

port the learning of the number sequence.

Whereas a more schematized number line may

be used to illuminate the structure and magnitude

of rational numbers and decimals. In this

contribution we will focus on the empty number

line, which is kept even more sparse than the

latter in order to fulfill its role as a specifically

designed instructional tool.

The Empty Number Line

The idea of using the empty number line as

a means of support for adding and subtracting

numbers up to 100 was introduced by Whitney

(1985) and elaborated and publicized by Treffers

(1991), who linked it to the so-called domain-

specific instruction theory for realistic mathemat-

ics education (RME) (see also Gravemeijer

2004). In doing so, he also adopted Whitney’s

suggestion of using a bead string, consisting of

100 beads that are grouped in a pattern of ten

dark beads, ten light beads, ten dark beads,

etc. (see Fig. 1), as a precursor to the number line.

The activities with the bead string consist of

counting beads (starting from the left and mark-

ing the total with a clothespin), incrementing,

decrementing, and comparing numbers of beads.

The rationale for those activities is that students

will start to use the color structure of the bead

string, by curtailing the counting of beads to

counting by tens and ones. Students may start

using multiples of ten as reference points, both

for identifying given numbers of beads (e.g.,

63 ¼ 6 � 10 + 3 or 68 ¼ 7 � 10 � 2) and for

adding and subtracting beads. Adding 30 to 42,

for instance, may be carried out via “jumps of

ten”: “42 + 10¼ 52, 52 + 10¼ 62, 62 + 10¼ 72”

(see Fig. 2).

Next the activities with the bead string are

symbolized on a number line, where small arcs

signify jumps of one and bigger arcs jumps of ten.

In this manner the number line may start to

function as a way of scaffolding ten-referenced

strategies for addition and subtraction up to 100.

And the students may start curtailing the jumps in

various manners (see Fig. 3), a method which can

be expanded to numbers up to 1,000 (Selter 1998).

Research showed that the empty number

line is a powerful model for instruction

(Klein et al. 1998).

Flexible Solution Strategies

Note that number line the students start with is

literally empty, and the students only mark the

numbers that play a role in their calculation. The

marks on the number line emanate from the

student’s own thinking. This allows for a wide

variety of flexible solution strategies – which are

compatible with a group of solution strategies

that students develop spontaneously. Research

shows that the informal strategies students

develop to solve addition and subtraction prob-

lems up to 100 fall in two broad categories,

“splitting tens and ones” and “counting in

jumps” (Beishuizen 1993). An instance of split-

ting tens and ones would be solving 44 + 37¼ . . .,

for example, via 40 + 30 ¼ 70; 4 + 7 ¼ 11; and

70 + 11 ¼ 81. Counting in jumps would involve

Number Lines in Mathematics Education, Fig. 1 Bead string

Number Lines in Mathematics Education, Fig. 2 Jumps on the bead string
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solutions such as 44 + 37 ¼ . . .; 44 + 30 ¼ 74;

74 + 7 ¼ 81 or 44 + 37 ¼ . . .; 44 + 6 ¼ 50;

50 + 10 ¼ 60; 60 + 10 ¼ 70; 70 + 10 ¼ 80; and

80 + 1 ¼ 81. According to Beishuizen (1993),

procedures based on splitting lead to more errors,

than solution procedures that are based on

curtailed counting. Other researchers found that

students tend to come up with a wide variety of

counting solutions when confronted with “linear-

type” context problems (see Gravemeijer 2004).

Capitalizing on counting strategies therefore

fits the reform mathematics idea of supporting

students in constructing their own mathematical

knowledge.

Further Elaboration

Treffer’s approach with the bead string as precur-

sor to the empty number line is further elaborated

in an instructional program that aims at teaching

flexible solution strategies via a process of

progressive schematizing, which proceeds along

three levels of schematizing: informal/contextu-

alized; semiformal/model supported; and formal/

arithmetical. This process is supported by the

training of subskills. The program consists of

two parts, “numbers” and “operations with

numbers.” The former addresses the basic skills

of counting, ordering and localizing, and

jumping to given numbers. The latter addresses

complementary skills, such as addition to 10,

partitioning, jumps of 10, and relating subtraction

and addition. This program has been integrated in

a teaching and learning trajectory for calculation

with whole numbers in primary school in the

Netherlands (Heuvel-Panhuizen 2001). The latter

advices to start with counting in jumps in grade 2

and to expand the repertoire of mental calculation

techniques in grade 3 with de split method and

“flexible” or “varying” strategies.

An Alternative Approach

Parallel to this, an alternative approach has been

developed in which the bead string is replaced by

a series of measuring tools in an interactive

inquiry classroom culture setting (Stephan et al.

2003; Gravemeijer 2004). This approach gives

priority to unitizing and to developing a network

of number relations. The rationale of the focus on

number relations is that the students’ knowledge

of number relations forms the basis for what –

from an observer’s point of view – looks like the

application of strategies. While what the students

actually do is combining number facts which are

ready to hand to them, in order to derive new

number facts. According to this view, the

construction of a network of number relations

involves a shift from numbers that signify count-

able objects for the students, to numbers as enti-

ties in and of themselves. This idea is further

elaborated with the emergent modeling design

3
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Number Lines in Mathematics Education, Fig. 3 Various strategies for 37 + 47 on the number line
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heuristic (Gravemeijer 1999) in design experi-

ment in Nashville (Stephan et al. 2003). Here

the choice for measuring is dictated by the ambi-

guity of the numbers on the number line. On the

one hand, the numbers refer to quantities, and,

on the other hand, they refer to positions on

the number line. Most addition and subtraction

problems that the students have to solve deal with

quantities, while the solution methods involve the

order of the numbers in the number sequence.

Linear measurement offers the opportunity to

address this ambiguity. A number on a ruler

also signifies both a position and a quantity or

a magnitude. And students may develop a deeper

understanding of the relation between the two,

when they come to see the activity of measuring

as the accumulation of distance. The latter

implies that each number word used in the activ-

ity of iterating signifies the total measure of the

distance measured until that moment. From an

emergent modeling perspective, the notion of

a ruler can be construed as an overarching

model. The ruler may be seen as a curtailment

of iterating a measurement unit and thus emerge

as a model of iterating some measurement unit,

which is superseded by the empty number line as

a more abstract ruler that functions as a model for

mathematical reasoning with numbers up to 100.

As a caveat, however, it should be noted that

ample care has to be taken to avoid that the empty

number line is seen as a simplified picture of

a ruler. Instead, the jumps on the number line

have to be perceived as means of describing

one’s arithmetical thinking. In contrast to the

ruler, the empty number line should not be seen

as proportional. For trying to strive for an exact

proportional representation would severely ham-

per flexible use of the number line.

Imagery

An issue of concern is what the number line and

its precursors signify for the students. A teaching

experiment in which the number line was not

preceded by a bead string or a ruler showed the

importance of “imagery.” To come to grips with

a new tool, the students have to be able to see an

earlier activity with earlier tools in the activities

with the new tool (Gravemeijer 1999). In the

original approach, the actions on the number

line are expected to signify corresponding activ-

ities on the bead string. In the sequence that is

based on linear measurement, a series of transi-

tions take place in which activities with new tools

have to fulfill the imagery criterion: first, when

the activity of measuring various lengths by iter-

ating some measurement unit is curtailed to mea-

suring with tens & ones; next, when the activity

of iterating tens & ones is modeled with a ruler;

then, when the activity shifts from measuring to

reasoning about measures while incrementing,

decrementing or comparing lengths; thereafter,

when the arithmetical solution methods that

may be supported by referring to the decimal

structure of the ruler are symbolized with arcs

on an empty number line; and finally, when this

more abstract representation is used as a way of

scaffolding and as a way of communicating solu-

tion methods for all sorts of addition and subtrac-

tion problems.

Effect Studies

Most Dutch primary school textbooks are compat-

ible with the way the empty number line approach

is elaborated in the “teaching and learning

trajectory for calculation with whole numbers in

primary school in the Netherlands” (Heuvel-

Panhuizen 2001) that was mentioned earlier. The

results of national surveys halfway primary school,

nevertheless, show that the Dutch students are not

as proficient in subtracting two-digit numbers as

might have been expected (Kraemer 2011).

A follow-up study on the solution procedures of

students (Kraemer 2011) shows that jumping is

used frequently, and with good results, but the

other methods generate many wrong answers. His

data further reveal a strong tendency to solve con-

textual problems in two directions, via direct sub-

traction or indirect addition, and bare sums

primarily in one direction, direct subtraction,

which is not always efficient. Kraemer (2011)

argues that the identified patterns suggest the stu-

dents use what works for them. This is initially the

combination of jumping and “subtract strategies.”

Over time, however, they start trying to combine

these strategies with split and reasoning proce-

dures. Then they run into problems because they
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still miss important conceptual and instrumental

building blocks for splitting and more

sophisticated reasoning with numbers up to 100.

From these findings, we may conclude that

careful attention has to be paid to fostering a

conceptual understanding of splitting strategies

and variable strategies and of the relations

between the various strategies. Which is to show

that the empty number line can be a powerful tool,

but its success is very dependent of the way it is

embedded in a broader instructional setting.

The Double Number Line

Although the empty number line iswell researched,

a variant of it, the double number line, has not

gotten that much attention. The double number

line can be used as a means of support for coordi-

nating two units of measure. This is particularly

useful in the domains of fractions and percentages,

where the units are often linked to numerosities or

magnitudes (van Galen et al. 2008). Here we may

think, for instance, of reasoning about the content

of a petrol tank which can hold 60 l: half a tank

contains 30 l, ¼ tank half of that, and ¾ tank the

sum of the latter two (see Fig. 4).

Further research is needed to establish

whether working with the double number

line can – similarly to the empty number line –

effectively foster more formal forms of

mathematical reasoning.
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Characteristics

“Numbers” is one of the most important strands

in the mathematics curricula worldwide.

According to Verschaffel, Greer and De Corte

(2007), there are several reasons for this:

(a) The teaching of numbers is worldwide, and

number operations and applications are

connected and used in real life; (b) it relates and

constitutes a foundation for all other topics in

mathematics; and (c) it is one of the first

topics students are formally taught in school,

and students’ disposition to mathematics often

depends on this. Because of its importance and

its nature, number learning and teaching has

attracted enormous attention by mathematics

education researchers, experimental psycholo-

gists, cognitive psychologists, developmental

psychologists, and neuroscientists. Through the

years, a better understanding has been developed

regarding the components that constitute numer-

ical understanding, the nature of its learning and

development, the learning environments that

facilitate this learning as well as appropriate

tools for assessing the learning and teaching of

numbers.

Natural Numbers

Researchers identified three main strands

of research on numbers: the behaviorist, the cog-

nitive, and the situative (Greeno, et al. 1996).

Research on numbers has been mostly cognitive

(Bergeron and Herscovics 1990; Verschaffel

et al. 2006, 2007), but since the 1990s the influ-

ence of situative theories such as social construc-

tivism, ethnomathematics, and situated cognition

made a strong impact (Verschaffel et al. 2006).

Recently, the prevailing view is that cognitive

and situated methodologies (e.g., tests, clinical

research procedures, experimental teaching,

design experiments, computer simulations,

action research) may be combined to give a better

picture of the various phenomena. In this

section we will examine the way in which

research on natural numbers has evolved over

the years. This evolution also applies for research

on rational and in some extent of other

number systems.

Natural Numbers, Operations, and Estimation

Research on numbers has been under the focus of

researchers since the end of the nineteenth century

and has attracted enormous research attention.

Dewey (1898) was one of the first researchers who

provided an analysis of early number and presented

methods for teaching arithmetic. A few years later,

Thorndike (1922) published a book “The Psychol-

ogy of Arithmetic” where he presented the nature,

measurement, and construction of arithmetical

abilities. Since then the learning and teaching of

numbers has been a fundamental stream of mathe-

matics education research. Until the 1950s most of

the work on numerical understanding concen-

trated mainly on natural numbers, number

sequence, counting, and subitizing. After the

1950s one of the most dominant theoretical and

methodological approaches that guided research

in numbers was Piaget’s theory, which suggested

that the construction of natural numbers is based

on logical reasoning abilities (e.g., conservation

of number, class inclusion, transitivity property,

and seriation). The Piagetian tradition tended to

disregard counting and subitizing. A second

theoretical approach that guided research was the

counting-based approach which suggested that

numerical concepts evolve from counting skills

which individuals develop through the quantifica-

tion process (Bergeron and Herscovics 1990).

Most of the studies that flourished from the

1980s until the 1990s were mostly cognitive and

rather local (Bergeron and Herscovics 1990). They

described students’ development, their strategies,

and misconceptions as well as their conceptual

structures of whole number concepts and opera-

tions (Verschaffel et al. 2006). Research has

shown that children’s understanding of numbers

and their operations progresses successively in

more abstract, complex, and general conceptual

structures (Fuson 1992). Researchers also identified

threemain categories of strategies that students use

when solving one-step addition and subtraction

word problems: direct modeling with physical

objects, verbal counting (counting all, counting

on, or counting back), and mental strategies

(derived facts and known facts). Students’ strate-

gies were also explored in multiplication and divi-

sion although less extensively than in addition and

Number Teaching and Learning 471 N

N



subtraction. Researchers suggested that develop-

ment in subtraction and division progresses in

a different way from that of addition and

multiplication.

Researchers also explored students’ abilities in

operations with multi-digit numbers. These studies

suggested that a number of students often make

procedural mistakes in algorithms since they get

confused by the multistep procedures, while in

other cases they have poor conceptual understand-

ing of place value, grouping, and ungrouping.

Researchers also claimed that without efficient

knowledge of basic number facts, students are

bound to have difficulties in multi-digit oral and

written arithmetic (Kilpatrick et al. 2001). The

relationship of strategies, principles, and number

facts was also examined. One of the findings of

these studies was that different strategies may be

employed by students when dealing with different

numbers (Kilpatrick et al. 2001).

Special attention was also given to the abilities,

difficulties, and strategies of students with

learning difficulties in numbers and their opera-

tions as well as of the appropriate teaching

approaches for these students (e.g., Baroody 1999).

Apart from the emphasis on number operations,

current reform documents call for emphasis on

estimation. Three types of estimation were identi-

fied: numerosity, computational, and measurement

(Sowder 1992). Although research on estimation is

rather limited, researchers seem to agree that esti-

mation is complex and difficult for students and

often for adults. It develops over time and individ-

uals use either self-invented or taught strategies to

respond to estimation tasks.

After the 1990s research on numbers was

affected by the situated theoretical perspective and

more specifically the emerging theoretical frame-

works of social constructivism, ethnomathematics,

and situated cognition. According to Verschaffel

et al. (2006) numerous studies focused on (a) the

design, implementation, and evaluation of instruc-

tional programs, such as Realistic Mathematics

Education and the impact of the socio-

mathematical norms on mathematical learning;

(b) teachers content knowledge, pedagogical con-

tent knowledge, actions and beliefs in the learning

of numbers, and their impact on students’

mathematical learning; (c) and the acquisition of

numerical knowledge out of school and ways in

which this knowledgemaybe exploited and used in

the classrooms. Several researchers examined the

impact that the environment where individuals

grow and act may have on their abilities with

numbers (e.g., ethnomathematics).

After the 1990s, the field of cognitive

neuroscience also started making links to mathe-

matics education research.Neuroscientific research

examined students’ mental structures of numbers

and the way in which individuals internally repre-

sent and process numbers. The idea was that brain

activation (e.g., using fMRI) might provide us with

a more detailed picture of the cognitive sub pro-

cesses that have an effect onmathematical thinking

and learning.

After 2000 an increased research interest

has been shown by mathematics educators on

early childhood understanding of numbers and

their operations (Sarama and Clements 2009).

Researchers argued that young children’s informal

mathematical knowledge is strong, wide, and

advanced. Researchers developed level of cognitive

progressions, in various number domains, with the

use of learning trajectories (Sarama and Clements

2009). Other research studies demonstrated

that young children need to be engaged

in sophisticated, purposeful, and meaningful

mathematical activities which will support

the development of various strategies (Sarama

and Clements 2009) and students’ conceptual

understanding of number.

Numbers and Problem Solving

In the 1980s–1990s, word problems followed

a cognitive approach with emphasis on students’

strategies, errors, and mental structures. Three

types of additive number problems were

identified (change, combine, and compare), two

types of multiplicative problems (asymmetric

(equal grouping, multiplicative comparison, rate)

and symmetric (area, Cartesian product) (Greer

1992)), and two types of division problems

(partitioning and measurement). Researchers also

looked into intuitive models that may affect stu-

dents’ responses such as multiplication being

repeated addition and division as partition.
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In their reviewVerschaffel et al. (2006) argued

that research on problem solving focused on

different aspects each time: (a) on conceptual

schemas that students possess while solving such

problems, (b) on students’ strategies when dealing

with numbers in the context of mathematical

problems, (c) on the different heuristic and

metacognitive skills in the solution of numerical

problems, and (d) on problem posing. However,

after the 1990s, it became apparent that the cogni-

tive perspective which guided this initial research

was mainly related to problems which were not

authentic. At this point the impact of situative

theoretical perspective became stronger, and

researchers started investigating students’ miscon-

ceptions based on social, cultural, affective, and

metacognitive factors such as, students’ informal

knowledge, teachers’ mathematical and pedagog-

ical knowledge, and teaching approaches. This

move also led to an increased interest in the intro-

duction of modeling problems from as early as

primary schools as well “emergent modeling”

activities related to numbers.

Arithmetic and Other Mathematical Domains

Early in the twentieth century, the teaching of

arithmetic was restricted to performing the

standard operations and algorithms. In the 1980s

emphasis was given to the procedural and con-

ceptual understanding of numbers (Hiebert

1986). This emphasis continued well into the

1990s. At this point the reform of mathematics

curricula also yielded a shift towards the

development of students’ understanding of

numbers and emphasized the importance for

students to investigate the relationships, patterns,

and connections. Extensive attention started to

emerge regarding the connections between

numbers and algebra. A number of researchers

claimed that arithmetic is essentially algebraic

and can set the ground for formal algebra.

At the same time, they argued that algebra

can strengthen the understanding of arithmetic

structure (Verschaffel et al. 2007). Special

emphasis was also given to the connections of

numbers to other areas of mathematics such as

measurement, geometry, and probability but

especially data handling.

Number Sense

In recent years curricula reforms use extensively

the term “number sense” and consider it a major

essential outcome of school curricula. Although,

its importance in mathematics curricula is recog-

nized; its usefulness in research is controversial

(Verschaffel et al. 2007). This arises from the fact

that there is no catholic acceptance of what this

term involves. Most often the term “number

sense” encompasses the (a) use of different

representations of numbers, (b) identification of

relative and absolute magnitudes of numbers, (c)

use system of benchmarks, (d) composition and

decomposition of numbers, (e) conceptual under-

standing of operations, (f) estimation, (g) mental

computations, as well as (h) the judgment about

the reasonableness of results. Based on the descrip-

tions and on the components of “number sense,”

there have been several attempts to construct

tools to measure number sense. Furthermore,

researchers also focused on designing intervention

programs and examining their impact.

Rational Numbers

There is a lot of research on students’ understand-

ing of rational numbers at different levels (from

young learners to prospective and in-service

teachers). These studies are mainly epistemologi-

cal, cognitive, and situative. Most of them concen-

trated on the various interpretations and

representations of rational numbers, students’ abil-

ities, and in a smaller extent on instructional pro-

grams. Recently Confrey, Maloney, and Nguyen

(2008) identified eight major areas of research on

rational numbers: (1) fractions; (2) multiplication

and division; (3) ratio, proportion, and rate;

(4) area; (5) decimals and percent; (6) probability;

(7) partitioning; and (8) similarity and scaling.

Based on this synthesis, they concluded that ratio-

nal number is a complex concept and its teaching

needs major revisions, especially regarding the

sequence of the topics taught.

Epistemological and Cognitive View Rational

Numbers Learning

Research studies that had taken an epistemolog-

ical view tried to clarify the nature of rational

number and its subconstructs. Kieren (1976)
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was the first to propose that fractions consist of

four subconstructs: measure, ratio, quotient, and

operator. Later Behr, Lesh, Post, and Silver

(1983) extended this model and proposed that

part-whole/partitioning is posited a fundamental

subconstruct underlying the other four subconstructs

previously suggested by Kieren (1976). According

to researchers none of the subconstructs can stand

alone. Each construct allows the consideration of

rational numbers from a different perspective.

Other studies discussed the different cognitive struc-

tures needed to understand the various subconstructs

of rational numbers. Several researchers, interna-

tional curricula, and textbooks are in favor of the

inclusion of multiple fraction subconstructs and

argued that students benefit from this.

Studies on rational numbers which are

cognitive in nature concentrated on the investiga-

tion of the cognitive structures children bring into

the understanding of rational numbers and the

way in which these cognitive structures develop

when the children are formally introduced to

rational numbers. Such cognitive studies also

concentrated on the development of the concep-

tual understanding of fractions and the obstacles

to this learning. For instance, a number of studies

concentrated on the way that the conceptualiza-

tion of whole numbers may affect students under-

standing of rational numbers and make sense of

decimal and fractions notations (Streefland

1991). Students often do not interpret fractions

as numbers but view fractions as two numbers

with a line between them.When adding fractions,

they often add the numerators and denominators

or are unable to order fractions from smaller to

larger (e.g., Behr et al. 1992). Regarding the

decimal representation of fractions, young

students often believe that decimal numbers

have a predictable order and that decimals with

more digits after the decimal point are larger than

decimals with fewer digits after the decimal

point. Steffe and Olive (2010) have a rather dif-

ferent view. They argue that the mental

operations necessary for the understanding of

whole number should not be viewed as an obsta-

cle to fractions understanding but as a foundation

for fractional understanding (reorganization

hypothesis).

Furthermore, research also indicated that

individuals often have a procedural understand-

ing of fraction operations which is attributed to

the reliance of mechanical learning of rules. For

instance, young students accept the representa-

tion of “a” parts of “b” unequal parts as fractions

or that in the division of fractions one needs to

reverse the second fraction and multiply. In

addition to this, researchers seem to agree out of

the four operations, division of fraction is the

most difficult for individuals to understand.

Teaching of Rational Numbers

According to Behr et al. (1992) until 1992 few

research studies specifically targeted teaching of

rational numbers. Lamon (2007) argued that this

was due to the fact that the research domain includ-

ing rational numbers, fractions, ratios, and propor-

tions had not reached a level of maturity which

could inform teaching practices. A number of

researchers (e.g., Lamon 2007; Confrey et al.

2008) designed intervention programs by identify-

ing learning trajectories and then tested their results.

The use of manipulatives (concrete or virtual)

and of multiple representations are considered as

very important in the teaching of fractions and

especially in teaching operations with fractions.

Research has shown positive impact of the use of

visual representations on students’ conceptual

understanding of fractions. A widely used repre-

sentation is the area model representation (Saxe

et al. 2007). However, according to Saxe et al.

(2007), area models have some limitations. These

researchers (Saxe et al. 2007) conducted research

studies and designed programs in order to inves-

tigate the way in which number lines can help

students develop understanding of the fraction

concepts and their properties. The use of number

line was also acknowledged as very important for

the understanding of decimal. In addition, there is

also considerable research on the investigation of

virtual representations and more extensively of

digital technologies in the learning of fractions.

Negative Numbers

The concept of negative numbers is introduced

when students have already learned to work with

natural numbers. As a result, when the teaching of
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negative numbers begins, some properties

concerning natural numbers turn out to be

conflicting. Fischbein (1987) claimed that two intu-

itive obstacles affect students’ understanding of

negative numbers. First, the concept of negative

numbers is intuitively contradictory to the concept

of positive numbers defined as quantifiable entities.

Secondly, negative numbers are a “by-product of

mathematical calculations and not the symbolic

expression of existing properties” (Fischbein 1987,

p. 101). Another main obstacle identified is the

difficulty to see the number line as one thing

(unified number line) where the value of numbers

is supported and not as two opposite semi-lines

(divided line)where only themagnitude of numbers

is supported. Students have to realize the difference

between themagnitude and the value of the number.

Despite the difficulties students might face while

dealing with negative numbers, there is also evi-

dence that students have intuitive knowledge about

negative numbers and in some cases are able to

perform operations with negative numbers before

formal instruction. Thus, recently a number of

researchers claimed that addition and/or subtraction

with negative numbers may be introduced from

younger ages if appropriate models are used.

Still there is also evident that students face difficulty

to move from concrete operations to formal

operations.

Regarding the teaching of negative numbers,

there is a long-standing debate whether they

should be introduced through models (such as

number lines, elevators, or the annihilation/

creation model where two-color counters are

used) (Verschaffel et al. 2006) or as formal abstrac-

tions (Fischbein 1987). Most of the researchers

seem to adopt the model approach. There is no

consensus regarding the model or representation

which is most effective as well as the number of

different models (multiplicity or not) that should be

used. Opinions are also conflicting regarding the

use of these models and whether they should be

used only during the introduction of negative num-

bers or all the way through the teaching of integers.

Irrational Numbers

Despite the importance of irrational numbers,

only a small number of research studies have

focused on this topic. The concept of irrational

numbers is considered as one of the most difficult

concepts in mathematics, especially since it does

not present discrete countable quantities but

refers to continuous quantities. It is a by-product

of logical deduction and cannot be captured by

our senses. Most studies emphasize the deficien-

cies in students’ and teachers’ understanding of

irrational numbers; for instance, their difficulty to

provide appropriate definition for irrational num-

ber or to recognize whether a number is rational

or irrational. Students often develop the under-

standing of natural, rational, and irrational num-

bers as different systems and are unable to see

them in a flexible whole (Zazkis and Sirotic

2010). This is often a source of students’ difficul-

ties and misconceptions. Other research studies

showed that students’ and prospective teachers’

difficulties may also arise from the discreteness

of natural numbers, which is a barrier to under-

standing the dense structure of the rational and

irrational numbers. Attempts were also made

to develop instructional material for secondary

school students, preservice, and in-service

teachers.
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Characteristics

Intense focus on the notion of “pedagogical content

knowledge” (PCK) within teacher education is

attributed to Lee Shulman’s 1985 AERA Presiden-

tial address (Shulman 1986) in which he referred to

PCK as the “special amalgam of content and

pedagogy” central to the teaching of subjectmatter.

His widely cited follow-up paper (Shulman 1987)

elaborated PCK as follows:

the most powerful analogies, illustrations, exam-
ples, explanations, and demonstrations — [. . .] the
most useful ways of representing and formulating
the subject that make it comprehensible to others....
Pedagogical content knowledge also includes an
understanding of what makes the learning of
specific topics easy or difficult: the conceptions
and preconceptions that students of different ages
and backgrounds bring with them. . . (p. 7)

the particular form of content knowledge that
embodies the aspects of content most germane to
its teachability. (p. 9)

Immediate and widespread interest in the

notion rested on Shulman’s claim that PCK, com-

bined with subject knowledge and curriculum

knowledge, formed critical knowledge bases

for understanding and improving subject-specific

teaching. While subject matter knowledge (SMK)

and PCK are frequently dealt with together in

research studies, interest and contestation in the

boundary lead to separate but related entries for

them in this encyclopedia (see SMK entry). PCK

studies in mathematics education indicate attempts

at (a) sharpening theorizations of PCK, (b) mea-

suring PCK, and (c) using notions of PCK to build

practical skills within teacher education or combi-

nations of these elements. This entry summarizes

key work across these groups.

Theorizations of PCK

Key writings in the category of sharpening theo-

rizations of PCK examine both the boundary

between PCK and the broader field of subject-

related knowledge – sometimes referred to as

“mathematics knowledge for teaching” (MKT) –

and inwards at subcategories within PCK.

Deborah Ball and the Michigan research group

sharpened the distinctions between content knowl-

edge and PCK in their theorization based on the

classroom practices of expert teachers: “subject

matter knowledge” (SMK) broke down into

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
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common content knowledge (CCK), specialized

content knowledge (SCK), and horizon knowledge

and PCK into knowledge of content and students

(KCS), knowledge of content and teaching, and

knowledge of curriculum (Ball et al. 2008).

Critiques of work drawing from Shulman’s

categorizations argue that the “static” conceptual-

ization of MKT with separate components is

unhelpful in relation to the interactive and

dynamic nature ofMKT. Centrally, these critiques

argue that MKT is better interpreted as an attribute

of pedagogic practices in specific contexts and

related to specific mathematical ideas, rather than

a generalized attribute of the teacher. Fennema

and Franke’s (1992) conceptualization of MKT

as constituted by knowledge of mathematics,

combined with PCK comprised of elements of

knowledge of learners’ mathematical cognition,

pedagogical knowledge, and beliefs views this

combination as a taxonomy that can identify the

“context-specific knowledge” of a teacher, rather

than a more generalized picture of the teacher’s

MKT. Rowland et al. (2003) similarly emphasize,

in their “Knowledge Quartet” formulation

consisting of Foundation, Transformation, Con-

nection, and Contingency knowledge (the latter

three relating to PCK), that the profile of MKT

produced is a categorization of teaching situations,

rather than of teachers.

While all of these models were developed

from studies of practice, Fennema and Franke

and Rowland et al.’s models include a beliefs

component – which does not feature in Ball

et al.’s conceptualization.

Other studies have looked at PCK in alterna-

tive formulations (e.g., Silverman and Thompson

2008), with the notion of “connections” within

mathematics and with learning (Askew et al.

1997; Ma 1999) seen as critical. Petrou and

Goulding (2011) provide an overview of key

writings in the MKT field.

Measuring PCK

Ball’s research group shifted their attention into

measuring MKT to verify assumptions about its

relationship to teaching quality and student

learning. The group developed multiple choice

items based on specific MKT subcomponents

that were administered to teachers, with data

collected on their elementary grade classes’

learning backgrounds and learning gains across

a year. Hill et al.’s (2005) analysis showed con-

tent knowledge measures across the common and

specialized categories as significantly associated

with learning gains. While Ball’s group concep-

tualizes CCK and SCK as part of content

knowledge, the descriptions of SCK that are

provided – e.g., understanding of representations

and explanations – fall within other writers’

conceptualizations of PCK.

Baumert et al. (2010), noting the absence

of direct attention to teaching in Ball

et al.’s measurement-oriented work, developed

the COACTIV framework that distinguished

content knowledge from PCK and examined the

relationships between content knowledge, PCK,

classroom teaching, and student learning gains

in Germany. In the COACTIV (Professional

Competence of Teachers, Cognitively Activating

Instruction, and the Development of Students’

Mathematical Literacy) model (focused on

secondary mathematics teaching), content knowl-

edge is understood as “a profound mathematical

understanding of the mathematics taught at

school” (p. 142), and PCK is subdivided into

knowledge of mathematical tasks as instructional

tools, knowledge of students’ thinking and assess-

ment of understanding, and knowledge of multiple

representations and explanations of mathematical

problems. With this distinction, separate content

knowledge and PCK open response items were

developed and administered to nearly 200 teachers

in different tracks of the German schooling

system. Mathematics test performance data were

gathered from over 4,000 students in these

teachers’ classes. Instructional quality was mea-

sured through three data sources. The first

encompassed selected class, homework, test and

examinations tasks, and the degree of alignment

between assessment tasks and the Grade 10 cur-

riculum. The second source considered the extent

of individual learning support, measured through

student rating scales. The third source examined

classroom management as degree of agreement

between teacher and student perceptions about

disciplinary climate.
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Baumert et al.’s findings suggested that

their theoretical division of content knowledge

and PCK was empirically distinguishable,

with their PCK variable showing more sub-

stantial associations with student achievement

and instructional quality than their content

knowledge variable.

Using PCK to Support the Development of

Pedagogic Practice

The third category of PCK literature links to

studies of teacher development using PCK frame-

works. This strand often uses longitudinal case

study methodologies.

Fennema and Franke and Rowland’s MKT

models have associated development-focused

studies. Turner and Rowland (2011) provide

examples of the Knowledge Quartet’s use in

England to stimulate development of teaching,

and Fennema and Franke, with colleagues, have

produced studies on the longevity of the PCK

aspects presented within professional develop-

ment programs.

This category too contains other studies draw-

ing on aspects of PCK. Kinach (2002) focuses on

secondary mathematics teachers’ development of

instructional explanations – a key feature of PCK

across different formulations. Learning studies

interventions (Lo and Pong 2005) focus on

building teachers’ awareness of the relationship

between particular objects of learning and

students’ work with these objects – a feature of

the KCS terrain.

Emerging Directions

Emerging work questions the assumption of basic

coherence and connection in MKT that underlies

much of the PCK writing (Silverman and

Thompson 2008). Qualitative case studies of

classroom teaching detail inferences relating

to PCK (and SMK), and the consequences for

mathematics learning in contexts of pedagogic

fragmentation and disconnections are beginning

to feature (Askew et al. 2012).

PCK as a field therefore continues to thrive, in

spite of ongoing differences in nomenclature,

underlying views about specific sub-elements,

and the nature of their interaction.
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Definition

Policy in mathematics education concerns the

nature and shape of the mathematics curriculum,

that is, the course of study in mathematics of

a school or college. This is the teaching sequence

for the subject as planned and experienced by the

learner. Four aspects can be distinguished, and

these are the focuses of policy debates:

1. The aims, goals, and overall philosophy of the

curriculum

2. The planned mathematical content and its

sequencing, as in a syllabus

3. The pedagogy employed by teachers

4. The assessment system

History

The New Math debate of the late 1950s to the

mid-1960s was primarily about the content of the

mathematics curriculum. At that time traditional

school mathematics did not incorporate any

modern topics. The content consisted primarily

of arithmetic at elementary school, plus

traditional algebra, Euclidean geometry, and

trigonometry at high school. The New Math cur-

riculum broadened the elementary curriculum to

include other aspects of mathematics, and high

school mathematics incorporated modern algebra

(including sets, functions, matrices, vectors),

statistics and probability, computer mathematics

(including base arithmetic), and modern geome-

try (transformation geometry, topological graph

theory). The launch of Sputnik, the first earth

orbiting satellite, by the Soviet Union in 1957,

during the ColdWar led to fears that the USA and

UK were being overtaken in technology and in

mathematics and science education by the

Soviets. Government funding became available,

especially in the USA, to extend projects mod-

ernizing the mathematics curriculum in a bid to

broaden and improve students’ knowledge of

mathematics, such as the Madison Project in

1957 and The School Mathematics Study Group

in 1958 in the USA. In the UK independent cur-

riculum projects emerged, including the School

Mathematics Project (SMP) in 1961 and Nuffield

Primary Mathematics in 1964. These projects did

not cause much controversy at the national policy

levels although there was a concern by parents

that they did not understand the New Math their

children were learning. The relatively muted

debates concerned the changing content of the

mathematics curriculum rather than its pedagogy

or assessment.

In the mid to late 1960s onwards a new debate

emerged about discovery learning. In the UK

the Schools Council Curriculum Report No. 1

(Biggs 1965) on the teaching and learning

of mathematics in primary school proposed

practical approaches and “discovery learning”

as the most effective ways of teaching mathemat-

ics. Sixty-five percent of all primary teachers in

the UK read Biggs (1965), and it had a significant

impact. Discovery learning was a central part of

the 1957 Madison Project developed by Robert

B. Davis. This and similar developments led to

a major policy debate on discovery learning. Is

discovery learning the most effective way to

learn mathematics? Proponents of discovery

contrasted it with rote learning. Self-evidently

rote learning cannot be the best way to learn

all but the simplest mathematical facts and

skills since it means simply “learning by heart.”

However, educational psychologist Ausubel

(1968) argued successfully that discovery and

rote learning are not part of a continuum but on
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two orthogonal axes defined by pairs of

opposites: meaningful versus rote learning and

reception versus discovery learning. Meaningful

learning is linked to existing knowledge; it is

relational and conceptual. Rote learning is arbi-

trary, verbatim, and disconnected – unrelated to

other existing knowledge of the learner. Knowl-

edge learned by reception comes already formu-

lated and is acquired through communication,

such as in expository teaching or reading. Ausubel

distinguishes this from discovered knowledge

that has to be formulated by the learner herself.

The promotion of discovery learning led to

heated debate on both sides of the Atlantic.

Shulman and Keislar (1966) offered a review, but

to this day the evidence remains equivocal. This

debate was primarily about pedagogy – how best to

teach mathematics. But underneath this debate one

can discern battle lines being drawn between

a child-centered, progressive ideology of education

with roots going back to Rousseau, Montessori,

Dewey, and a traditionalist teacher- and knowl-

edge-centered ideology of education favored by

some mathematicians and university academics.

The mid-1970s saw the birth of the back-to-

basics movement promoting basic arithmetical

skills as the central goal of the teaching

and learning of mathematics for the majority.

This was a reaction to the progressivism of the

previous decade, most clearly defined in the aims

of the Industrial Trainers group mentioned below,

and became an important plank of the traditionalist

position on the mathematics curriculum.

The early 1980s led to a further entrenchment

in the progressive/traditional controversy. In the

USA the influential National Council of Teachers

of Mathematics (NCTM) recommended that

“Problem solving must be the focus of school

mathematics in the 1980s” (1980, pp. 2–4).

In the UK the Cockcroft Inquiry (1982)

recommended problem solving and investiga-

tional work be included in mathematics for all

students. Thus the debate remained at the level of

pedagogy but shifted to problem solving.

The progressivist versus traditionalist debate

was born anew in the late 1980s (UK) and the

1990s (USA) but now encompassed the whole

mathematics curriculum on a national basis.

Analytical Framework

The British government developed and installed

the first legally binding National Curriculum in

1988 for all students age 5–16 years in all state

schools (excluding Scotland). The debate over

the mathematics part of National Curriculum in

became a heated contest between different social

interest groups. Ernest (1991) analyzed this as a

contest between five different groups with different

broad ranging ideologies of education, the aims,

and orientation ofwhich are summarized in Table 1

(In the full treatment there are 14 different ideo-

logical components for each of these 5 groups).

These different social groups were engaged in

a struggle for control over the National Curricu-

lum in mathematics, since the late 1980s (Brown

1996). In brief, the outcome of this contest was that

the first three more reactionary groups managed to

win a place for their aims in the curriculum. The

fourth group (progressive educators) reconciled

themselves with the inclusion of a personal knowl-

edge-application dimension, namely, the processes

of “Using and Applying mathematics,” constitut-

ing one of the National Curriculum assessment

targets. However instead of representing progres-

sive self-realization through creativity aims

through mathematics, this component embodies

utilitarian aims: the practical skills of being able

to apply mathematics to solve work-related prob-

lems with mathematics. Despite this concession

over the nature of the process element included in

the curriculum, the scope of the element has been

reduced over successive revisions that have

occurred in the subsequent 20 years and has largely

been eliminated. The fifth group, the public educa-

tors, found their aims played no part in the National

Curriculum. The outcome of the process is

a largely utilitarian mathematics curriculum devel-

oping general or specialist mathematics skills and

capabilities, which are either decontextualized –

equipping the learner with useful tools – or

which are applied to practical problems.

The contest between the interest groups was an

ideological one, concerning not only all four

aspects of curriculum but also about deeper epis-

temological theories on the nature of mathematics

and the nature of learning.
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During the period following the introduction

of the National Curriculum in mathematics,

pressure from various groups continued to be

exerted to shift the emphasis of the curriculum.

Mathematicians who can often be characterized

as belonging to the Old Humanist grouping

published a report entitled Tackling the Mathe-

matics Problem (London Mathematical Society

1995), commissioned by professional mathemati-

cal organizations. This criticized the inclusion

of “time-consuming activities (investigations,

problem solving, data surveys, etc.)” at the expense

of “core” technique and technical fluency. Further-

more, it claimedmany of these activities are poorly

focused and can obscure the underlying mathemat-

ics. This criticism parallels that heard in the “math

wars” debate in the USA.

“Math Wars”

In the USA the National Council of Teachers of

Mathematics (NCTM) published its so-called

Standards document in 1989 recommending

a “Reform”-based (progressive) mathematics cur-

riculum for the whole country. This emphasized

problem solving and constructivist learning theory.

The latter is not just discovery learning under a new

name because constructivists acknowledge that

learners need to be presented with representations

of existing mathematical knowledge to reconstruct

them for themselves. This initiated the savage

debate in the USA called the Math Wars (Klein

2007).

The Standards influenced a generation of new

mathematics textbooks in the 1990s, often funded

by the National Science Foundation. Although

widely praised by mathematics educators, partic-

ularly in California, concerned parents formed

grassroots organizations to object and to pressure

schools to use other textbooks. Reform texts were

criticized for diminished content and lack of

attention to basic skills and an emphasis on

progressive pedagogy based on constructivist

learning theory. Critics in the debate derided

mathematics programs as “dumbed-down” and

described the genre as “fuzzy math.”

In 1997 Senator Robert Byrd joined the debate

by making searing criticisms of the mathematics

education reform movement from the Senate floor

focusing on the inclusion of political and social

justice dimensions in one mathematics textbook.

In the spreading and increasingly polarized debate,

the issues spread from traditional versus progressive

content and pedagogy to left versus right political

orientations and traditional objectivist versus con-

structivist (relativist) epistemology and philosophy

of mathematics. This way the debate took on

aspects of the parallel “science wars” also taking

place, primarily in the USA. This is the heated

debate between scientific realists, who argued that

objective scientific knowledge is real and true, and

Policy Debates in Mathematics Education, Table 1 Five interest groups and their aims for mathematics teaching
(based on Ernest 1991)

Interest group Social location Orientation Mathematical aims

1. Industrial
trainers

Radical New Right conservative
politicians and petty bourgeois

Authoritarian,
basic skills
centered

Acquiring basic mathematical skills and
numeracy and social training in obedience

2. Technological
pragmatists

Meritocratic industry-centered
industrialists, managers, etc., New
Labor

Industry and
work centered

Learning basic skills and learning to solve
practical problems with mathematics and
information technology

3. Old Humanist
mathematicians

Conservative mathematicians
preserving rigor of proof and purity
of mathematics

Pure
mathematics
centered

Understanding and capability in advanced
mathematics, with some appreciation of
mathematics

4. Progressive
educators

Professionals, liberal educators,
welfare state supporters

Child-centered
progressivist

Gaining confidence, creativity, and
self-expression through maths

5. Public
educators

Democratic socialists and radical
reformers concerned with social
justice and inequality

Empowerment
and social justice
concerns

Empowerment of learners as critical and
mathematically literate citizens in society
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sociologists of science. The latter questioned scien-

tific objectivity and argued that all knowledge is

socially constructed. This is an insoluble epistemo-

logical dispute that has persisted at least since the

time of Socrates in philosophical debates between

skeptics and dogmatists. Nevertheless, it fanned the

flames of the Math Wars debate.

In 1999 the US Department of Education

released a report designating 10 mathematics

programs as “exemplary” or “promising.” Several

of the programs had been singled out for criticism

by mathematicians and parents. Almost immedi-

ately an open letter to Secretary of Education Rich-

ard Rileywas published calling on him towithdraw

these recommendations. Over 200 universitymath-

ematicians signed their names to this letter and

included seven Nobel laureates and winners of the

Fields Medal. This letter was repeatedly used by

traditionalists in the debate to criticize Reform

mathematics, and in 2004NCTMPresident Johnny

Lott posted a strongly worded denunciation of the

letter on the NCTM website.

In 2006, President Bush was stirred into action

by the heated controversy and created the National

Mathematics Advisory Panel to examine and sum-

marize the scientific evidence related to the teach-

ing and learning of mathematics. In their 2008

report, they concluded that recommendations that

instruction should be entirely “student centered” or

“teacher directed” are not supported by research.

High-quality research, they claimed, does not sup-

port the exclusive use of either approach. The

Panel called for an end to the MathWars, although

its recommendations were still the subject of crit-

icism, especially fromwithin the mathematics edu-

cation community for its comparison of extreme

forms of teaching and for the criteria used to deter-

mine “high-quality” research.

Defusing the Debates

Policy debates have raged over the mathematics

curriculum throughout the past 50 years. They

have been strongest in the USA and UK but

have occurred elsewhere in the world as well. In

Norway, for example, there is a much more

muted but still heated debate as to whether

mathematics or the child should be the central

focus of the curriculum. Proponents of a child-

centered curriculum promote general pedagogy

in teacher education as opposed to a specifically

mathematics pedagogy with its associated

emphasis on teachers’ pedagogical content

knowledge in mathematics.

The spread of policy debates has also become

much wider following the impact of international

assessment projects such as TIMSS. Politicians

sometimes blame what is perceived to be poor

national performance levels in mathematics on

one or other aspect of the curriculum. Unfortu-

nately policy debates too often become

politicized and drift away from the central issues

of determining the best mathematics curriculum

for students. In becoming polarized, the debates

become controversies that propel policy swings

from one extreme to the other, like a pendulum.

Ernest (1989) noted this pattern, but regrettably

the pendulum-like swings from one extreme posi-

tion to the opposite continue unabated to this day.

The fruitlessness of swings from traditional

to progressive pedagogy in mathematics is

illustrated in an exemplary piece of research by

Askew et al. (1997). This project studied the belief

sets and teaching practices of primary school

teachers and their correlation with students’

numeracy scores over a period of 6 months.

Three belief sets and approaches to teaching

numeracy were identified in the teachers:

1. Connectionist beliefs: valuing students’

methods and teaching with emphasis on

establishing connections in mathematics

(mathematics and learner centered)

2. Transmission beliefs: primacy of teaching and

view of maths as collection of separate rou-

tines and procedures (traditionalist)

3. Discovery beliefs: primacy of learning and

view of mathematics as being discovered by

students (progressivist)

The classes of teachers with a connectionist

orientation made the greatest gains, so teaching

for connectedness were measurably the most

effective methods. This included attending to

and valuing students’ methods as well as teaching

with an emphasis on establishing connections in

mathematics. Traditional transmission beliefs
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and practices were not shown to be as effective.

Likewise, discovery beliefs and practices were

equally ineffective, refuting the progressivist

claim that the teaching and learning of mathemat-

ics by discovery is the most effective approach.

Of course Askew et al. (1997) only report a small-

scale, in-depth study of about 20 teachers and

must be viewed with caution and needs replica-

tion. Nevertheless its results illustrate the futility

of policy debates becoming overly ideological

and losing contact with empirical measures of

effectiveness from properly conducted research.
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Definition

A political perspective in mathematics education

is a way of looking at how mathematics, educa-

tion, and society relate to power. It stands on the

critical recognition that mathematics is not only

important in society due to its exceptional, intrin-

sic characteristics as the purest and most power-

ful form of abstract thinking but also and

foremost, because of its functionality in the con-

stitution of the dominant cultural project of

Modernity. Thus, it assumes that the teaching

and learning of mathematics are not neutral prac-

tices but that they insert people – be it children,

youth, teachers, and adults – in socially valued

mathematical rationalities and forms of knowing.

Such insertion is part of larger processes of selec-

tion of people that schooling operates in society.

It results in differential positioning of inclusion or
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exclusion of learners in relation to access to

socially privileged resources such as further edu-

cation, labor market, and cultural goods.

History

The political perspectives of mathematics educa-

tion became a concern for teachers and

researchers in the 1980s. While the change from

the nineteenth to the twentieth centuries was

a time of inclusion of mathematics in growing,

massive, national education systems around the

world, the change from the twentieth to the

twenty-first centuries has been a time for focusing

on the justifications for the privileged role of

mathematics in educational systems at all levels.

The apparent failure of the New Math movement

in different industrialized countries allowed to

raise concerns about the need for mathematics

teaching and learning that could reach as many

students as possible and not only a selected few

(Damerow et al. 1984). Questions of how math-

ematics education could be studied from perspec-

tives that allowed moving beyond the boundaries

of the mathematical contents in the school cur-

riculum started to be raised. In mathematics edu-

cation, the first book published in English as part

of an international collection, containing the

word politics in the title, was “The politics of

mathematics education” by Stieg Mellin-Olsen

(1987). However, “The mastery of reason:

Cognitive development and the production of

rationality” by Valerie Walkerdine (1988) is

a seminal work in critical psychology discussing

how school mathematics education subjectifies

children through inscribing in them and in

society, in general, specific notions of the rational

child and of abstract thinking.

The political concern and involvement ofmany

mathematics educators in their teaching and

research practice was also an initial entry that

allowed sensitivity and awareness for searching

how mathematics education could be “political”

(Lerman 2000). Such political awareness on issues

such as how mathematics has played a role as

gatekeeper to entry in further education, for exam-

ple, has been important. However, a political

“awareness” does not constitute the center of a

political approach since there is a distinction

between being sympathetic to how mathematics

education relates to political processes of different

type and making power in mathematics education

the focus of one’s research. In other words, not all

people who express a political sympathy actually

study the political in mathematics education

(Gutierrez 2013; Valero 2004).

With this central distinction in mind, it is pos-

sible to differentiate a variety of political perspec-

tives, some that could be called weak in the sense

that they make a connection between mathemat-

ics education and power but do not concentrate on

the study of it as a constituent of mathematics

education but rather as a result or a simply asso-

ciated factor. Strong political approaches inmath-

ematics education are a variety of perspectives

that do have a central interest in understanding

mathematics education as political practices.

Weak Political Perspectives

A general characteristic of weak political

perspectives in mathematics education is the

adherence to some of the positive features

attributed to mathematics and mathematics edu-

cation, particularly those that have to do with

people’s empowerment and social and economic

progress. More often than not, these views

assume some kind of intrinsic goodness of

mathematics and mathematics education that is

transferred to teachers and learners alike through

good and appropriate education practices. In

the decade of the 1980s and fully in the 1990s,

the broadening of views on what constitutes

mathematics education allowed for formulations

of the aims of school mathematics in relation to

the response to social challenges of changing

societies and, in particular, in response to the

consolidation of democracy. It was possibility to

enunciate the idea that, as part of a global policy

of “Education for all” by UNESCO, mathematics

education had to contribute to the competence of

citizens, but also to open access for all students.

In many countries, both at national policy level

and at the level of researchers and teachers, there
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was a growing concern for mathematics for all

and mathematics for equity and inclusion. The

study of how different groups – women, linguists,

ethnic or religious minorities, and particular

racial groups – of students systematically under-

achieve and how to remediate that situation grew

extensively. Part of the weak political approaches

also includes studies of how mathematics educa-

tion practices are shaped by educational policies.

South Africa, given the transition from apartheid

to democracy at the beginning of the 1990s, has

been a particularly interesting national case

where deep changes of policy had been studied

to see how and why mathematics education in

primary and secondary school is transforming to

contribute – or not – to the construction of a new

society. Many of these studies have a weak polit-

ical approach in the sense that they are justified

and operate on some political assumptions on

mathematics education and its role in society,

but intend to study appropriate pedagogies and

not how pedagogies in themselves effect the

exclusion that the programs intend to remediate.

Strong Political Perspectives

Strong political perspectives in mathematics

education problematize the assumed neutrality

of mathematical knowledge and provide new

interpretations of mathematics education as prac-

tices of power. Ethnomathematics can be read as

a political perspective in mathematics education

in its challenge to the supremacy of Eurocentric

understandings of mathematics andmathematical

practices. The strong political perspectives of

ethnomathematics is presented in studies that

not only argue for how the mathematical prac-

tices of different cultural groups – not only indig-

enous or ethnic groups but also professional

groups – are of epistemological importance and

value but also how some of those cultural prac-

tices are inserted in the calculations of power so

that they can construct a regime of truth around

themselves and thus gain a privileged positioning

in front of other practices (Knijnik 2012).

Critical mathematics education as a wide and

varied political approach takes the study of power

in relation to how mathematics is a formatting

power in society through its immersion in the

creation of scientific and technological structures

that operate in society (Christensen et al. 2008). It

also studies the processes of exclusion and differ-

entiation of students when mathematics education

practices reproduce the position of class and dis-

advantage of students (Frankenstein 1995); and

when such reproduction is part of theway (school),

mathematics is givenmeaning in public discourses

and popular culture (Appelbaum 1995). It also

offers possibilities for rethinking practices when

democracy is thought as a central element ofmath-

ematics education (Skovsmose and Valero 2008).

The study of the political in the alignment of

relation to the alignment of mathematics educa-

tion practices with Capitalism is also a recent and

strong political reading of mathematics education

that offers a critical perspective on the material,

economic significance of having success in

mathematics education. Both educational prac-

tices (Baldino and Cabral 2006) and research

practices (Lundin 2012; Pais 2012) lock students

in a credit system where success in mathematics

represents value.

In the USA, and as a reaction to endemic

operation of race as a strong element in the classi-

fication of people’s access to cultural and economic

resources, the recontextualization of critical race

theories into mathematics education has provided

new understandings of mathematics education as a

particular instance of a White-dominant cultural

space that operates exclusion from educational suc-

cess for African American learners (Martin 2011),

as well as for Latino(a)s (Gutiérrez 2012).

The recontextualization of poststructural

theories in mathematics education has also led

to the study of power in relation to the historical

construction of Modern subjectivities. The

effects of power in the bodies and minds of

students and teachers (Walshaw 2010), as well

as in the public and media discourses on mathe-

matics (Moreau et al. 2010), are studied in an

attempt to provide insights into how the mathe-

matical rationality that is at the core of different

technologies in society shapes the meeting

between individuals and their culture. Even

though most research concentrates on the issue

P 486 Political Perspectives in Mathematics Education



of identity construction and subjectivity, some

studies attempting cultural histories of mathemat-

ics as part of Modern, massive educational

systems are also broadening this type of political

perspective (Popkewitz 2004; Valero et al. 2012).
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Definition

Approaches that draw on developments within

wider scholarly work that conceives of modernist

thought as limiting.

Characteristics

Poststructuralist and psychoanalytic approaches

capture the shifts in scholarly thought that gained

currency in Western cultures during the past 50

years. Conveying a critical and self-reflective

attitude, both raise questions about the appropri-

ateness of modernist thinking for understanding

the contemporary social and cultural world. Since

the publication of Lyotard’s The Postmodern

Condition (translated into English in 1984),

poststructuralist and psychoanalytic thinking

have provided an expression within the social

sciences and humanities and, more recently,

within mathematics education, for a loss of faith

in the “grand narratives” of Western history and,

in particular, enlightened modernity. A diverse

set of initiatives in social and philosophical

thought, originating from the work of

Michel Foucault (e.g., 1970), Jacques Derrida

(e.g., 1976), Julia Kristeva (e.g., 1986), and

Jacques Lacan (1977), among others, helped

crystallize poststructuralist and psychoanalytic

ideas among researchers and scholars within

mathematics education about how things might

be thought and done differently.

Poststructuralist and psychoanalytic

approaches provide alternatives to the traditions

of psychological and sociological thought that

have grounded understandings about knowledge,

representation, and subjectivity within mathe-

matics education. These traditions understand

reality as characterized by an objective structure,

accessed through reason. More specifically, the

traditions are based on the understanding that

reason can provide an authoritative, objective,

true, and universal foundation of knowledge.

They also assume the transparency of language.

Epistemological assumptions like these, about

the relationship between the knower and the

known, are accompanied by beliefs about

the kind of being the human is. Typically, the

related ontologies are dualist in nature. They

include such dichotomies as rational/irrational,

objective/subjective, mind/body, cognition/

affect, and universal/particular. Taken together,

these characteristically modernist beliefs about

ontology and epistemology have informed

theories of human interaction, teaching,

learning, and development within mathematics

education.

Developments within psychology and sociol-

ogy that began to question these understandings

paved the way for a different perspective.

Sociology has helped seed poststructuralist

work that aims to draw attention to the ways in

which power works within mathematics educa-

tion, at any level, and within any relationship, to

constitute identities and to shape proficiencies.

Psychology has informed a psychoanalytical

turn, designed to unsettle fundamental assump-

tions concerning identity formations. Postmod-

ernists and psychoanalysts share some

fundamental assumptions about the nature of the

reality being studied, assumptions about what

constitutes knowledge of that reality, and

assumptions about what are appropriate ways of

building knowledge of that reality.

Researchers in mathematics education who

draw on this body of work have an underlying

interest in understanding, explaining, and

analyzing the practices and processes within

mathematics education. Their analyses chart

teaching and learning, and the way in which

identities and proficiencies evolve; tracking

reflections; investigating everyday classroom

planning, activities, and tools; analyzing discus-

sions with principals, mathematics teachers,

students, and educators; mapping out the effects

of policy, and so forth. In the process of

deconstructing taken-for-granted understand-

ings, they reveal how identities are constructed

within discourses, they demonstrate how

everyday decisions are shaped by dispositions

formed through prior events, and they provide

insights about the way in which language

produces meanings and how it positions people

in relations of power. The assumptions upon

which these analyses are based enable an
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exploration of the lived contradictions of mathe-

matics processes and structures.

These analyses are developed around

a number of key organizing principles: language

is fragile and problematic and constitutes rather

than reflects an already given reality. Meaning is

not absolute in relation to a referent, as had been

proposed by structuralism. The notion of knowing

as an outcome of human consciousness and inter-

pretation, as described by phenomenology, is also

rejected. Moreover, knowing is not an outcome of

different interpretations, as claimed by hermeneu-

tics. Instead, for poststructuralist and psychoana-

lytic scholars, reality is in a constant process of

construction. What is warranted at one moment of

time may be unwarranted at another time. The

claim is that because the construction process is

ongoing, no one has access to an independent

reality. There is no “view from nowhere,” no

conceptual space not already implicated in that

which it seeks to interpret. There is no stable

unchanging world and no realm of objective

truths to which anyone has access. The notion of

a disembodied autonomous subject with agency

to choose what kind of individual he or she might

become also comes under scrutiny. The counter-

notion proposed is a “decentered” self – a self that

is an effect of discourse which is open to redefi-

nition and which is constantly in process.

Poststructuralist Approaches

Foucault’s work is considered by many to repre-

sent a paradigmatic example of poststructuralist

thought. His work raises critical concerns about

how certain practices, and not others, become

intelligible and accepted, and how identities are

constructed. Foucauldian analyses centered

within mathematics educational sites explore

lived experience, not in the sense of capturing

reality and proclaiming causes but of understand-

ing the complex and changing processes by

which subjectivities and knowledge production

are shaped. In that sense, the focus shifts from

examining the nature of identity and knowledge

to a focus on how identity and knowledge are

discursively produced. In these analyses, “dis-

course” is a key concept. Discourses sketch out,

for teachers, students, and others, ways of being

in the classroom and within other institutions of

mathematics education. They do that by system-

atically constituting specific versions of the social

and natural worlds for them, all the while

obscuring other possibilities from their vision.

Discursivity is not simply a way of organizing

what people say and do; it is also a way of

organizing actual people and their systems. It

follows that “truths” about mathematics educa-

tion emerge through the operation of discursive

systems.

Discursive approaches within mathematics

education draw attention to the impact of regula-

tory practices and discursive technologies on the

constructions of teachers, students, and others. It

reveals the contradictory realities of teachers,

students, policy makers, and so forth and the

complexity and complicity of their work. Such

work emphasizes that teachers and students are

the production of the practices through which

they become subjected (e.g., Hardy 2009;

Lerman 2009).

Power in these approaches envelopes every-

one. What the analyses reveal is that, in addition

to operating at the macro-level of the school,

power seeps through lower levels of practice

such as within teacher/student relations and

school/teacher relations (see Walshaw 2010).

Even in a classroom environment that provides

equitable and inclusive pedagogical arrange-

ments, poststructural approaches have shown

that power is ever present through the classroom

social structure, systematically creating ways of

being and thinking in relation to class, gender,

and ethnicity and a range of other social catego-

ries (see Walshaw 2001; Mendick 2006;

Knijnik 2012).

In illuminating the impact of regulatory

practices and technologies on identity and knowl-

edge production, fine-grained readings of class-

room interaction have revealed the regulatory

power of teachers’ discourse in providing stu-

dents with differential access to mathematics

(de Freitas 2010). Such readings shed light on

how the discursive practices of teachers

contribute to the kind of mathematical thinking

and the kind of mathematical identities that are

possible within the classroom.
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Psychoanalytic Approaches

Psychoanalytic analyses in mathematics

education explore the question of identity.

Lacan’s (e.g., 1977) and Žižek’s (e.g., 1998)

explanations of how identities are constructed

through an understanding of how others see that

person have been influential in revealing that

teachers, students, and others are not masters of

their own thoughts, speech, or actions. Žižek’s

psychoanalytic position is that the self is not

a center of coherent experience: “there are no

identities as such. There are just identifications

with particular ways of making sense of the world

that shape that person’s sense of his self and his

actions” (Brown and McNamara 2011, p. 26).

A person’s identifications are not reducible to

the identities that the person constructs of

himself. Rather, the self is performed within the

ambivalent yet simultaneous relationship of

subjection/agency.

Psychoanalytic observations of identity for-

mation are likely to reveal how identities develop

through discourses and networks of power that

shift continually in a very unstable fashion,

changing as alliances are formed and reformed.

When identities are formed in a very mobile

space, what emerge are fragmented selves, layers

of self-understandings, and multiple positionings

within given contexts and time (see Hanley

2010). This psychoanalytic idea is fundamental

to understanding that teachers and students

(among others) negotiate their way through lay-

ered meanings and contesting perceptions of

what a “good” teacher or student looks like. To

complete a negotiation, there is a level at which

the teacher or student invests, or otherwise,

in a discursive position made available

(see Bibby 2009).

A teacher’s, for example, investments within

one discourse rather than another is explained

through the notion of affect and, more especially,

through the notions of obligation and reciprocity.

Affect, in the psychoanalytic analysis, is not

a derivative aspect but a constitutive quality of

classroom life (see Walshaw and Brown 2012). It

is not an interior experience, but rather, it

operates through processes that are historical in

a way that is not entirely rational nor observable.

Researchers in mathematics education who draw

on psychoanalytic theory maintain that determi-

nations exist outside of our consciousness and, in

the pedagogical relation, for example, influence

the way teachers develop a sense of self as

teacher and influence their interactions in the

classroom. The identities teachers have of them-

selves are, in a very real sense, “comprised,”

made in and through the activities, desires,

interests, and investments of others. Understand-

ings like these invite unknowingness, fluidity,

and becoming, which, in turn, have the effect of

producing different knowledge.

Emancipatory Possibilities

Although both poststructuralist and psychoana-

lytic theorists question the modernist concept of

enlightenment, in reconceptualizing emancipa-

tion away from individualist sensibilities, they

highlight possibilities for where and in what

ways mathematics educational practices might

be changed (see Radford 2012). In addition to

uncovering terrains of struggle, poststructuralist

and psychoanalytic analyses foster democratic

provision, enabling a vision of critical-ethical

teaching where different material and political

conditions might prevail. What is clarified in

these approaches is that discourses are not

entirely closed systems but are vehicles for

reflecting on where mathematics education is

today, how it has come to be this way, and the

consequences of conventional thought and

actions. Importantly, such analyses are

a political resource for transforming the

processes and structures that currently deny

teachers, students, policy makers, and others the

achievement of their ethical goals within

mathematics education.
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Different Meanings of Probability

While the meaning of a typical mathematical

object or operation (rectangles, division, etc.) is

clear and not subject to interpretation, probability

has received different meanings along history

that still today are challenged. Although there

are no contradictions in the probability calculus

per se, different philosophical theories and the

emerging conceptions of probability still persist,

among which the most relevant for teaching are

the classical, frequentist, subjectivist, and

axiomatic or formal conceptions (Batanero et al.

2005) that we briefly analyze below.

Probability reveals a dual character since its

emergence: a statistical side was concerned with

finding the objective mathematical rules behind

sequences of outcomes generated by random

processes through data and experiments, while

another epistemic side views probability as

a personal degree of belief (Hacking 1975).

Progress in probability was linked to games

of chance; it is not surprising that the pioneer

interpretation was based on an assumption of

equiprobability for all possible elementary

events, an assumption which is reasonable in

such games as throwing dice. In the classical

definition, given by Abraham de Moivre in 1718

in the Doctrine of Chances and later refined by

Laplace in 1814 in his Philosophical essay on

probability, probability is simply a fraction of

the number of favorable cases to a particular

event divided by the number of all cases possible

in that experiment. This definition was criticized

since its publication since the assumption of

equiprobability of the outcomes is based on

subjective judgment, and it restricts the applica-

tion from the broad variety of natural phenomena

to games of chance.
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In his endeavor to extend the scope of

probability to insurance and life-table problems,

Jacob Bernoulli justified to assign probabilities to

events through a frequentist estimate by elaborat-

ing the Law of Large Numbers. In the frequentist

approach sustained later by von Mises or Renyi,

probability is defined as the hypothetical number

towards which the relative frequency tends.

Such a convergence had been observed in many

natural phenomena so that the frequentist

approach extended the range of applications

enormously. A practical drawback of this

conception is that we never get the exact value

of probability; its estimation varies from one

repetition of the experiments (called sample) to

another. Moreover, this approach is not appropri-

ate if it is not possible to repeat the experiment

under exactly the same conditions.

While in the classical and in the frequentist

approaches probability is an “objective” value we

assign to each event, the Bayes’s theorem,

published in 1763, proved that the probability

for a hypothetical event or cause could be revised

in light of new available data. Following this

interpretation, somemathematicians like Keynes,

Ramsey, or de Finetti considered probability as

a personal degree of belief that depends on

a person’s knowledge or experience. Bayes’ the-

orem shows that an initial (prior) distribution

about an unknown probability changes by rela-

tive frequencies into a posterior distribution.

Consequently, from data one can derive an inter-

val so that the unknown probability lies within its

boundaries with a predefined (high) probability.

This is another proof that relative frequencies

converge and justifies using data to estimate

unknown probabilities. However, the status of

the prior distribution in this approach was

criticized as subjective, even if the impact of the

prior diminishes by objective data, and de

Finetti proposed a system of axioms to justify

this view in 1937.

Despite the fierce discussion on the founda-

tions, progress of probability in all sciences and

sectors of life was enormous. Throughout the

twentieth century, different mathematicians

tried to formalize the mathematical theory of

probability. Following Borel’s work on set and

measure theory, Kolmogorov, who corroborated

the frequentist view, derived in 1933 an

axiomatic. This axiomatic was accepted by the

different probability schools because with some

compromise the mathematics of probability

(nomatter the classical, frequentist or subjectivist

view) may be encoded by Kolmogorov’s theory;

the interpretation would differ according to the

school one adheres to. However, the discussion

about the meanings of probability and the long

history of paradoxes is still alive in intuitions of

people who often conflict with the mathematical

rules of probability (Borovcnik et al. 1991).

Probability in the School Curriculum

Students are surrounded by uncertainty in

economic, meteorological, biological, and

political settings and in their social activities

such as games or sports. The ubiquity of random-

ness implies the student’s need to understand

random phenomena in order to make adequate

decisions when confronted with uncertainty; this

need has been recognized by educational

authorities by including probability in the

curricula from primary education to high school

and at university level.

The philosophical controversy about the

meaning of probability has also influenced teach-

ing (Henry 1997). Before 1970, the classical view

of probability based on combinatorial calculus

dominated the school curriculum, an approach

that was difficult, since students have problems

to find the adequate combinatorial operations to

solve probability problems. In the “modern

mathematics” era, probability was used to

illustrate the axiomatic method; however this

approach was more suitable to justify theories

than to solve problems. Both approaches hide

the multitude of applications since the

equiprobability assumption is restricted to

games of chance. Consistently, many school

teachers considered probability as a subsidiary

part of mathematics, and either they taught it in

this style or they left it out of class. Moreover,

students hardly were able to apply probability in

out-of-school contexts.
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With increasing importance of statistics at

school and progress of technology with easy

access to simulation, today there is a growing

interest in an experimental introduction of

probability as a limit of stabilized frequencies

(frequentist approach). We also observe a shift

in the way probability is taught from a formula-

based approach to a modern experiential

introduction where the emphasis is on probabilis-

tic experience. Students (even young children)

are encouraged to perform random experiments

or simulations, formulate questions or predictions

about the tendency of outcomes in a series

of these experiments, collect and analyze data

to test their conjectures, and justify their

conclusions on the basis of these data. This

approach tries to show the students that

probability is inseparable from statistics, and

vice versa, as it is recognized in the curriculum.

Simulation and experiments can help

students face their probability misconceptions

by extending their experience with randomness.

It is important, however, to clarify the distinction

between ideally repeated situations and one-off

decisions, which are also frequent or perceived as

such by people. By exaggerating simulation and

a frequentist interpretation in teaching, students

may be confused about their differences or return

to private conceptions in their decision making.

Moreover, a pure experimental approach is

not sufficient in teaching probability. Though

simulation is vital to improve students’ probabi-

listic intuitions and in materialize probabilistic

problems, it does not provide the key about how

and why the problems are solved. This justifica-

tion depends on the hypotheses and on the theo-

retical probability model on which the computer

simulation is built, so that a genuine knowledge

of probability can only be achieved through the

study of some probability theory. However, the

acquisition of such formal knowledge by students

should be gradual and supported by experience

with random experiments, given the complemen-

tary nature of the classic and frequentist

approaches to probability. It is also important to

amend these objective views with the subjectivist

perspective of probability which is closer to how

people think, but is hardly taken into account in

the current curricula in spite of its increasing use

in applications and that it may help to overcome

many paradoxes, especially those linked to

conditional probabilities (Borovcnik 2011).

When organizing the teaching of probability,

there is moreover a need to decide what content to

include at different educational levels. Heitele

(1975) suggested a list of fundamental probabi-

listic concepts, which can be studied at various

degrees of formalization, each of which increases

in cognitive and linguistic complexity as one

proceeds through school to university. These

concepts played a key role in the history and

form the base for the modern theory of probabil-

ity while at the same time people frequently hold

incorrect intuitions about their meaning or their

application in absence of instruction. The list of

fundamental concepts include the ideas of

random experiment and sample space, addition

and multiplication rules, independence and con-

ditional probability, random variable and

distribution, combinations and permutations,

convergence, sampling, and simulation.

All these ideas appear along the curriculum,

although, of course, with different levels of for-

malization. In primary school, an intuitive idea of

probability and the ability to compute simple

probabilities by applying the Laplace rule or via

the estimation from relative frequencies using

a simple notation seems sufficient. By the end

of high school, students are expected to discrim-

inate random and deterministic experiments, use

combinatorial counting principles to describe the

sample space and compute the associate proba-

bilities in simple and compound experiments,

understand conditional probability and indepen-

dence, compute and interpret the expected value

of discrete random variables, understand how to

draw inferences about a population from random

samples, and use simulations to acquire an

intuitive meaning of convergence.

It is believed today that in order to become

a probability literate citizen, a student should

understand the use of probability in decision

making (e.g., stock market or medical diagnosis)

or in sampling and voting. In scientific or profes-

sional work, or at university, a more complex

meaning of probability including knowledge of
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main probability distributions and even the

central limit theorem seems appropriate.

Intuitions and Misconceptions

For teaching, it is important to take into account

informal ideas that people relate to chance and

probability before instruction. These ideas appear

in children who acquire experience of random-

ness when playing chance games or by observing

natural phenomena such as the weather. They use

qualitative notions (probable, unlikely, feasible,

etc.) to express their degrees of belief in the

occurrence of random events in these settings;

however their ideas are too imprecise. Young

children may not see stable properties in random

generators such as dice or marbles in urns and

believe that such generators have a mind of their

own or are controlled by outside forces.

Although older children may realize the need

of assigning numbers (probabilities) to events to

compare their likelihood, probabilistic reasoning

rarely develops spontaneously without instruc-

tion (Fischbein 1975), and intuitions are often

found to be wrong even in adults. For example,

the mathematical result that a run of four consec-

utive heads in coin tossing has no influence on the

probability that the following toss will result in

heads seems counterintuitive. This belief maybe

due to the confusion between hypotheses and

data: when we deal with coin tossing, we usually

assume that the experiment is performed

independently. In spite of the run of four heads

observed, the model still is used and, then, the

probability for the next outcome remains half

for heads; however intuitively these data

prompt people to abandon the assumption of

independence and use the pattern of past data to

predict the next outcome.

Piaget and Inhelder (1951) investigated

children’s understanding of chance and probabil-

ity and described stages in the development of

probabilistic reasoning. They predicted a mature

comprehension of probability at the formal

operational stage (around 15 years of age),

which comprises that adolescents understand the

law of large numbers – the principle that explains

simultaneously the global regularity and the

particular variability of each randomly

generated distribution. However, later research

contradicted some of their results; Green’s

(1989) investigation with 2,930 children

indicates that the percentage of students recog-

nizing random distributions decreases with age.

Moreover, research in Psychology has shown

that adults tend to make erroneous judgments

in their decisions in out-of-school settings even if

they are experienced in probability. The

well-known studies by Kahneman and his collab-

orators (see Kahneman et al. 1982) identify that

people violate normative rules behind scientific

inference and use specific heuristics to simplify

the uncertain decision situation. According to

them, such heuristics reduce the complexity of

these probability tasks and are in general useful;

however, under specific circumstances, heuristics

cause systematic errors and are resistant to change.

For example, in the representativeness

heuristics, people estimate the likelihood of an

event taking only into account how well it repre-

sents some aspects of the parent population

neglecting any other information available, no

matter how relevant it is for the particular

decision. People following this reasoning might

believe that small samples should reflect the

population distribution and consistently rely too

much on them. In case of discrepancies between

sample and population, they might even predict

next outcomes to reestablish the alleged similar-

ity. Other people do not understand the purpose

of probabilistic methods, where it is not possible

to predict an outcome with certainty but the

behavior of the whole distribution, contrary to

what some people expect intuitively. A detailed

survey of students’ intuitions, strategies,

and learning at different ages may be found in

the different chapters of Jones (2005) and

in Jones et al. (2007).

Another fact complicates the teaching of

probability (Borovcnik and Peard 1996): whereas

in other branches of mathematics counterintuitive

results are encountered only at higher levels

of abstraction, in probability counterintuitive

results abound even with basic concepts such

as independence or conditional probability.
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Furthermore, while in logical reasoning – the

usual method in mathematics – a proposition is

true or false, a proposition about a random event

would only be true or false after the experiment

has been performed; beforehand we only can

consider the probability of possible results. This

explains that some probability theorems (e.g., the

central limit theorem) are expressed in terms of

probability.

Challenges in Teaching Probability

The preceding philosophical and psychological

debate suggests that teachers require a specific

preparation to assure their competence to teach

probability. Unfortunately, even if prospective

teachers have a major in mathematics, they

usually studied only probability theory and

consistently lack experience in designing

investigations or simulations (Stohl 2005).

They may be unfamiliar with different mean-

ings of probability or with frequent misconcep-

tions in their students. Research in statistics

education has shown that textbooks lack to

provide sufficient support to teachers: they pre-

sent an all too narrow view of concepts; appli-

cations are restricted to games of chance; even

definitions are occasionally incorrect or

incomplete.

Moreover, teachers need training in pedagogy

related to teaching probability as general

principles valid for other areas of mathematics

are not appropriate (Batanero et al. 2004). For

example, in arithmetic or geometry elementary

operations can be reversed and reversibility can

be represented by concrete materials: when

joining a group of three marbles with another

group of four, a child always obtains the same

result (seven marbles); if separating the second

set from the total, the child always returns to the

original set provided that the marbles are seen as

equivalent (and there is hardly a dispute on such

an abstraction). These experiences are vital to

help children progressively abstract the structure

behind the concrete situation, since they remain

closely linked to concrete situations in their

mathematical thinking. However, with a random

experiment such as flipping a coin, a child obtains

different results each time the experiment is

performed, and the experiment cannot be

reversed. Therefore, it is harder for children to

understand (and acknowledge) the structure

behind the experiments, which may explain why

they do not always develop correct probability

conceptions without instruction.

Our previous discussion also suggests several

important questions to be considered in future

research: How should we take advantage of the

multifaceted nature of probability in organizing

instruction? How to conduct children to gradually

view probability as an a priori degree of

uncertainty, as the value to which relative fre-

quencies tend in random experiments repeated

under the same conditions, and as a personal

degree of belief, where “subjectivist” does not

mean arbitrariness, but use of expert knowledge?

How to make older students realize that proba-

bility should be viewed as a mathematical model,

and not a property of real objects? And finally,

how best to educate teachers to become compe-

tent in the teaching of probability?

Cross-References

▶Data Handling and Statistics Teaching

and Learning
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Introduction

The core and essence of a problem solving

approach to learn mathematics is summarized in

the following quotation: Problem solving is a

lifetime activity. Experiences in problem solving

are always at hand. All other activities are subor-

dinate. Thus, the teaching of problem solving

should be continuous. Discussion of problems,

proposed solutions, methods of attacking

problems, etc. should be considered at all times

(Krulik and Rudnick 1993, p. 9).

Characteristics

What Does Mathematical Problem Solving

Involve?

Mathematical problem solving is a research

and practice domain in mathematics education

that fosters an inquisitive approach to develop

and comprehend mathematical knowledge

Santos-Trigo 2007. As a research domain, the

problem-solving agenda includes analyzing

cognitive, social, and affective components

that influence and shape the learners’ develop-

ment of problem-solving proficiency. As an

instructional approach, the agenda includes the

design and implementation of curriculum pro-

posals and corresponding materials that

enhance problem-solving activities. Key ele-

ments in both the research and practice

endeavors are the characterization of problems

and what the problem-solving processes entail.

Often, a list of routine and nonroutine problems

is chosen as a means to elicit and develop

students’ problem-solving competencies. Also,

the same mathematical contents to be learned

and textbooks problems are seen as opportuni-

ties for learners to engage in problem-solving

activities. These activities involve making

sense of concepts or problem statements;

looking for different ways to represent, explore,

and solve the tasks; extending the tasks’ initial

domain; and developing a proper language to

communicate and discuss results. The ways to

organize and implement problem-solving activ-

ities might take different routes depending on
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the instructor’s aims, educational level, and

students’ background.

In university and graduate levels, the Moore

method, a variant of problem-solving approach,

might involve the selection of a list of theorems

and course problems that students are asked to

unpack, explain, and prove within a learning

community that foster the members’ participation

including the instructor as a moderator (Halmos

1994). Other problem-solving approaches rely on

promoting scaffolding activities to gradually

guide students’ construction of problem-solving

abilities. Instructional strategies involve fostering

and valuing students’ small group participation,

plenary group discussions, the instructor presen-

tations through modeling problem-solving

behaviors, and the students’ constant mathemat-

ical reflection. Lesh and Zawojewski (2007)

identify modeling activities as essential for

students to develop knowledge and

problem-solving experiences. They contend that

in modeling processes, interactive cycles

represent opportunities for learners to constantly

reflect on, revise, and refine tasks’ models. Thus,

the multiplicity of interpretations of problem

solving has become part of the identity of

the field.

Problem-Solving Developments:

Frameworks, Focus, and Current Themes

The most salient feature of the problem-solving

research agenda is that the themes, questions, and

research methods have changed perceptibly and

significantly through time. Shifts in research

themes are intimately related to shifts in research

designs and methodologies (Lester and Kehle

2003). Early problem-solving research relied on

quantitative methods and statistical hypothesis

testing designs; later, approaches were, and

continue to be, based mostly on qualitative

methodologies. In addition, the development

and systematic use of digital technologies not

only has offered new paths to represent and

explore mathematical situations (through the

use of dynamic models); also the students’

appropriation of these tools becomes an impor-

tant issue in the research and instructional agenda

(Hoyles and Lagrange 2010).

Research programs structured around problem

solving have made significant contributions to the

understanding of the complexity involved in

developing the students’ deep comprehension of

mathematics ideas, in using research results in the

design and structure of curricular frameworks,

and in directing mathematical school practices.

The cumulative findings in problem solving

provide useful information on how the field has

evolved during the last 40 years in terms of

themes, research designs, curriculum proposals,

and mathematical instruction. Of course, there

are traces of mathematical problem-solving

activities throughout the history of human civili-

zation that have contributed to the development

of the problem-solving agendas. For example, the

same year that Polya published his How to Solve

It book, Hadamard published Essay on the Psy-

chology of Invention in the Mathematics Field.

Hadamard asked 100 physicists/mathematicians

how they performed their work and identified

a four-step model that describes their problem-

solving experiences: preparation, incubation,

illumination, and verification. However, in the

1970s, the discussion of previous problem-

solving developments, including Krutetskii’s

(1976) work on the study of mathematical

abilities of gifted children, became an important

issue in the mathematics education agenda.

In the following sections, the goal is to provide

an account of the main problem-solving

developments that appeared during the last 40

years. This account includes some examples of

problem-solving directions in specific countries,

identifies current issues, and possible future

directions in the field.

Focus on Problem-Solving Activities and

Mathematicians’ Work

It is recognized that mathematical problems and

their solutions are a key ingredient in the making

and development of the discipline. What does the

process of formulating and solving mathematical

problems entail? The discussion of this type of

question, within the mathematics community,

provided valuable information to characterize

problem-solving processes and to think of the

students’ construction of mathematical knowledge
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in terms of problem-solving activities. In mathe-

matics education, the mathematicians’ work and

developments in disciplines as psychology became

relevant to relate problem-solving activities and

the students’ learning of mathematics. Schoenfeld

(1985) suggests that open critiques (Kline 1973) to

the new math and the back-to-basic reforms in the

USA were important to focus on problem-solving

activities as a way for students to learn mathemat-

ics. Polya (1945) reflected on his own experience

as a mathematician to write about the process

involved and ways to be successful in problem-

solving activities. (Polya used retrospection

(looking back at events that already have taken

place) and introspection (self-examination of

one’s conscious thought and feelings) methods to

write about problem solving and ways to teach it.)

He proposed a general framework that describes

four problem-solving stages (understanding the

problem, devising a plan, carrying out the plan,

looking back). He also discussed the role and

importance of using heuristic methods in students’

construction of mathematical knowledge. His

ideas not only shaped initial research programs in

problem solving but also appeared in curriculum

proposals and teaching scenarios (Krulik and Reys

1980).

Polya’s ideas were found in curriculum

materials and in the ways the development of

mathematical instruction was organized and

structured. The use of heuristic methods was

deemed relevant, and instruction or teaching

activities were organized and centered on the

teacher who was in charge of modeling

problem-solving behaviors for the students.

Research studies included quantitative designs

to document and contrast groups or classes of

students’ problem-solving behaviors exposed to

differential approaches. Research results indi-

cated that the identification of problem-solving

strategies and the process of modeling their use

in instruction was not sufficient for students

to foster their comprehension of mathematical

knowledge and problem-solving approaches.

This recognition allowed themathematics education

community to reflect on ways to characterize

and explain the students’ development ofmathemat-

ical thinking and problem-solving approaches.

Specifically, it was important to analyze in detail

how students could gradually develop a way of

thinking consistent with mathematical practice in

terms of problem-solving activities (Schoenfeld

1992).

During this period, problem-solving perspec-

tives appeared explicitly in curriculum discus-

sions, and in mathematical instruction, the

Polya’s model was a predominant approach to

guide teaching strategies. The need to do research

to support, structure, and implement problem-

solving activities became crucial, and the

development of qualitative methods was relevant

to complement and extend previous quantitative

problem-solving analysis.

The Importance of Problem-Solving Frameworks

and the Design of Curriculum Proposals

The use of qualitative tools provided a means

to analyze and discuss both features of mathe-

matical thinking and the process involved in

problem-solving approaches. Schoenfeld (1985)

implemented a research program that focused on

analyzing students’ development of mathemati-

cal ways of thinking consistent with current

mathematics practices. A key issue in his

program was to characterize what it means to

think mathematically and to document how

students become successful or develop profi-

ciency in solving mathematical tasks. He used a

set of nonroutine tasks to engage first year uni-

versity students in problem-solving activities. As

a result, Schoenfeld proposed a framework to

explain and document students’ problem-solving

behaviors in terms of four dimensions: the

use of basic mathematical resources, the use of

cognitive or heuristic strategies, the use of

metacognitive or self-monitoring strategies, and

students’ beliefs about mathematics and problem

solving.

This framework has been used extensively not

only to document the extent to which problem

solvers succeed in their problem-solving attempts

but also to organize and foster students’ develop-

ment of problem-solving experiences in the class-

rooms. Schoenfeld (1992) also shed light on the

strengths and limitations associated with the use

of Polya’s heuristics. Schoenfeld (1992, p. 353)
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pointed out that “Polya’s characterization did

not provide the amount of detail that would

enable people who were not already familiar

with the strategies to be able to implement

them.” In this period, the shift from using quanti-

tative to qualitative methods appeared in research

studies, and students’ interactions were valued

and promoted in mathematical instruction. The

importance of students’ previous knowledge

was recognized when engaging themselves in

problem-solving discussions; students became

the center of instruction that valued their active

participation as a part of a learning community.

In addition, the NCTM (1989) launched a curric-

ulum framework structured around problem-

solving approaches. This framework was updated

in 2000 (NCTM 2000). This is the curriculum

proposal that best promotes the students develop-

ment of mathematical experiences based on prob-

lem-solving approaches. Recently, the Common

Core State Mathematics Standards (CCSMS)

(2010) also identified problem solving as one of

the standard processes to develop students’ math-

ematical proficiency. Through all grades, students

are encouraged to engage in problem-solving

practices that involve making sense of problems,

and persevere in solving them, to look for and

express regularity in repeated reasoning, to use

appropriate tools strategically, etc.

Problem-solving frameworks offer valuable

information regarding the main aspects that

influence the development of problem-solving

competencies. In addition, they provided basis

to analyze in deep the role of metacognition and

beliefs systems in learners’ comprehension of

mathematics.

Regional Problem-Solving Developments and the

Use of Digital Tools

Developments in mathematical problem solving

have gone hand in hand with development and

discussions in mathematics education. For

example, a situated cognition perspective links

the learning process to problem-solving activities

within specific contexts, and a community of

practices perspective emphasizes student’s social

interactions as a way to make sense and work on

mathematical problems.

Regional or country mathematics education

traditions also play a significant role in shaping

and pursuing a problem-solving agenda. Artigue

and Houdement (2007) summarized the use of

problem solving in mathematics education, and

they pointed out that in France problem solving is

conceptualized through the lens of two influential

and prominent theoretical and practical

frameworks in didactic research: the theory of

didactic situations (TDS) and the anthropological

theory of didactics (ATD).

In the Netherlands, the problem-solving

approach is associated with the theory of Realis-

tic Mathematics that pays special attention to the

process involved in modeling the real-world sit-

uations. They also recognized a strong connec-

tion between mathematics as an educational

subject and problem solving as defined by the

PISA program Doorman et al. 2007.

Cai and Nie (2007) pointed out that problem-

solving activities in Chinese mathematics

education have a long history and are viewed as

a goal to achieve and as an instructional approach

supported more on experience than a cognitive

analysis. In the classroom, teachers stress

problem-solving situations that involve discus-

sion: one problem multiple solutions, multiple

problems one solution, and one problem multiple

changes. “The purpose of teaching problem

solving in the classroom is to develop students’

problem solving skills, help them acquire ways of

thinking, form habits of persistence, and build

their confidence in dealing with unfamiliar

situations” (Cai and Nie 2007, p. 471).

Recently, Schoenfeld (2011) updated his 1985

problem-solving framework to explain how and

why problem solvers make decisions that shape

and guide their problem-solving behaviors. He

proposes three constructs to explain in detail

what problem solvers do on amoment-by-moment

basis while engaging in a problem-solving pro-

cess: the problem solver’s resources, goals, and

orientations. He suggests that these constructs

offer teachers, and problem solvers in other

domains, tools for reflecting on their practicing

decisions. In his book, he uses the framework to

analyze and predict the behaviors of mathematics

and science teachers and a medical doctor.
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The development and use of digital technol-

ogy opened up new paths for problem-solving

approaches. For example, basis, frameworks,

and instructional approaches that emerged from

analyzing students’ problem-solving experiences

centered on the use of paper and pencil should be

reexamined in accordance to what the use of

the tools brings in to play. That is, they need to

be adjusted or extended to incorporate and

document ways in which the use of digital

technology fosters new methods of representing

and reasoning about problem situations (Hoyles

and Lagrange 2010). The systematic use of

technology not only enhances what teachers and

students do with the use of paper and pencil but

also extends and opens new routes and ways of

reasoning for students and teachers to develop

mathematics knowledge (Santos Trigo and

Reyes-Rodriguez 2011). Thus, emerging reason-

ing associated with the use of the tools needs to be

characterized and made explicit in curriculum

and conceptual frameworks in order for teachers

to incorporate it and to foster its development in

teaching practices. In terms of curriculum

materials and instruction, the use of several dig-

ital technologies could transform the rigid and

often static nature of the content presentation

into a dynamic and flexible format where learners

can access to several tools (dynamic software,

online encyclopedias, widgets, videos, etc.)

while dealing with mathematical tasks.

The advent and use of computational technol-

ogy in society and education influence and shape

the academic problem-solving agenda. The

learners’ tools appropriation to use them in

problem-solving activities involves extending

previous frameworks and to develop different

methods to explain mathematical processes that

are now enhanced with the use of those tools.

Directions for Future Research

In retrospective, research in problem solving has

generated not only interesting ideas and useful

results to frame and discuss paths for students

to develop mathematical knowledge and

problem-solving proficiency; it has also

generated ways to incorporate this approach into

the design of curriculum proposals and

instructional approaches. However, it is not

clear how teachers implement and assess their

students’ development of problem-solving com-

petences. In this context, teachers, together with

researchers, need to be engaged in problem-

solving experiences where all have an opportu-

nity to discuss and design problem-solving

activities and ways to implement and evaluate

them in actual classroom settings. In addition,

there are different paths for students to develop

mathematical thinking, and the use of tools

shapes the ways they think of, represent, and

explore mathematical tasks or problems. Then,

theoretical frameworks used to explain learners’

construction of mathematical knowledge need to

capture or take into account the different ways of

reasoning that students might develop as a result

of using a set of tools during the learning

experiences. As a consequence, there is a need

to develop or adjust current problem-solving

frameworks to account not only the students’

processes of appropriation of the tools but also

the need to characterize the ways of reasoning,

including the use of new heuristics, for example,

dragging in dynamic representations, with which

students construct learning as a result of using

digital tools in problem-solving approaches.

In addition, it is important to develop methodo-

logical tools to observe, analyze, and evaluate

group’s problem-solving behaviors that involve

the use of digital technology.
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Characteristics

During the past decade, professional learning

communities have drawn the attention of educa-

tionists interested in school leadership, school

learning, and teacher development. Professional

learning communities aim to establish school

cultures, which are conducive to ongoing

learning and development, of students, teachers,

and schools as organizations (Stoll et al. 2006).

Professional learning communities refer to

groups of teachers collaborating to inquire into

their teaching practices and their students’ learn-

ing with the aim of improving both. In order to

improve practice and learning, professional

learning communities interrogate their current

practices and explore alternatives in order to
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refresh and re-invigorate practice (McLaughlin

and Talbert 2008). Exploring alternatives is

particularly important in mathematics education

where a key goal of teacher development is to

support teachers’ orientations towards under-

standing and engaging students’ mathematical

thinking in order to develop conceptual under-

standings of mathematics among students.

A key principle underlying professional learn-

ing communities is that if schools are to be intel-

lectually engaging places, all members of the

school community should be intellectually

engaged in learning on an ongoing basis (Curry

2008). Professional learning communities are

“fundamentally about learning – learning for

pupils as well as learning for teachers, learning

for leaders, and learning for schools” (Katz and

Earl 2010, p. 28). Successful learning communi-

ties are those that challenge their members to

reconsider taken-for-granted assumptions in

order to generate change, for example, challeng-

ing the notion that working through procedures

automatically promotes conceptual understand-

ings of mathematics. At the same time, not all

current practices are problematic, and successful

professional learning communities integrate the

best of current practice with ideas for new

practices.

A number of characteristics of successful

professional learning communities have been

identified: they create productive relationships

through care, trust, and challenge; they de-

privatize practice and ease the isolation often

experienced by teachers; they foster collabora-

tion, interdependence, and collective responsibil-

ity for teacher and student learning; and they

engage in rigorous, systematic enquiry on

a challenging and intellectually engaging focus.

Professional learning communities in mathemat-

ics education focus on supporting teachers to

develop their own mathematical knowledge and

their mathematical knowledge for teaching, par-

ticularly in relation to student thinking (Brodie

2011; Curry 2008; Jaworski 2008; Katz et al.

2009; Little 1990).

The notion of collective learning in

professional learning communities is important.

The idea is that teachers who work together learn

together, making for longer-term sustainability of

new practices and promoting community-

generated shifts in practice, which are likely to

provide learners with more coherent experiences

across the subject or school (Horn 2005;

McLaughlin and Talbert 2008). Professional

learning communities support teachers to

“coalesce around a shared vision of what counts

for high-quality teaching and learning and begin

to take collective responsibility for the

students they teach” (Louis and Marks 1998,

p. 535). Ultimately, a school-wide culture of col-

laboration can be promoted, although working

across subject disciplines can distract from

a focus on subject knowledge (Curry 2008).

Networked learning communities, where

professional learning communities come together

across schools in networks, provide further

support and sustainability for individual commu-

nities and improved teacher practices (Katz and

Earl 2010).

There is differing terminology for learning

communities, which illuminate subtle but

important differences in how communities are

constituted. These include “communities of

practice,” “communities of enquiry,” and “criti-

cal friends groups.” The key emphasis in the

notion of professional learning is that it signals

the focus of the community and the learning as

both data-informed and knowledge-based.

Data-Informed and Knowledge-Based

Enquiry

Professional learning communities can be

established within or across subjects, and in

each case the communities would choose

different focuses to work on. Working within

mathematics suggests that the focus would be

on knowledge of and intellectual engagement

with mathematics and the teaching and learning

of mathematics. Effective communities focus

on addressing student needs through a focus on

student achievement and student work, joint

lesson and curriculum planning, and joint

observations and reflection on practice, through

watching actual classroom lessons or videotaped
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recordings of classroom practice. Mathematics

learning communities support teachers to focus

on learner thinking through examples of learners

solving rich problems (Borko et al. 2008;

Whitcomb et al. 2009) or through teachers’

analyzing learner errors (Brodie 2011).

In many cases data comes from national tests,

and teachers work together to understand the data

that the tests present and to think about ways to

improve their practice that the data suggests.

Working with data as a mechanism to improve

test scores can be seen as a regulatory practice,

with external accountability to school managers

and education department officials. Proponents of

teacher-empowered professional learning

communities argue strongly that the goal of such

data analysis must be to inform teachers’ conver-

sations in the communities, as a form of internal

accountability to knowledge and learning (Earl

and Katz 2006). Data can also include teachers’

own tests, interviewswith learners, learners’ work,

and classroom observations or videotapes.

The professional focus of professional

learning communities requires that the learning

in these communities be supported by

a knowledge base as well as by data. As teachers

engage with data, their emerging ideas are

brought into contact with more general findings

from research. Jackson and Temperley (2008)

argue for a model where practitioner knowledge

of the subject, learners, and the local context

meets public knowledge, which is knowledge

from research and best practice. The interaction

between data from classrooms and wider public

knowledge is central in creating professional

knowledge, for two reasons. First, without

outside ideas coming into the communities’ con-

versations, they can become solipsistic and

self-preserving and may continue to maintain

the status quo rather than invigorate practice.

Second, data and knowledge work together to

promote internal accountability, to the learners

and teachers and to support the creation of new

professional knowledge, which is research-based,

locally relevant, and collectively generated.

(Data-informed practice is different from

evidence-based practice. Evidence-based

practice suggests that only research-based evi-

dence is good enough to inform teacher profes-

sional development. Data-informed professional

development suggests that teachers themselves,

with some expert guidance, can and should

interpret data that is available to them and

integrate research knowledge with their local

circumstances).

Leadership

Leadership in professional learning communities

is central, particularly in helping to bring together

data from practice and the findings of research.

Leaders can be school-based or external, for

example, district officials or teacher-educators

from universities. For long-term sustainability,

there should be leadership within the school, or

within a cluster of schools.

Two key roles have been established as impor-

tant for leaders in professional learning commu-

nities. The first is promoting a culture of inquiry

and mutual respect, trust, and care, where

teachers are able to work together to understand

challenges in their schools more deeply and sup-

port each other in the specific challenges that they

face as teachers. The second is to support teachers

to focus on their students’ knowledge and subse-

quently their own knowledge and teaching prac-

tices. The second role is crucial in supporting

professional learning communities where sub-

ject-specific depth is the goal, depth in learning

and knowledge for both teachers and learners.

It is important for leaders in professional

learning communities to also be learners and to

be able to admit their own weaknesses (Brodie

2011; Katz, et al. 2009). At the same time, it is

important for leaders to have and present exper-

tise, which helps the community to move for-

ward. In mathematics, leaders need to recognize

opportunities for developing mathematical

knowledge and knowledge of learning and teach-

ing mathematics among teachers, for example,

what counts as appropriate mathematical expla-

nations, representations, and justifications and

how these can be communicated with learners.

Other functions for leaders in professional learn-

ing communities are developing teachers’
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capacities to analyze classroom data; supporting

teachers to observe and interpret data rather than

evaluate and judge practice; supporting teachers

to choose appropriate problem of practices to

work on, once the data has been interpreted; and

helping teachers to work on improving their prac-

tice and monitoring their own and progress in

doing this, as well as their learners’ progress

(Boudett and Steele 2007). So leadership in pro-

fessional learning communities is a highly spe-

cialized task.

Impact and Research

There is a growing body of research that shows

that professional learning communities do pro-

mote improved teacher practices and improved

student achievement (Stoll et al. 2006). However,

the evidence is mixed depending on which

aspects of learning different studies choose to

focus on. Research into professional learning

communities invariably must confront how to

recognize and describe learning, both in the con-

versations of the community and in classrooms. It

is well known from situated theory that learning

does not travel untransformed between sites,

rather it is recontextualized and transformed as

it travels from classrooms to communities and

back again.

A second issue that research into professional

learning communities must confront is the rela-

tionship between group and individual learning.

While the focus of the community is on group

learning and interdependence, ultimately each

person contributes in particular ways to the com-

munity and brings particular expertise, and dif-

ferent people will learn and grow in different

ways. Kazemi and Hubbard (2008) suggest

a situated framework for research into how the

individual and the group coevolve in mathemat-

ics professional learning communities. Group

and individual trajectories can be examined in

relationship to each other, through a focus on

particular practices and artifacts of practice

discussed by the community. How particular

practices travel from the classroom into the com-

munity and back again can be traced through

linking what happens in the community to what

happens in teachers’ classrooms.
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Characteristics

Cognitive psychology, developmental psychol-

ogy, and educational psychology are general

fields of research for which mathematics educa-

tion naturally seems one among many domains of

application. However, the history of these

domains of research and of the development of

research in mathematics education is much more

complex, and not at all hierarchical. For example,

in their monumental Human Problem Solving

(Newell and Simon 1972), Newell and Simon

acknowledged that many of their ideas (which

became among the fundamentals of Cognitive

Psychology) were largely inspired from George

Pólya’s How to Solve It (Pólya 1945). Another

prestigious link is of course Piaget’s Episté

mologie Génétique – his theory of human

development: the theory was based on memora-

ble experiments in which Piaget designed

conservation tasks in which mathematical entities

were focused on (number, quantity, length, pro-

portions, etc.). Also Cole’s Cultural Psychology

(1996) is largely based on the comparison

between mathematical practices in different soci-

eties. The reasons for these ties are profound, and

beyond the very different approaches adopted,

mathematics represents a domain through which

human cognition, cognitive development, or

human development can be studied. We focus

here on some psychological approaches adopted

in mathematics education. Although these

approaches have come out at different times,

approaches were not merely replaced and each

of them is still vibrant in the community of

researchers in mathematics education.

The Constructivist Approach

Our review of psychological approaches in math-

ematics is not exhaustive. We mention the

approaches that contribute to our understanding

of learning and teaching processes and that can

help in what we consider as their improvement.

For this reason, we overlooked behavioristic

approaches. We will begin with constructivism –

a learning theory with a very long history that can

be traced to John Dewey. The simple and general

idea according to which learning occurs when

humans actively engage in tasks has been under-

stood very differently by different psychologists.

For some, constructivism means discovery-based

teaching techniques, while for others, it means

self-directedness and creativity. Wertsch (1998)

adopts a social version of constructivism –

socioculturalism – to encourage the learner to

arrive at his or her version of the truth, influenced

by his or her background, culture, or embedded

worldview. Historical developments and symbol

systems, such as language, logic, and mathemat-

ical systems, are inherited by the learner as

a member of a particular culture, and these are

learned throughout the learner’s life. The fuzzi-

ness and generality of the definition of construc-

tivism led to inconsistent results. It also led to the

memorable “math wars” controversy in the

United States that followed the implementation

of constructivist-inspired curricula in schools

with textbooks based on new standards. In spite

of many shortcomings, the constructivist

approach had the merit to lead scientists to
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consider the educational implications of the the-

ories of human development of Piaget and

Vygotsky in particular in mathematics education

(von Glasersfeld 1989; Cobb and Bauersfeld

1995).

The Piagetian Approach: Research on
Conceptions and Conceptual Change

The impact of Piaget’s theory of human develop-

ment had and still has an immense impact on

research on mathematics education. Many

researchers adapted the Piagetian stages of

cognitive growth to describe learning in school

mathematics. Collis’ research on formal opera-

tions and his notion of closure (Collis 1975) are

examples of this adaptation. With the multi-base

blocks (also known as Dienes blocks), Dienes

(1971) was also inspired by Piaget’s general

idea that knowledge and abilities are organized

around experience to sow the seeds of contempo-

rary uses of manipulative materials in mathemat-

ics instruction to teach structures to young

students.

Since the 1970s researchers in science

education realized that students bring to learning

tasks alternative frameworks or misconceptions

that are robust and difficult to extinguish. The

idea of misconception echoed Piagetian ideas

according to which children consistently elabo-

rate understandings of reality that do not fit

scientific standards. Researchers in mathematics

education adopted these ideas in terms of tacit

models (Fischbein 1989) or of students’ concept

images (Tall and Vinner 1981). These frame-

works were seen as theories to be replaced by

the accepted, correct scientific views. Bringing

these insights into the playground of learning and

development was a natural step achieved through

the idea of conceptual change. This idea is used to

characterize the kind of learning required when

new information comes in conflict with the

learners’ prior knowledge usually acquired on

the basis of everyday experiences. It is claimed

that then a major reorganization of prior

knowledge is required – a conceptual change.

The phenomenon of conceptual change was first

identified for scientific concepts and then in

mathematics (e.g., the acquisition of the concept

of fraction requires radical changes in the

preexisting concept of natural number, Hartnett

and Gelman 1998). Misconceptions were thought

to develop when new information is simply added

to the incompatible knowledge base, producing

synthetic models, like the belief that fractions are

always smaller than the unit. Learning tasks, in

which students were faced with a cognitive

conflict, were expected to replace their miscon-

ceptions by the current accepted conception.

Researchers in mathematics education continue

studying the discordances and conflicts between

many advanced mathematical concepts and naı̈ve

mathematics. Intuitive beliefs may be the cause of

students’ systematic errors (Fischbein 1987;

Stavy and Tirosh 2000; Verschaffel and De

Corte 1993). Incompatibility between prior

knowledge and incoming information is one

source of students’ difficulties in understanding

algebra (Kieran 1992), fractions (Hartnett and

Gelman 1998), and rational numbers (Merenluoto

and Lehtinen 2002). The conceptual change

approach is still vivid because of its instructional

implications that help to identify concepts in

mathematics that are going to cause students

great difficulty, to predict and explain students’

systematic errors, to understand how counterintu-

itive mathematical concepts emerge, to find the

appropriate bridging analogies, and more gener-

ally, to develop students as intentional learners

with metacognitive skills required to overcome

the barriers imposed by their prior knowledge

(Schoenfeld 2002). However, harsh critiques

pointed out that cognitive conflict is not an effec-

tive instructional strategy and that instruction that

“confronts misconceptions with a view to

replacing them is misguided and unlikely to

succeed” (Smith et al. 1993, p. 153). As a

consequence, misconceptions research in

mathematics education was abandoned in the

early 1990s. Rather, researchers began studying

the knowledge acquisition process in greater

detail or as stated by Smith et al. (1993) to focus

on “detailed descriptions of the evolution of

knowledge systems” (p. 154) over long periods

of time.
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Departing from Piaget: From Research
on Concept Formation to Teaching
Experiments

The fine-grained description of knowledge

systems in mathematics education was initiated

as an effort to adapt his theory to mathematics

education (Skemp 1971). Theories of learning in

mathematics were elaborated, among them

the theory of conceptual fields (Vergnaud 1983),

the notion of tool-object dialectic (Douady 1984,

1986), and theories of process-object duality of

mathematical conceptions (Sfard 1991;

Dubinsky 1991). Van Hiele’s theory of develop-

ment of geometric thinking (Van Hiele 2004)

seems at a first glance to fit Piaget’s view of

development with its clear stages. However, it

clearly departed from Piaget’s theory in the

sense that changes result from teaching rather

than from independent construction on the part

of the learner. The method of the teaching

experiment was introduced to map trajectories

in the development of students’ mathematical

conceptions. Steffe et al. (2000) produced fine-

grained models of students’ evolving conceptions

that included particular types of interactions with

a teacher and other students. It showed that learn-

ing to think mathematically is all but a linear

process, but that what can be seen as mistakes or

confusions may be essential in the learning pro-

cess. Moreover, “misconceptions” often resist

teacher’s efforts, but they eventually are neces-

sary building blocks in the learning of concep-

tions. In the same vein, Schwarz et al. (2009)

elaborated the RBC model of abstraction in con-

text to identify the building blocks of mathemat-

ical abstraction which are often incomplete or

flawed. Such studies invite considering alternative

approaches to understand the development of

mathematical thinking. The RBC model takes

into account the impressive development of socio-

cultural approaches in mathematics education.

Sociocultural Approaches

Descriptions of students learning in teaching

experiments stressed the importance of the social

plane – of the interactions between teacher and

students. Vygotsky’s theory of human develop-

ment was a natural source of inspiration for

researchers in mathematics education in this con-

text. A series of seminal studies on street mathe-

matics (e.g., Nunes et al. 1993) on the ways

unschooled children used mathematical practices

showed the situational character of mathematical

activity. Rogoff’s (1990) integration of Piagetian

and Vygotskian theories to see in guided partici-

pation a central tenet of human development

fitted these developments in research in mathe-

matics education. Rogoff considered learning

and development as changes of practice. For

her, learning is mutual as the more knowledge-

able (the teacher) as well as students learn to

attune their actions to each other. Cobb and col-

leagues took the mathematics classroom in its

complexity as the natural context for learning

mathematics (Cobb et al. 2001; Yackel and

Cobb 1996). He introduced the fundamental

notion of social and socio-mathematical norms

to point at constructs that result from the

recurring enactment of practices in classrooms

(an embryonic version of this notion had already

been elaborated by Bauersfeld (1988)). Cobb and

colleagues showed that those norms are funda-

mental for studying individual and group

learning: learning as a change of practice entails

identifying the establishment of various norms.

Vygotsky’s intersubjectivity as the necessary

condition for maintaining communication was

replaced by Cobb and colleagues by taken-as-

shared beliefs. Cobb also considered the mathe-

matical practices of the classrooms (standards of

mathematical argumentation, ways to reasoning

with tools and symbols) as other general collec-

tive constructs to be taken into account to trace

learning. Norms are constructed in the mini-

culture of the classroom in which researchers

are not only observers but actively participate in

the establishment of this mini-culture. Cobb

adopts here a new theoretical approach in the

Learning Sciences – Design Research (Collins

et al. 2004). This interesting approach led to

many studies in mathematics education, but also

raised the tough issue of generalizability of

design experiments.
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Although according to Cobb and his

followers, learning is highly situational,

knowledge that emerges in the classroom is

presented in a decontextualized form that fits (or

not) accepted mathematical constructs. The writ-

ings of influential thinkers challenged this view.

In L’archéologie du savoir, Michel Foucault

(1969) convincingly traced the senses given to

ideas such as “madness” along the history

through the analysis of texts. Instead of identify-

ing knowledge as a static entity, he forcefully

claimed that human knowledge should be viewed

as “a kind of discourse” – a special form of

multimodal communication. Leading mathemat-

ics education researchers adopted this perspec-

tive (Lerman 2001; Kieran et al. 2002). In her

theory of commognition, Sfard (2008) viewed

discourse as what changes in the process of learn-

ing, and not the internal mental state of an indi-

vidual learner. From this perspective, studying

mathematics learning means exploring pro-

cesses of discourse development. The method-

ology of the theory of commognition relies on

meticulous procedures of data collecting and

analysis. The methods of analysis are adapta-

tions of techniques developed by applied lin-

guists or by discursively oriented social

scientists. The discourse of the more knowl-

edgeable other is for Sfard indispensable, not

only as an ancillary help for the discovering

student but as a discourse to which he or she

should persist to participate, in spite of the fact

its nature is incommensurable with the nature

of his or her own discourse. Sfard’s theory and

Cobb’s theory, which stemmed from research in

mathematics education, have become influential

in the Learning Sciences in general.

Open Issues

Leading modern thinkers such as Bakhtin have

headed towards dialogism, a philosophy based on

dialogue as a symmetric and ethical relation

between agents. This philosophical development

has yielded new pedagogies that belong to what is

called Dialogic Teaching, and new practices, for

example, (un-)guided small group collaborative

and argumentative practices, or teacher’s

facilitation of group work. A good example of

dialogic teaching enacted in mathematics class-

rooms is Accountable Talk (Michaels et al. 2009).

Dialogic Teaching raises harsh psychological

issues as in contrast with sociocultural

approaches for which adult guidance directs

emergent learning, dialogism involves symmetric

relations.

Numerous technological tools have been

designed by CSCL (Computer-Supported

Collaborative Learning) scientists to facilitate

(un-)guided collaborative work for learningmath-

ematics. These new tools enable new discourse

practices with different synchronies and enriched

blended multimodalities (oral, chat, computer-

mediated actions, gestures). Virtual Math Teams

(Stahl 2012) is a representative project which

integrates powerful dynamic mathematics

applications such as GeoGebra in amultiuser plat-

form for (un)guided group work on math prob-

lems, so that small groups of students can share

their mathematical explorations and co-construct

geometric figures online. In a recent book, Trans-

lating Euclid, Stahl (2013) convincingly shows

how collaborating students can reinvent Euclid-

ean geometry with minimal guidance and suitable

CSCL tools. The possibilities opened by new

technologies challenge the tenets of sociocultural

psychology: the fact that students can collaborate

during long periods without adult guidance chal-

lenges neo-Vygotskian approaches for which

adult guidance is central for development. To

what extent can it be said that the designed tools

embody adult discourse? In spite of the fact that

the teacher is often absent, new forms of partici-

pation of the teacher fit dialogism (e.g., modera-

tion as caring but minimally intrusive guidance).

The psychological perspective that fit changes in

participation and the role of multiple artifacts in

these changes is an extension of the Activity The-

ory, the theory of Expansive Learning (Engeström

1987) to the learning of organizations rather than

the learning of individuals. The mechanisms of

the emergent learning of the group are still mys-

terious, though. It seems then, that, again, mathe-

matics education pushes psychology of learning

to unconquered lands.
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Definition

This entry examines Lakatos’ assertion that the

nature of mathematical knowledge is quasi-

empirical, in attempting to describe the growth

of mathematical knowledge and its implications

for mathematics education.

Characteristics

The Hungarian philosopher Imre Lakatos (1976)

considered mathematics to be a quasi-empirical

science in his famous book “Proofs and Refuta-

tions: The Logic of Mathematical Discovery.”

The book, popularized within the mathematics

community by Reuben Hersh (1978) after this

paper “Introducing Imre Lakatos” (Hersh 1978),

might also be considered as Lakatos’ response to

the claims on the methodology of mathematics,

related to explaining how it is that mathematical

knowledge qualifies for superlative epistemolog-

ical qualities such as certainty, indubitability, and

infallibility.

Lakatos’ attempted to illustrate the fallibility

of mathematics. Written as a fictionalized

classroom dialogue, Lakatos’ book (1976)

presented an innovative, captivating, and power-

ful context for a reconstructed historical debate

and proof of the Descartes-Euler theorem for

polyhedral, as a generic example of the

development of mathematical knowledge.

Lakatos appealed to the history of the theorem,

by embedding what he had discovered in his

dissertation (dissertation topic suggested to him

by George Polya). The Descartes-Euler theorem

asserts that for a polyhedron p we have V – E +

F ¼ 2, where V, E, and F are, respectively, the

number of vertices, edges, and faces of p. He

showed how Descartes-Euler’s theorem and the

concepts involved in it evolved through proofs,

counterexamples, and proofs modified in light

of the counterexamples, thereby illustrating the

fallibility of mathematics.

The core of Lakatos’ philosophy of mathemat-

ics is that mathematical theorems are defeasible

and subject to refutations not unlike claims

in empirical sciences. Lakatos (1976, 1978)

attempted to establish an analogy between

Popper’s (1962) conjectures and refutations in

science and the logic of attempts at deductive

proofs and refutations in mathematics and to

describe the rational growth of mathematical

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
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knowledge (p. 5). In extending Popper’s

(1958, 1962) critical philosophy of science to

mathematics, Lakatos claims that mathematical

theorems are not irrefutably true statements, but

conjectures, since we cannot know that a theorem

will not be refuted. While in science, bold

conjectures can be a starting point of the growth

of knowledge, in mathematics presenting

tentative proofs can be the starting point of the

growth of knowledge, even if they contain

hidden assumptions or lemmas that have not

been proved yet.

Lakatos’ approach in the philosophy of

mathematics resulted in the argumentation that

mathematics, like the sciences, is a quasi-

empirical theory. Such theories have their

“crucial truth-value injection” at the bottom.

The logical flow in quasi-empirical theories is

not the transmission of truth, but rather the

retransmission of falsity. The term quasi-

empirical describes the nature of the truth-value

transmission in a particular deductive system,

like mathematics, not whether the system is

empirical. Lakatos argues that “from special

theorems at the bottom (“basic statements”) up

towards the set of axioms . . . a quasi-empirical

theory – at best -[can claim] to be well – corrob-

orated, but always conjectural” (pp. 33–34). He

further explains that informal, quasi-empirical,

mathematics does not grow through a

monotonous increase in the number of indubita-

bly established theorems but through the inces-

sant improvement of guesses by speculation and

criticism and by the logic of proofs and refuta-

tions. His opinion that mathematics is conjectural

is in contrast to the view that mathematics is

Euclidean in nature. According to Lakatos the

efforts of Russell and Hilbert to Euclideanize

mathematics failed: “the Grande Logiques cannot

be proved true or even consistent; they can only

be proved false or even inconsistence” (p. 15).

Although Lakatos described his work as

a study of “mathematical methodology,” much

writing since then has used it as a font of sugges-

tion concerning mathematics education, includ-

ing school mathematics education. Researchers

(e.g., Sriraman 2006) claim that Lakatos adopts

the philosophical position of fallibilism and

studies the implications of this view as a means

of developing a model of mathematical inquiry,

in attempting to relate this epistemological

framework to actual classroom situations. During

the last 30 years, a significant number of philos-

ophers and mathematics educators alike have

appropriated his ideas in Proofs and Refutations

and inferred great meanings for the classroom

practices of both teachers and students

(Sierpinksa and Lerman 1996).

Lakatos’ (1976, 1978) gave substantial impe-

tus to developments in the sociology of mathe-

matical knowledge. Lakatos’ work can well serve

as a basis for a social constructivist philosophy of

mathematics, which in turn can be used to

develop a theory of learning, such as constructiv-

ism. A social constructivist perspective clearly

prefer the “Lakatosian” conception of mathemat-

ical certainty as being subject to revision over

time to put forth a fallible and non-Platonist

viewpoint about mathematics (Ernest 1991).

Ernest (1991) claimed that the fallibilist phi-

losophy and social construction of mathematics

presented by Lakatos not only had educational

implications but that Lakatos was even aware of

these implications (p. 208). Various examples

propose a classroom discourse that conveys the

thought-experimental view of mathematics as

that of continual conjecture-proof-refutation that

involves rich mathematizing experiences for stu-

dents. Ernest argued that school mathematics

should take on the socially constructed nature

presented by Lakatos and also that teacher and

students should engage in ways identical to those

in his dialogue, specifically posing and solving

problems, articulating and confronting assump-

tions, and participating in genuine discussion

(p. 208). In line with Ernest’s recommendations,

Agassi (1980) identified that mathematics

education could be benefited by a Lakatos’

method of inspired teaching. Agassi proposed a

Lakatosian method for the classroom, which had

“the merit of taking the student from where he

stands and using his interruptions of the lecture as

a chief vehicle of his progress, rather than

worrying about the teacher’s progress” (p. 30).

Likewise, Fawcett (1938) attempted to conduct

a classroom situation like the one presented in
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Lakatos’ book. In a 2-year teaching experiment

that highlighted the role of argumentation in

choosing definitions and axioms, the students

in Fawcett’s study created suitable definitions,

choose relevant axioms when necessary, and

created a Euclidean geometry system by

using the available mathematics of Euclid’s

time period.

How would mathematics teaching and

learning have changed in a Lakatosian perspec-

tive? If a quasi-empirical view is taken, students

no longer need to ignore their common sense,

their experiences. Students’ explorations can

become a central aspect of teaching. The didactic

possibilities of Lakatos’ thought experiment

abound but not much is present in the mathemat-

ics education literature in terms of teaching

experiments that try to replicate the “ideal” class-

room conceptualized by Lakatos. Sriraman

(2006) suggests the use of combinatorial

problems involving the use of sophisticated

counting strategies with high school students to

explore the Lakatosian possibilities of furthering

mathematical discourse. Further with the advent

of technology for mathematics learning which

support students’ explorations of visual represen-

tations, students’ creation of mathematical state-

ments based on exploration becomes a feasible

and legitimate classroom activity.

Lakatos’ work is situated within the philoso-

phy of science and clearly not intended for nor

advocates a didactic position on the mathematics

education, but it has implications for teaching and

learning of mathematics (Sriraman 2006). The

legacy of Lakatos is not restricted to counterex-

amples and fallibility (Larvor 1998), but rather

implies for a program based on sensitivity to the

history of mathematics, an appreciation for

the dynamics of its concepts and standards, its

relation with other fields, and on the central role

students might play in developing mathematical

concepts.

Cross-References

▶Argumentation in Mathematics

▶Argumentation in Mathematics Education
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Definition

Questioning means here the use of questions and

other prompts offered to students so as to help

them get unstuck or to direct their attention

in a potentially useful way so that they make

mathematical progress.

Introduction

On the face of it, being taught mathematics

consists mainly of responding to mathematical

questions posed either by a text or a teacher. Sup-

port for how to respond comes fromworked exam-

ples and exposition in the text and from questions

and exposition by the teacher. But whether some-

thing said or written is actually a genuine question

or a question masquerading as instruction is not

always easy to discern. Furthermore, student

responses to apparent questions may themselves

be questions rather than answers.

Mathematical Perspectives

James Stigler and James Hiebert (1999) observed

that whereas in American (and indeed in most

English speaking) mathematics classrooms,

students are asked to obtain the answers to math-

ematical questions, in Japan it is more usual to be

asked “in how many different ways can you find

the answer?” Asking a complex and thought

provoking question to initiate work on a topic

makes assumptions about student competence

and engagement. This pedagogical stance

can be described as “deep end” or “complexity-

oriented,” as opposed to “shallow end” or “sim-

plicity-oriented” teaching. The two approaches

are based on entirely different assumptions

about students as human beings. The first sees

people as having demonstrated the powers neces-

sary to tackle complexity, to make sense of math-

ematics, and as willing to persevere in the use

those powers when challenged, frequently “fold-

ing back” (Pirie and Kieren 1994) in a spiral of

frequent returns to the same ideas in increasingly

complex ways (Bruner 1966). The second is

based on a “staircase” theory that learning

proceeds in careful, simple but inexorable steps

in order to build up to complexity and that

students have to have their hand held as they

negotiate these steps.

If a teacher is frightened that students will not

be able to address a problem, what they offer their

students will reinforce lack of challenge and

hence lack of resilience and resourcefulness

(Claxton 2002). Their students are likely to

develop the view that they will always be given

simple tasks, and so with little or no experience of

how unfamiliar challenges can be tackled, they

are likely to balk when asked an unusual or chal-

lenging question. Worse, they may be reinforced

in believing that their intelligence is bounded and

so try to stay away from failure, which means

refusing even relatively simple challenges

(Dweck 2000). One of the biggest obstacles to

student success is the assumptions made by the

teacher about the capabilities of their students;

another is the impression formed by students

from their teachers, parents, and the institution

of what they are capable of achieving. Even when

a challenging task is used from a textbook, there

is evidence that when students get stuck it is

a natural tendency for the teacher to “dumb

down” the question, essentially engaging in

mathematical funnelling so that their students

can succeed (Stein et al. 1996).

By contrast, students who experience chal-

lenges, whose teacher strives to be mathematical

with and in front of the students so that they are

exposed to “what to do when you are stuck”

(Mason et al. 1982/2010), are more likely to

develop resilience and resourcefulness and to be

reinforced in the belief that they can succeed if

they try hard enough and cleverly enough. Stu-

dents, whose teacher strives to be mathematical

with and in front of their students, are likely to

gain insight into mathematics as a constructive

and creative enterprise. Students who see their

teacher sometimes getting stuck, and then

unstuck, and who experience being stuck but

then are encouraged to become aware of how

they managed to get unstuck again are more

likely to learn “what to do when you get stuck”

(Mason et al. 1982/2010) and to develop resil-

ience and resourcefulness. They are likely to

learn to “know what to do when they don’t
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know what to do” (Claxton 2002). Students

whose teacher challenges them appropriately

but significantly are likely to develop flexibility

and creativity in their thinking.

Asking as Telling

Many apparent questions are actually rhetorical:

simply placing an interrogative voice tone at the

end of an utterance does not guarantee that

a question is being asked. For example, “what

do we do with our rulers?” is actually drawing

attention to inappropriate behavior and is not

a genuine question (Ainley 1987). It is intended

to focus attention on the behavior, and it is telling

the student(s) to change their behavior.

A great deal of spontaneous classroom

questioning is actually “telling” masquerading

as “asking.” In the flow of the classroom, the

teacher has something come to mind and then

asks a question which is intended to direct or

focus student attention on what has come to

mind. The question interrupts and structures

students’ attention. Students may experience the

question as genuine, and try to respond, but

usually students experience the question as

a shift of attention into an instruction to “guess

what is in my mind,” while the teacher expects

students to be “attending the way the teacher is

(now) attending.” Often it is only a student’s

“inappropriate” or unexpected reply to a question

that provokes an awareness that there is an

expected, even an intended, answer in the

teacher’s mind. These “telling” questions can be

very subtle, but almost always plunge students

into “guess what the teacher wants to hear,”

which may not advance their learning.

When you find yourself having asked such

a question, you can either keep going or bail

out. If you keep going, you are likely to find

yourself asking another even more focusing

question leading to a sequence of ever more pre-

cise and focused questions until eventually the

student can answer without any effort. Although

the teacher is following a train of increasing

particularity or detail, the student is experiencing

a sequence of interventions. Even though the

teacher has followed a train of thought, the

student has no access to that thinking, simply

waiting until a question is asked that can be

answered. Unfortunately the sequence of ques-

tions is entirely ephemeral, and no learning has

taken place. John Holt (1964, p. 24) describes

such an incident beautifully, and Heinrich

Bauersfeld (1988, p. 36) called this pedagogic

trap “funnelling,” because the questions funnel

student attention more and more narrowly,

becoming simpler and simpler (see also Wood

1998). An alternative strategy is to exit from the

interaction by acknowledging being caught in

“guess what is in my mind” and telling students

what “came to mind” or more extremely, taking a

different approach or abandoning the issue

altogether in order to return at a later date.

Asking as Enquiring

Some questions are genuine, in the sense that the

person asking does not know the answer and is

presumably seeking that answer. For example,

drawing attention to the status of an utterance

with a question like “Is that a conjecture, or a

fact or what?” or frequently asking students

“How do you know . . .?”, students can respond

to genuine enquiry, and the teacher can be

genuinely interested in the students’ response.

The difference between “asking as telling” and

“asking as asking” lies in a distinction made by

Brent Davis (1996) between listening-for an

expected response and listening-to what students

are saying (andwatchingwhat students are doing).

Listening-towhat students are saying and doing

rather than listening-for what you expect is a form

of “teaching by listening” (Davis 1996) which

sounds paradoxical at first but is certainly possible,

by setting up tasks (asking questions) that encour-

age students to reveal their thinking. A good way

to get students to reveal their thinking is to ask

them “how do you know?” when they make an

assertion, for it reinforces the awareness thatmath-

ematics is about making and justifying conjec-

tures. Another good way is to ask students “will

that always be the case” when they make an actual

or an implied generality and to ask “when else

might that be the case” to jolt them out of the

particular into widening their scope of generality.

Another good way to get students to reveal

their thinking is to ask them to construct
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mathematical problems for themselves. For

example, asking students to construct a problem

(like the ones in a set of exercises, say) can be very

revealing about the scope of generality that they

perceive in those exercises. Variants include “a

really simple example of a problem of this type,”

“a complicated example,” or even “a general

example” and can be augmented with “an exam-

ple that will challenge other students” or “an

example that shows you know how to tackle

problems like these.” Not only do these reveal

dimensions of possible variation (Watson and

Mason 2005) of which the student is aware, but

it is also a good study technique to pose and then

solve your own problems. Furthermore it is much

more engaging to work on problems you have

posed than on well-worked-over problems in a

standard text. Students can respond with

a degree of self-challenge that they feel comfort-

able with, and even if they do not completely

successfully solve the problems they pose, they

are learning something.

Another good way to get students to reveal

their accessible example space (Watson and

Mason 2005) is to get them to construct examples

of mathematical objects meeting various con-

straints. By carefully choosing the constraints so

as to force students to think beyond the first (usu-

ally rather simple) example that comes to mind

enriches their example space while revealing the

dimensions they are aware of that can be changed,

and even something about the range of permissi-

ble change in those dimensions. For example,

asking students to write down three pairs of num-

bers that differ by two often reveals a preference

for whole numbers, even when students are told

they will not be asked to do anything with those

numbers. The same “construction” can be used

with a pair of fractions, a pair of numbers whose

logarithms differ by 2, a pair of trig functions that

look different, a pair of integrals, and so on. As an

example of increasing constraints, asking for a

decimal number between 2 and 3, and without

using the digit 5, and with at least one digit a 7

is highly revealing about students’ appreciation of

how decimals are constructed.

When listening-to students justifying conjec-

tures, constructing problems or constructing

objects, care must be taken not to confuse

“absence of evidence” from “evidence of

absence”: just because a student does not vary

something that can be varied, or change some-

thing in a particular way, does not mean that they

did not think of it, only that they did not reveal it.

It is important to be clear here that “teaching

by listening” is only one form of pedagogic

strategy and is unlikely to succeed as the sole

mode of interaction. Even Socrates asked

questions and made the occasional observation!

Intention and Effect

It is evident that all classroom questions (and

many outside the classroom) are interventions in

the flow of students’ mentation and as such have

two aspects: the intention, which is to focus or

direct attention, to re-orient perspective, and the

effect, which is either to re-orient student

behavior or to reveal an as-yet unknown answer.

Even a genuine question is an intervention, an

interruption. Even asking a question when the

student is immersed in being stuck and “not

thinking about anything” except being stuck is

an interruption in the student’s state. Too many

interventions, too frequent intervention, too

intrusive an intervention may result in students

coming to depend on the teacher rather than

developing resilience and resourcefulness. What

constitutes too much, too many, or too intrusive is

a delicate matter which cannot be automated or

even taught: it is a judgement that comes from

experience, both as a learner and as a teacher.

Classroom Ethos

The sociocultural-mathematical norms of

a classroom (the classroom rubric) have

a significant affect on what is possible in the

way of asking questions and getting thoughtful

responses (Yackel and Cobb 1996). In

a classroom in which mathematical questions

are asked which have simple answers that are

either correct or incorrect, students can become

dependent on the teacher asking appropriate

questions. Uncertainty as to the correctness of

an answer is likely to lead to increasing reticence

in answering, of fear of being wrong and looking

foolish. This in turn can lead to an instrumental
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and intelligence-testing view of mathematics. By

contrast, in a classroom in which everything said

(by students and the teacher) is taken to be

a conjecture that needs to be tested and justified,

students can be encouraged to try to articulate

what they do understand, certain that they will

be helped to modify their conjectures without

being ridiculed. In a conjecturing atmosphere

those who are certain hold back or ask helpful

questions, while those who are uncertain try

to articulate their uncertainty.

Questions as Typifying What Mathematics

Is About

Since students’ experience of mathematics is

dominated by the questions they are asked, their

impression of what mathematics is about, of what

the mathematics enterprise is about, is likely to be

formed by the nature and content of the questions

they are asked. Anne Watson and John Mason

(1998; see also a primary version Jeffcoat et al.

2004) built on a collection of mathematically

structured question types developed by Zygfryd

Dyrslag (1984) to provide a wide-ranging

collection of questions that draw attention to

mathematical ways of thinking. They used a list

of verbs of mathematics including

Exemplifying, Specializing, Completing, Deleting,

Correcting, Comparing, Sorting, Organizing,

Changing, Varying, Reversing, Altering, Gen-

eralizing, Conjecturing, Explaining, Justifying,

Verifying, Convincing, and Refuting

and types of mathematical statements including

Definitions, Facts, Properties, Theorems, Exam-

ples, Counterexamples, Techniques, Instruc-

tions, Conjectures, Problems, Representation,

Notation, Symbolization, Explanations, Justi-

fications, Proofs, Reasoning, Links, Relation-

ships, and Connections

to generate a grid of mathematically fruitful and

pedagogically effective questions which are

founded in the mathematical practices of experts.

Internalizing Questions

If students are always asked the same question or

type of question whenever they get stuck, when-

ever a new topic is being presented, or whenever

a topic is being reviewed, then most students are

likely to come to depend on the teacher asking

that question. The question remains associated

with the classroom rather than being internalized

by students. By contrast, if the teacher begins by

using a question type repeatedly and effectively

and then gradually makes their prompts less and

less explicit, students’ attention can be directed to

the types of questions that the teacher is asking

and eventually to students spontaneously asking

themselves the question. For example, asking

questions like “what question am I going to ask

you?” or “What did you do yesterday when you

were stuck?” provides a metacognitive shift, an

impetus for students to become aware of what

they have been asked rather than remaining

immersed in their task and simply responding to

the question (Bauersfeld 1995). Meanwhile the

teacher can begin introducing a different question

or prompt.

The term “scaffolding” (Wood et al. 1976) is

often used to refer to the temporary support that

a teacher can provide for students, in which the

teacher acts as “consciousness for two” (Bruner

1986). This notion applies both to “horizontal

mathematization” in which students are

prompted to become aware of other situations in

which their thinking could be used (“utility” in

the sense of Ainley and Pratt 2002) and to

“vertical mathematization” in which students

are prompted to become aware of what they

have been doing as instances of some more

general or “abstract” action (Treffers 1987).

Shifting between levels of thinking is not entirely

natural for many or even most students. It is

a major role for teachers of mathematics.

However, teacher interventions, whether as

reminders or as re-orientations of attention are

likely to go unnoticed, because the student is

immersed in the action. In order that students

become aware of the questions they are asked,

the prompts they are given that serve to redirect

their attention usefully, it is usually necessary for

the teacher to engage in what Brown et al. (1989)

called fading or, in other words, to use increas-

ingly indirect, even metacognitive prompts, so

that eventually the students internalize the

prompts for themselves (Love and Mason

1992). Learning and independence can really
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only be said to have been achieved when students

spontaneously question themselves and each

other. A good example can be found in Brown

and Coles (2000) regarding the question “what is

the same and what is different about . . .”.

Students Asking “Good Questions”

It must be every competent teacher’s dream that

students will ask “good” mathematical questions

and a potential nightmare to be asked a lot of

questions beyond the teacher’s competence.

Every teacher needs strategies to deal with the

unexpected and difficult or challenging

question. Displacement and deferral strategies

include inviting students to record their conjec-

ture for discussion later, having a public place

reserved for current conjectures and questions,

and seeking assistance from colleagues in the

same or other institutions or on the web. But

such questions are unlikely to come out unless

students are being encouraged to pose questions

and to make conjectures. The best way to

stimulate genuine mathematical questions from

students is to ask genuine questions oneself, to be

seen to be enquiring, to have strategies (special-

izing and generalizing, representing, and

transforming) to use, and to be satisfied to leave

an enquiry as a conjecture for later (even much

later) consideration. This is what is meant by

“being mathematical with and in front of

students,” and it is the best way to offer students

experience of the thrill and pleasure of thinking

mathematically.

Further Investigation

It might be tempting to research questions of the

form “which form of questioning is the most

effective?” or “Which order of questions is most

effective?”, but in mathematics education, any

assertion of a generality has counterexamples

(Tahta, personal communication, 1990). There

is no universality, because so much of what

happens depends on the rapport and relationship

between teacher and students and between

teacher and mathematics (Kang and Kilpatrick

1992; Handa 2011).

What is worthy of further investigation are

questions of the following form:

What is it about a situation that brings certain

questions or prompts to my mind? How

might this inform ways of working with

students so that they begin to come to mind

for the students?

What is it about a situation that could bring

certain useful questions or prompts to mind?

What blocks or deters me from asking certain

types of questions?

What is it about some questions and prompts that

attracts teachers to try to use them, while other

questions and prompts do not?
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What is Realistic Mathematics
Education?

Realistic Mathematics Education – hereafter

abbreviated as RME – is a domain-specific

instruction theory for mathematics, which has

been developed in the Netherlands. Characteristic

of RME is that rich, “realistic” situations are given

a prominent position in the learning process.

These situations serve as a source for initiating

the development of mathematical concepts, tools,

and procedures and as a context in which students

can in a later stage apply their mathematical

knowledge, which then gradually has become

more formal and general and less context specific.

Although “realistic” situations in the meaning

of “real-world” situations are important in RME,

“realistic” has a broader connotation here.

It means students are offered problem situations

which they can imagine. This interpretation of

“realistic” traces back to the Dutch expression

“zich REALISEren,” meaning “to imagine.”

It is this emphasis on making something real in

your mind that gave RME its name. Therefore, in

RME, problems presented to students can come

from the real world but also from the fantasy

world of fairy tales, or the formal world of

mathematics, as long as the problems are

experientially real in the student’s mind.

The Onset of RME

The initial start of RME was the founding in 1968

of the Wiskobas (“mathematics in primary

school”) project initiated by Edu Wijdeveld and

Fred Goffree and joined not long after by Adri

Treffers. In fact, these three mathematics

didacticians created the basis for RME. In 1971,

when the Wiskobas project became part of the

newly established IOWO Institute, with Hans

Freudenthal as its first director and in 1973

when the IOWOwas expandedwith theWiskivon

project for secondary mathematics education; this

basis received a decisive impulse to reform the

prevailing approach to mathematics education.

In the 1960s, mathematics education in the

Netherlands was dominated by a mechanistic

teaching approach; mathematics was taught

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
# Springer Science+Business Media Dordrecht 2014



directly at a formal level, in an atomized manner,

and the mathematical content was derived from

the structure of mathematics as a scientific disci-

pline. Students learned procedures step by step

with the teacher demonstrating how to solve

problems. This led to inflexible and reproduc-

tion-based knowledge. As an alternative for this

mechanistic approach, the “New Math” move-

ment deemed to flood the Netherlands. Although

Freudenthal was a strong proponent of the

modernization of mathematics education, it was

his merit that Dutch mathematics education was

not affected by the formal approach of the

New Math movement and that RME could be

developed.

Freudenthal’s Guiding Ideas About
Mathematics and Mathematics
Education

Hans Freudenthal (1905–1990) was a

mathematician born in Germany who in 1946

became a professor of pure and applied

mathematics and the foundations of mathematics

at Utrecht University in the Netherlands. As a

mathematician he made substantial contributions

to the domains of geometry and topology.

Later in his career, Freudenthal (1968, 1973,

1991) became interested in mathematics educa-

tion and argued for teaching mathematics that is

relevant for students and carrying out thought

experiments to investigate how students can be

offered opportunities for guided re-invention of

mathematics.

In addition to empirical sources such as text-

books, discussions with teachers, and observa-

tions of children, Freudenthal (1983) introduced

the method of the didactical phenomenology. By

describing mathematical concepts, structures,

and ideas in their relation to the phenomena for

which they were created, while taking into

account students’ learning process, he came to

theoretical reflections on the constitution of men-

tal mathematical objects and contributed in this

way to the development of the RME theory.

Freudenthal (1973) characterized the then

dominant approach to mathematics education in

which scientifically structured curricula were

used and students were confronted with ready-

made mathematics as an “anti-didactic inver-

sion.” Instead, rather than being receivers of

ready-made mathematics, students should be

active participants in the educational process,

developing mathematical tools and insights by

themselves. Freudenthal considered mathematics

as a human activity. Therefore, according to him,

mathematics should not be learned as a closed

system but rather as an activity of mathematizing

reality and if possible even that of mathematizing

mathematics.

Later, Freudenthal (1991) took over Treffers’

(1987a) distinction of horizontal and vertical

mathematization. In horizontal mathematization,

the students use mathematical tools to organize

and solve problems situated in real-life situations.

It involves going from the world of life into that of

symbols. Vertical mathematization refers to the

process of reorganizationwithin themathematical

system resulting in shortcuts by using connections

between concepts and strategies. It concernsmov-

ing within the abstract world of symbols. The two

forms of mathematization are closely related

and are considered of equal value. Just stressing

RME’s “real-world” perspective too much may

lead to neglecting vertical mathematization.

The Core Teaching Principles of RME

RME is undeniably a product of its time and

cannot be isolated from the worldwide reform

movement in mathematics education that

occurred in the last decades. Therefore, RME

has much in common with current approaches to

mathematics education in other countries. Never-

theless, RME involves a number of core princi-

ples for teaching mathematics which are

inalienably connected to RME. Most of these

core teaching principles were articulated origi-

nally by Treffers (1978) but were reformulated

over the years, including by Treffers himself.

In total six principles can be distinguished:

• The activity principle means that in RME stu-

dents are treated as active participants in the

learning process. It also emphasizes that
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mathematics is best learned by doing

mathematics, which is strongly reflected in

Freudenthal’s interpretation of mathematics

as a human activity, as well as in Freudenthal’s

and Treffers’ idea of mathematization.

• The reality principle can be recognized in

RME in two ways. First, it expresses the

importance that is attached to the goal of

mathematics education including students’

ability to apply mathematics in solving

“real-life” problems. Second, it means that

mathematics education should start from

problem situations that are meaningful to

students, which offers them opportunities to

attach meaning to the mathematical constructs

they develop while solving problems. Rather

than beginning with teaching abstractions

or definitions to be applied later, in RME,

teaching starts with problems in rich contexts

that require mathematical organization or,

in other words, can be mathematized and

put students on the track of informal context-

related solution strategies as a first step in

the learning process.

• The level principle underlines that learning

mathematics means students pass various levels

of understanding: from informal context-related

solutions, through creating various levels of

shortcuts and schematizations, to acquiring

insight into how concepts and strategies are

related. Models are important for bridging the

gap between the informal, context-related

mathematics and the more formal mathematics.

To fulfill this bridging function, models have

to shift – what Streefland (1985, 1993, 1996)

called – from a “model of” a particular

situation to a “model for” all kinds of other,

but equivalent, situations (see also Gravemeijer

1994; Van den Heuvel-Panhuizen 2003).

Particularly for teaching operating with

numbers, this level principle is reflected in

the didactical method of “progressive schema-

tization” as it was suggested by Treffers

(1987b) and in which transparent whole-

number methods of calculation gradually

evolve into digit-based algorithms.

• The intertwinement principle means mathe-

matical content domains such as number,

geometry, measurement, and data handling

are not considered as isolated curriculum

chapters but as heavily integrated. Students

are offered rich problems in which they can

use various mathematical tools and knowl-

edge. This principle also applies within

domains. For example, within the domain of

number sense, mental arithmetic, estimation,

and algorithms are taught in close connection

to each other.

• The interactivity principle of RME signifies

that learning mathematics is not only an

individual activity but also a social activity.

Therefore, RME favors whole-class discus-

sions and group work which offer students

opportunities to share their strategies and

inventions with others. In this way students

can get ideas for improving their strategies.

Moreover, interaction evokes reflection,

which enables students to reach a higher

level of understanding.

• The guidance principle refers to Freudenthal’s

idea of “guided re-invention” of mathematics.

It implies that in RME teachers should have

a proactive role in students’ learning and that

educational programs should contain scenar-

ios which have the potential to work as a lever

to reach shifts in students’ understanding. To

realize this, the teaching and the programs

should be based on coherent long-term teach-

ing-learning trajectories.

Various Local Instruction Theories

Based on these general core teaching principles, a

number of local instruction theories and paradig-

matic teaching sequences focusing on specific

mathematical topics have been developed over

time. Without being exhaustive some of these

local theories are mentioned here. For example,

Van denBrink (1989) worked out new approaches

to addition and subtraction up to 20. Streefland

(1991) developed a prototype for teaching

fractions intertwined with ratios and proportions.

De Lange (1987) designed a new approach to

teaching matrices and discrete calculus. In the

last decade, the development of local instruction
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theories was mostly integrated with the use of

digital technology as investigated by Drijvers

(2003) with respect to promoting students’ under-

standing of algebraic concepts and operations.

Similarly, Bakker (2004) and Doorman (2005)

used dynamic computer software to contribute

to an empirically grounded instruction theory

for early statistics education and for differential

calculus in connection with kinematics,

respectively.

The basis for arriving at these local instruction

theories was formed by design research, as

elaborated by Gravemeijer (1994), involving a

theory-guided cyclic process of thought

experiments, designing a teaching sequence, and

testing it in a teaching experiment, followed by a

retrospective analysis which can lead to

necessary adjustments of the design.

Last but not least, RME also led to new

approaches to assessment in mathematics

education (De Lange 1987, 1995; Van den

Heuvel-Panhuizen 1996).

Implementation and Impact

In the Netherlands, RME had and still has a con-

siderable impact on mathematics education. In the

1980s, the market share of primary education text-

books with a traditional, mechanistic approach

was 95% and the textbookswith a reform-oriented

approach – based on the idea of learning mathe-

matics in context to encourage insight and under-

standing – had a market share of only 5 %. In

2004, reform-oriented textbooks reached a 100 %

market share and mechanistic ones disappeared.

The implementation of RME was guided by the

RME-based curriculum documents including

the so-called Proeve publications by Treffers and

his colleagues, which were published from

the late 1980s, and the TAL teaching-learning

trajectories for primary school mathematics,

which have been developed from the late 1990s

(Van den Heuvel-Panhuizen 2008; Van den

Heuvel-Panhuizen and Buys 2008).

A similar development can be seen in second-

ary education, where the RME approach also

influenced textbook series to a large extent.

For example, Kindt (2010) showed how

practicing algebraic skills can go beyond repeti-

tion and be thought provoking. Goddijn et al.

(2004) provided rich resources for realistic

geometry education, in which application and

proof go hand in hand.

Worldwide, RME is also influential.

For example, the RME-based textbook series

“Mathematics in Context” Wisconsin Center

for Education Research & Freudenthal Institute

(2006) has a considerable market share in

the USA. A second example is the RME-based

“Pendidikan Matematika Realistik Indonesia” in

Indonesia (Sembiring et al. 2008).

A Long-Term and Ongoing Process of
Development

Although it is now some 40 years from the incep-

tion of the development of RME as a domain-

specific instruction theory, RME can still be seen

as work in progress. It is never considered a fixed

and finished theory of mathematics education.

Moreover, it is also not a unified approach to

mathematics education. That means that through

the years different emphasis was put on different

aspects of this approach and that people whowere

involved in the development of RME – mostly

researchers and developers of mathematics

education and mathematics educators from

within or outside the Freudenthal Institute – put

various accents in RME. This diversity, however,

was never seen as a barrier for the development of

RME but rather as stimulating reflection and

revision and so supporting the maturation of

the RME theory. This also applies to the

current debate in the Netherlands (see Van den

Heuvel-Panhuizen 2010) which voices the

return to the mechanistic approach of four

decades back. Of course, going back in time is

not a “realistic” option, but this debate has

made the proponents of RME more alert to

keep deep understanding and basic skills more

in balance in future developments of RME and

to enhance the methodological robustness of

the research that accompanies the development

of RME.
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Utrecht

Freudenthal H (1968) Why to teach mathematics so as to
be useful. Educ Stud Math 1:3–8

Freudenthal H (1973) Mathematics as an educational task.
Reidel Publishing, Dordrecht

Freudenthal H (1983) Didactical phenomenology of math-
ematical structures. Reidel Publishing, Dordrecht

Freudenthal H (1991) Revisiting mathematics education.
China lectures. Kluwer, Dordrecht

Goddijn A, Kindt M, Reuter W, Dullens D (2004)
Geometry with applications and proofs. Freudenthal
Institute, Utrecht

Gravemeijer KPE (1994) Developing realistic mathemat-
ics education. CD-ß Press/Freudenthal Institute,
Utrecht

Kindt M (2010) Positive algebra. Freudenthal Institute,
Utrecht

Sembiring RK, Hadi S, Dolk M (2008) Reforming math-
ematics learning in Indonesian classrooms through
RME. ZDM Int J Math Educ 40(6):927–939

Streefland L (1985) Wiskunde als activiteit en de realiteit
als bron. Nieuwe Wiskrant 5(1):60–67

Streefland L (1991) Fractions in realistic mathematics
education. A paradigm of developmental research.
Kluwer, Dordrecht

Streefland L (1993) The design of a mathematics course.
A theoretical reflection. Educ Stud Math
25(1–2):109–135

Streefland L (1996) Learning from history for teaching in
the future. Regular lecture held at the ICME-8 in
Sevilla, Spain; in 2003 posthumously. Educ Stud
Math 54:37–62

Treffers A (1978) Wiskobas doelgericht [Wiskobas goal-
directed]. IOWO, Utrecht

Treffers A (1987a) Three dimensions. A model of
goal and theory description in mathematics
instruction – the Wiskobas project. D. Reidel Publish-
ing, Dordrecht

Treffers A (1987b) Integrated column arithmetic
according to progressive schematisation. Educ Stud
Math 18:125–145

Van den Brink FJ (1989) Realistisch rekenonderwijs aan
jonge kinderen [Realistic mathematics education for
young children]. OW&OC, Universiteit Utrecht,
Utrecht

Van den Heuvel-Panhuizen M (1996) Assessment
and realistic mathematics education. CD-ß
Press/Freudenthal Institute, Utrecht University,
Utrecht

Van den Heuvel-Panhuizen M (2003) The didactical use
of models in realistic mathematics education: an
example from a longitudinal trajectory on percentage.
Educ Stud Math 54(1):9–35

Van den Heuvel-Panhuizen M (ed) (2008) Children learn
mathematics. A learning-teaching trajectory with
intermediate attainment targets for calculation with
whole numbers in primary school. Sense Publishers,
Rotterdam/Tapei

Van den Heuvel-Panhuizen M (2010) Reform under
attack – forty years of working on better mathematics
education thrown on the scrapheap? no way! In:
Sparrow L, Kissane B, Hurst C (eds) Shaping the
future of mathematics education: proceedings of the
33rd annual conference of the Mathematics Education
Research Group of Australasia. MERGA, Fremantle,
pp 1–25

Van den Heuvel-Panhuizen M, Buys K (eds)
(2008) Young children learn measurement and
geometry. Sense Publishers, Rotterdam/Taipei

Wisconsin Center for Education Research & Freudenthal
Institute (ed) (2006) Mathematics in context.
Encyclopaedia Britannica, Chicago

Recontextualization in Mathematics
Education

Paul Dowling

Institute of Education, Department of Culture,

Communication and Media, University

of London, London, UK

Keywords

Anthropological theory of didactics;

Classification; Didactic transposition; Discursive

saturation; Domains of action; Emergence;

Framing; Institutionalisation; Noosphere;

Pedagogic device; Recontextualisation; Social

activity method; Sociology; Strategic action

Recontextualization in Mathematics Education 525 R

R

http://dx.doi.org/10.1007/978-94-007-4978-8_49


Characteristics

Recontextualization refers to the contention that

texts and practices are transformed as they are

moved between contexts of their reading or enact-

ment. This simple claim has profound implications

for mathematics education and for education gen-

erally. There are three major theories in the gen-

eral field of educational studies that directly and

explicitly concern recontextualization: the Theory

of Didactic Transposition (later the Anthropolog-

ical Theory of Didactics) of Yves Chevallard,

Basil Bernstein’s pedagogic device, and Paul

Dowling’s Social Activity Method. These are all

complex theories, so their presentation here of

necessity entails substantial simplification.

The Theory of Didactic Transposition (TDT)

proposes, essentially, that constituting a practice

as something to be taught will always involve a

transformation of the practice. This is a general

claim that can be applied to any practice and any

form of teaching, but Chevallard’s (1985, 1989)

work and that of many of those who have worked

with the TDT is most centrally concerned with

the teaching of mathematics in formal schooling

(primary, secondary, or higher education phases).

The work of the didactic transposition is carried

out, firstly, by agents of what Chevallard referred

to as the noosphere and involves the production

of curricula in the form of policy documents,

syllabuses, textbooks, examinations, and so

forth constituting the “knowledge to be taught.”

The first task in this work is the construction of a

body of source knowledge as the referent practice

of the “knowledge to be taught.” In the case of

school mathematics, this source or “scholarly

knowledge” has been produced by mathemati-

cians over a very long historical period and in

diverse contexts. In its totality, then, it is not a

practice that is currently enacted by mathemati-

cians, but is compiled in the noosphere. The next

task is the constitution of the “knowledge to be

taught” from this “scholarly knowledge,” and it is

the former that is presented to teachers as the

curriculum. There is a further move, however, as

the teacher in the classroom must, through inter-

pretation and the production and management of

lessons, transpose the “knowledge to be taught”

into “knowledge actually taught.” Even this

knowledge is not necessarily equivalent to the

knowledge acquired by the student, which is the

product of a further transposition. The precise

nature of the transposition at each stage is a func-

tion of the nature of the knowledge (scholarly, to

be taught, actually taught) being recontextualized

and of historical, cultural, and pedagogic

specificities. TDT – which has been developed

in terms of conceptual complexity as the

Anthropological Theory of Didactics

(ATD, Chevallard 1992) – invites researchers to

investigate the precise processes whereby the

recontextualizations have been achieved in

particular locations and in respect of particular

regions of the curriculum, so revealing the

conditions and constraints on the teaching of

mathematics in these contexts. This has been

attempted in, for example, the topics of calculus

(Bergsten et al. 2010), statistics (Wozniak 2007),

and the limits of functions (Barbé et al. 2005).

Bernstein describes the “pedagogic device” as

“the condition for culture, its productions,

reproductions and the modalities of their interre-

lations” (1990; see also Bernstein 2000). It is a

central feature of a highly complex theory that

was developed over a period of some 40 years, so

its representation here is of necessity radically

simplified. Whereas Chevallard’s theory is

concerned with the epistemological and cultural

constraints on didactics, Bernstein’s interest lies

in the manner in which societies are reproduced

and transformed. Pedagogy and, in

particular, transmission occur in all sociocultural

institutions, although much of the work inspired

by Bernstein has focused on formal schooling. An

important exception to this is his early dialogue

with the anthropologist, Mary Douglas

(see Douglas 1996/1970), which contributed to

Douglas’s cultural theory and Bernstein’s funda-

mental concepts, classification (regulation

between contexts) and framing (regulation within

a context). The pedagogic device regulates what is

transmitted to whom, when, and how and consists

of three sets of rules, hierarchically organized:

distribution, recontextualization, and evaluation.

Recontextualization rules, in particular, regulate

the delocation of discourses from the fields of
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their production – the production of physics

discourse in the university, for example – and

their relocation as pedagogic discourse. This

is achieved by the embedding of these

instructional discourses in regulatory discourses

involving principles of selection, sequencing, and

pacing. Recontextualization is achieved by agents

in the official recontextualizing field – policy

makers and administrators – and the pedagogic

recontextualizing field (teacher educators, the

authors of textbooks, and so forth) that together

might be taken to coincide with Chevallard’s noo-

sphere in terms of membership. Superficially,

there might seem to be similarities between

Bernstein’s and Chevallard’s theories. A crucial

distinction, however, is that recontextualization

for Bernstein, but not for Chevallard, is always

governed by distribution. This entails that peda-

gogic discourse is always structured by the social

dimensions of class, gender, and race. Bernstein’s

is a sociological theory, while Chevallard’s might

reasonably be described (in English) as an

educational theory. Through the sociological con-

cept, relative autonomy, Bernstein also allows for

the possibility of the transformation of culture

and, ultimately, of society. A further distinction

lies in that Bernstein describes pedagogic

discourse in terms of his fundamental categories,

classification, and framing, which enables

a description of form but not of content. Further

resources for the description of the form of dis-

courses are available in Bernstein’s (2000) work

on horizontal and vertical discourses and on

knowledge structures where he describes mathe-

matics as a vertical discourse having horizontal

knowledge structure and a strong grammar. In this

description he seems to be making no epistemo-

logical distinction between mathematics in its

field of production, on the one hand, and school

mathematics, on the other.

Dowling’s (2009, 2013) Social Activity

Method (SAM) presents a sociological organiza-

tional language that takes seriously lessons from

constructionism and poststructuralism. As is the

case with Chevallard’s TDT, Dowling’s work

began with an interest in mathematics education

(see Dowling 1994, 1995, 1996, 1998) but is

more fundamentally sociological, giving a degree

of priority to social relations over cultural

practices. For Dowling, the sociocultural is

characterized by social action that is directed at

the formation, maintenance, and destabilizing of

alliances and oppositions. These alliances and

oppositions, however, are emergent upon

the totality of social action rather than being the

deliberate outcomes of individual actions.

Alliances are visible in terms of regularities of

practice that give the appearance of regulating

who can do, say, think what, though, as emergent

outcomes, they might be thought of, metaphori-

cally, as advisory rather than determinant.

Another feature of Dowling’s theory is that it

has a fractal quality, which is to say, the same

language can be applied at any level of analysis

and the language is also capable of describing

itself. School mathematics is an example of what

might be taken to exhibit a regularity of practice

including the institutionalization of expression

(signifiers) and content (signifieds) in texts. The

strength of institutionalization varies, however,

between strong and weak, giving rise to the

scheme of domains of practice in Fig. 1, which

constitutes part of the structure of all contexts,

which is to say, of all alliances. Human agents

might be described as seeing the world in terms of

the scheme in Fig. 1 or, more precisely, from

the perspective of the esoteric domain. Where

the particular context is school mathematics, the

agent may cast a gaze beyond school mathematics

onto, for example, domestic practices such as

Content (signifieds)

Expression (signifiers)

I+/− represents strong/weak institutionalisation.

I+

I+

I−

I−

esoteric domain descriptive domain

expressive domain public domain

Recontextualization in

Mathematics Education,
Fig. 1 Domains of action
(Source: Dowling 2009)
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shopping. The deployment of principles of recog-

nition and realization that are specific to school

mathematics will result in the recontextualization

of domestic shopping as mathematized shopping.

This contributes to the public domain of school

mathematics, which thereby appears to be about

something other than mathematics. This contrasts

with esoteric domain text that is unambiguously

about mathematics, the descriptive domain – the

domain of mathematical modelling – that appears

to be about something other than mathematics but

that is presented in the language of mathematics,

and the expressive domain (the domain of

pedagogic metaphors) that appears to be about

mathematics but that is presented in the language

of other practices (an equation is a balance, and so

forth). This scheme enables the description of

complex mathematical texts and settings in

terms of the distribution of the different domains

of mathematical practice to different categories of

student (e.g., in terms of social class). It can also

reveal distinctions between modes of pedagogy

that take different trajectories around the scheme.

It should be emphasized that public domain

shopping is not the same thing as domestic shop-

ping; the recontextualization of practice always

entails a transformation as is illustrated by

Brantlinger (2011) in respect of critical

mathematics education. The gaze of mathematics

education is described (Dowling 2010) as fetching

practices from other activities and recontex-

tualizing them as mathematical practice. This is,

in a sense, a didactic necessity in the production of

apprentices to mathematics whomust, initially, be

addressed in a language that is familiar to them.

A danger, however, lies in the pushing of the

results back out of mathematics as the result no

longer has ecological validity. The scheme in

Fig. 1 is reproduced in all activities that can be

recognized as exhibiting regularity of practice and

at all levels within any such practice. Chung (2011),

for example, has directed an elaborated version of

the scheme at literary studies.

Another category from SAM is discursive sat-

uration, which refers to the extent to which a

practice makes its principles linguistically avail-

able. To the extent that an activity or part of

an activity can be described as high or low

discursive saturation (DS+ or DS�), then another

scheme is generated that describes modes of

recontextualization. This scheme is shown in

Fig. 2. If school mathematics can generally

be described as DS+ and domestic shopping as

DS�, then the recontextualizing of domestic

shopping as school mathematics public domain –

the representation of shopping by mathematics –

can be described as rationalizing and the

recontextualizing of, say, banking by school

mathematics as re-principling.

These three theories of recontextualization –

those of Chevallard, Bernstein, and Dowling –

offer different possibilities to researchers,

and practitioners in mathematics education and

themselves draw on different theoretical and

disciplinary antecedents. They are, however, not

in competition as much as being complementary.

All three present languages that can be and have

been deployed far more widely than mathematics

education, though Chevallard’s and Dowling’s

theories certainly have their roots in this field of

research. Naturally, all three theories have

undergone more or less transformative action in

respect of their recontextualization for the

purposes of this entry.
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▶Anthropological Approaches in Mathematics

Education, French Perspectives

▶Calculus Teaching and Learning

▶Critical Mathematics Education

Representation

Practice

improvising de-principling

DS+

DS+

DS−

DS−

rationalising re-principling

Recontextualization in

Mathematics Education,
Fig. 2 Modes of
recontextualization
(Source: Dowling 2013)
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Reflective practice is a commonly used term in

mathematics education, often without careful

definition, implying a contemplative reviewing

of learning and/or teaching in mathematics in

order to approve, evaluate, or improve practice.

A feedback loop is often suggested in which

reflective practice feeds back into the design or

initiation of practice providing possibilities for
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improved practice. More precise definitions often

draw on Dewey, who wrote:

Active, persistent and careful consideration of any
belief or supposed form of knowledge in the light
of the grounds that support it and the further con-
clusions to which it tends constitutes reflective
thought (1933, p. 9)

. . . reflective thinking, in distinction to other
operations to which we apply the name of thought,
involves (1) a state of doubt, hesitation, perplexity,
mental difficulty, in which thinking originates, and
(2) an act of searching, hunting, inquiring, to find
material that will resolve the doubt and dispose of
the perplexity (p. 12).

. . . Demand for the solution of a perplexity is
the steadying and guiding factor in the entire pro-
cess of reflection. (p. 14)

Rather than a perspective just of contempla-

tive thought, Dewey emphasizes the important

element of action in reflection and the goal of

an action outcome. This has led to a linking of

reflective practice with so-called action research

which is research conducted by practitioners into

aspects of (their own) professional practice.

Stephen Kemmis a leading proponent of action

research spoke of reflection as “meta-thinking,”

thinking about thinking. He wrote:

We do not pause to reflect in a vacuum. We pause
to reflect because some issue arises which demands
that we stop and take stock or consider before we
act. . . . We are inclined to see reflection as some-
thing quiet and personal. My argument here is that
reflection is action-oriented, social and political. Its
product is praxis (informed committed action) the
most eloquent and socially significant form of
human action. (Kemmis 1985, p. 141)

Kemmis conceptualized action research with

reference to a critically reflective spiral in action

research of plan, act and observe, and reflect

(Kemmis and McTaggart 1981; Carr and

Kemmis 1986), and other scholars have adapted

this subsequently (e.g., McNiff 1988) (Fig. 1).
More recent scholars relate ideas of reflection,

seminally, to the work of Donald Schön who has

written about the reflective practitioner in pro-

fessions generally and in education particularly

(Schön 1983, 1987). Schön relates reflection to

knowing and describes knowing-in-action and

reflection-in-action. With reference to Dewey,

he writes about learning by doing, the importance

of action in the process of learning, and relates

doing and learning through a reflective process.

Our knowing is ordinarily tacit, implicit in our

patterns of action and in our feel for the stuff with

which we are dealing. It seems right to say that

our knowing is in our action (1983, p. 49).

Schön refers to knowing-in-action as “the

sorts of know-how we reveal in our intelligent

action – publicly observable, physical perfor-

mances like riding a bicycle and private opera-

tions like instant analysis of a balance sheet”

(1997, p. 25). He claims a subtle distinction

between knowing-in-action and reflection-in-

action. The latter he links to moments of surprise

in action: “We may reflect on action, thinking

back on what we have done in order to discover

how our knowing-in-action may have contributed

to an unexpected outcome” (p. 26). “Alterna-

tively,” he says, “we may reflect in the midst of

action without interrupting it . . . our thinking

serves to reshape what we are doing while we

are doing it” (p. 26). Schön distinguishes reflec-

tion-on-action and reflection-in-action. The first

involves looking back on an action and reviewing

its provenance and outcomes with the possibility

then of modifying future action; the second is

especially powerful, allowing the person acting

to recognize a moment in the action, possibly

with surprise, and to act, there and then,

reflect

plan

reflect

plan

reflect

plan

observe

act

observe

act

observe

act

Reflective Practitioner in Mathematics Education,

Fig. 1 Action-reflection cycle (McNiff (1988), pp 44,
Fig 3.7)
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differently. John Mason has taken up this idea in

his discipline of noticing: we notice, in the

moment, something of which we are aware, pos-

sibly have reflected on in the past and our notic-

ing afford us the opportunity to act differently, to

modify our actions in the process of acting

(Mason 2002).

Michael Eraut (1995) has criticized Schön’s

theory of reflection-in-action where it applies to

teachers in classrooms. He points out that Schön

presents little empirical evidence of reflection-in-

action, especially where teaching is concerned.

The word action itself has different meanings

for different professions. In teaching, action usu-

ally refers to action in the classroom where

teachers operate under pressure. Eraut argues

that time constraints in teaching limit the scope

for reflection-in-action. He argues that there is too

little time for considered reflection as part of the

teaching act, especially where teachers are

responding to or interacting with students.

Where a teacher is walking around a classroom

of children quietly working on their own,

reflection-in-action is more possible but already

begins to resemble time out of action. Thus Eraut

suggests that, in teaching, most reflection is

reflection-on-action, or reflection-for-action. He

suggests that Schön is primarily concerned with

reflection-for-action, reflection whose purpose is

to affect action in current practice.

In mathematics education research into

teaching practices in mathematics classrooms,

Jaworski (1998) has worked with the theoretical

ideas of Schön, Mason, and Eraut to characterize

observed mathematics teaching and the thinking,

action, and development of the observed teachers.

The research was undertaken as part of a project,

the Mathematics Teachers’ Enquiry (MTE) Pro-

ject, in which participating teachers engaged in

forms of action research into their own teaching.

Jaworski claims that the three prepositions

highlighted in the above discussion, on, in, and

for, “all pertain to the thinking of teachers at

different points in their research” (p. 9) and pro-

vides examples from observations of teaching and

conversations with teachers. To some degree, all

the teachers observed engaged in action research

in the sense that they explored aspects of their own

practice in reflective cycles. However, rather than

the theorized systematicity of action research

(e.g., McNiff 1988), Jaworski described the cyclic

process of growth of knowledge for these teachers

as evolutionary, as “lurching” from time to time,

opportunity to opportunity, as teachers grappled

with the heavy demands of being a teacher and

sought nevertheless to reflect on and in their prac-

tice. As Eraut suggested, the nature of teaching in

classrooms is demanding and complex for the

teacher, as is the ongoing life in a school and the

range of tasks a teacher is required to undertake.

Teachers’ reflection on their practice, evidenced

by reports at project meetings and observations of

teacher educator researchers, led to noticing in the

moment in classrooms, reflection-in-action, and

concomitant changes in action resulting from such

noticing.

A question that arises in considering reflective

practice in mathematics education concerns what

difference it makes (to reflective practice) that it

is being used in relation to mathematics and to the

learning and teaching of mathematics. Although

in the mathematics education literature there are

many references to the reflection of practitioners,

there is a singular lack of relating reflective

practice directly to mathematics. We see writings

by mathematics educators referring, for example,

to mathematics teachers who are reflective prac-

titioners, reflecting on their practice of teaching

mathematics; however, the mathematics is rarely

addressed per se. We read about specific

approaches to teaching mathematics and to

engagement in reflective practice, for example,

the identification of “critical incidents,” or the

use of a “lesson study approach.” To a great

extent, the same kinds of practices and issues

might be reported if the writers were talking

about science or history teaching. There is also

a dearth of research in which mathematics stu-

dents are seen as reflective practitioners.
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Definition(s)

Definitions of rural and remote mathematics con-

texts differ considerably from country to country

and region to region – nevertheless most defini-

tions consider geographical position, population

density, and distance from the nearest urban area.

The Organisation for Economic Co-operation

and Development (OECD) classifies regions

within its member countries into three groups

based on population density – predominantly

urban, intermediate, or predominantly rural.

A region is considered rural if it meets three

methodology criteria: (1) “local units” within a

region are rural if they have a population density

of less than 150 inhabitants per square kilometer,

(2) more than 50% of the population in the region

live in rural local units, and (3) they will not

contain an urban center of over 200,000 people

(OECD 2010a).

Developing regions around the world, in

particular Africa and Asia, are still mostly rural.

However, by 2030 these regions will join the

developed world in having a mostly urban

population. Although the developed world has

been predominantly urban since the early 1950s,

some countries have a relative high proportion of

the population outside major cities (e.g., Australia,

34 %; Canada, 19 %) (Australian Bureau of

Statistics [ABS] 2012; Statistics Canada 2008).

Social indicators show that people living in rural

areas have less access to a high quality of life

than do those living in urban areas, based on

factors such as employment, education, health,

and leisure (UN 2011). To some degree, research

in this area has been considered from a deficit

perspective, often perceived as backward, attached

to tradition, and anti-modern (Howley et al. 2010).

Differences in Student Performance

Students in large urban areas tend to outperform

students in rural schools by the equivalent of

more than one year of education (OECD 2012).

Severe poverty, often exacerbated in rural areas

due to a lack of employment, education opportu-

nities, and infrastructure, manifests the situation

(Adler et al. 2009). Although socioeconomic

background accounts for part of the difference,

performance difference remain even when

socioeconomic background is removed as a

factor (OECD 2012). In other situations, severe

environmental conditions, including drought and

flood, heighten the challenging nature of educa-

tional opportunities in rural areas (Lowrie 2007).

Differences in students’ success in mathematics

are often correlated with the size of their commu-

nity, along with its degree of remoteness (Atweh

et al. 2012). Rural, and especially remote, com-

munities face challenges of high staff turnover,

reduced professional learning opportunities, and

difficulty in accessing quality learning opportu-

nities for students (Lyons et al. 2006). The capac-

ity to attract teachers with strong mathematics

pedagogical content knowledge – already a chal-

lenge in many countries – is heightened in rural
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and remote areas with students having limited

opportunities to study higher levels of mathemat-

ics (Kitchenham and Chasteauneuf 2010; Ngo

2012). As the OECD (2010b, p. 13) highlights,

“. . .disadvantaged schools still report great diffi-

culties in attracting qualified teachers. . . Findings

from PISA suggest that, in terms of teacher

resources, many students face the double liability

of coming from a disadvantaged background and

attending a school with lower quality resources.”

Opportunities in Rural and Remote Settings

From a pedagogical perspective, communication

technologies provide opportunities for enhanced

mathematics engagement (Lowrie 2006). In fact,

distance education often leads the way in commu-

nication initiatives and technological advances

(Guri-Rosenblit 2009). A benefit can be that

rural/remote schools and students have access to

current and innovative technologies that are not yet

being used in mainstreammetropolitan schools. In

this sense, remote settings provide opportunities

for mathematics pedagogy to be differently con-

textualized (Lowrie and Jorgensen 2012).

Distance education features strongly in the orga-

nization structuring of education in remote areas –

with students afforded the opportunity to study

mathematics without leaving their home commu-

nity. Such situations change the nature and role of

teaching – with the student having to be more self-

reliant since face-to-face engagement with their

teacher is minimal. High-quality teaching and

learning are fostered through well-designed

resources and strong home-school partnerships

(Lowrie 2007). The shared decision-making that

is negotiated and established in distance education

contexts is highly influential in the students’

numeracy development (Goos and Jolly 2004)

and can be looked upon in reshaping the practices

of more traditional mathematics classrooms.
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Definition

Scaffolding is generally conceived as an interac-

tional process between a person with educational

intentions and a learner, aiming to support this

learner’s learning process by giving appropriate

and temporary help. Scaffolding in mathematics

education is the enactment of this purposive

interaction for the learning of mathematical

actions and problem solving strategies.

A number of clarifying corollary postulates are

usually added for the completion of this general

definition of scaffolding in a specific situation:

• Scaffolding is an intentional support system

based on purposive interactions with

more competent others, which can be adults

or peers; the support can be individualized

(one teacher scaffolding one student) or

collective (a group scaffolding its members

in a distributed way).

• The support consists of employing instruc-

tional means that are supposed to help learners

with the accomplishment of a new (mathemat-

ical) task by assisting him/her to carry out the

required activity through providing help at

parts of the activity that aren’t yet indepen-

dently mastered by the learner; this is to be

distinguished from just simplifying the task by

cutting it down into a collection of isolated

elementary tasks.

• Scaffolding aims at providing learners help

that is contingent on the learner’s prior quali-

ties and contributes to the development of

knowledge, skills, and confidence to cope

with the full complexity of the task; as such

scaffolding is to be distinguished from

straightforward instruction in correct task

performance.

• As a support system scaffolding is essentially

a temporary construction of external help that

is supposed to fade away in due time.

Characteristics

Tutoring Learning

The notion of educational support systems for the

appropriation of complex activities was first

introduced by Bruner in the 1950s in his studies

of language development in young children.

In opposition to the Chomskyan explanation of

language development resulting from an inherent

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
# Springer Science+Business Media Dordrecht 2014



Language Acquisition Device (LAD), Bruner

advocated a theory of language development

that holds that parent–infant interactions

constitute a support system for children in their

attempts to accomplish communicative inten-

tions. In Bruner’s view it is this Language

Acquisition Support System (LASS) that

“scaffolds” children’s language development.

In a seminal article on adult tutoring in

children’s problem solving, Bruner and his

colleagues generalized the idea of learning

support systems to the domain of problem solving

in general and explicitly coined the notion of

scaffolding as a process of tutoring children for

the acquisition of new problem solving skills (see

Wood et al. 1976). They point out that scaffolding

“consists essentially of the adult ‘controling’

those elements of the task that are initially beyond

the learner’s capacity, thus permitting him to

concentrate upon and complete only those

elements that are within his range of competence”

(Wood et al. 1976, p. 90). In the elaboration of the

scaffolding process, Wood et al. (1976, p. 98)

identify several scaffolding functions:

1. Recruitment: scaffolding should get learners

actively involved in relevant problem solving

activity.

2. Reduction in degrees of freedom, i.e., keeping

students focused on those constituent acts that

are required to reach a solution and that they

can manage while preventing them from being

distracted by acts that are beyond their actual

competence level; these latter actions are sup-

posed to be under the control of the scaffold-

ing tutor.

3. Direction maintenance: The tutor has the role

of keeping students in pursuit of a particular

objective and keeps them motivated to be

self-responsible for the task execution.

Without explicitly mentioning the Vygotskian

notion of the zone of proximal development, the

formulations used by Bruner and his colleagues

(see quote above) unequivocally refer to one of

Vygotsky’s operationalizations of this notion

(see Vygotsky 1978, p. 86) as the discrepancy

between what a learner can do independently

and the learner’s performance with help (support)

from more knowledgeable others. In later

explanations and elaborations of scaffolding,

most authors have taken this notion of the zone

of proximal development as a point of reference.

Using a Vygotskian theoretical framework, the

work of Stone and Wertsch has contributed sig-

nificantly to the understanding of scaffolding.

Stone and Wertsch (1984) have examined

scaffolding in a one-to-one remedial setting with

a learning-disabled child. They could show how

adult language directs the child to strategically

monitor actions. Their analyses articulated the

temporary nature of the scaffold provided by

the adult. Close observation of communicative

patterns in the adult–child interactions showed a

transition and progression in the source of strate-

gic responsibility from adult (or other-regulated)

actions to child (self-regulated) actions. The

gradual reduction of the scaffolding (“fading”) is

possible through the child’s interiorization of the

external support system (transforming it into

“self-help”).

Stone (1993) made a critical analysis of the

use of the scaffolding concept as a purely instru-

mental teaching strategy. He pointed out that

until the early 1990s most conceptions of scaf-

folding were missing an important Vygotskian

dimension that has to do with the finality of

scaffolding for the learner. Especially the

learner’s understanding of how the scaffolding

and learning make sense beyond the narrow

achievement of a specific goal adds personal

sense to the cultural meaning of the actions to

be learned through scaffolding. Stone refers

to this dimension with the linguistic notion of

“prolepsis” which can be seen here as an under-

standing in the learner of the value of the

scaffolded actions in a future activity context.

Until today many applications of the scaffolding

strategy are still missing this proleptic dimension

and neglect the process of personal sense

attachment to the scaffolded actions.

The use of scaffolding in various contexts

has led to different educative strategies for

implementing scaffolding in classrooms with

varying levels of explicitness as to the help given

(for an excellent, recent, and very informative

overview and empirical testing of scaffolding

strategies, see van de Pol 2012). The most used
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scaffolding strategies with increasingly specific

help aremodeling (showing the task performance),

giving advice (providing learners with suggestions

that might help them to improve their perfor-

mance), and providing coaching in the accom-

plishment of specific actions (giving tailored

instructions for correct performance). Following

Stone’s critique on current scaffolding concep-

tions, however, it is reasonable to add, as a useful

educative strategy, embedding, which entails lur-

ing the learner in familiar sociocultural practices

in which the new knowledge, actions, operations,

and strategies to be learned are functional compo-

nents for a full participation in that practice. This

embedding in familiar sociocultural practices

helps students to discover the sense of both these

learning goals and the teacher’s scaffolding.

Attempts at employing scaffolding strategies

in mathematics education can be generated from

the above summarized general theory of scaffold-

ing, provided that it is clear what kind of mathe-

matical learning educators try to promote. If the

formation of mathematical proficiency is reduced

to learning to perform mathematical operations

rapidly and correctly, then scaffolding should

include embedding to make clear how the mas-

tery of these operations may help students to

participate autonomously in future practices.

The choice for coaching on these specific actions

in order to take care that they are mastered in

correct form may be an important way of scaf-

folding the learning by repetition and practicing.

If, however, the focus is on learning mathematics

for understanding and hence on developing

the ability of concept-based communication

and problem solving with mathematical tools, a

broader range of scaffolding strategies is needed.

First of all the strategy of embedding is

important: helping students to connect the actions

to be learned with a sociocultural practice that is

recognizable and accessible for them. One may

think of practices like being a member of

the mathematical community, but most of

the time this scaffolding strategy consists in

embedding the mathematical problem solving

process in cultural practices like industrial design

(e.g., designing a tricycle for toddlers), or prac-

ticing a third-world shop in the upper grade of

primary school, or enacting everyday life prac-

tices (going to the supermarket or calculating

your taxes). In a process of collaborative problem

solving (and exploratory talk, see Mercer 2000)

under guidance of the teacher, the teacher has to

take care of the contingency of the actions and

solutions on all participants’ prior understandings

but also of tailoring the scaffolding to the varying

needs of the students: modeling general solutions

(if necessary, when the students have problems to

find the direction of where to find the solution of

the mathematical problem at hand), giving hints

(i.e., giving advice, if necessary, when the

group’s problem solving seems to go astray), or

even stepwise coaching the execution of complex

new actions when these actions are important for

the resolution of the problem but go beyond the

actual level of the participants’ competences. In

this latter case it is important that the teacher

sensitively monitors the contingency of the

steps in the learning process in the students.

Scaffolding in mathematics education that

aims at mathematical understanding is basically

a language-based (discursive) process in which

students are collectively guided to a shared

solution of mathematical problems and learn

how this contributes to their understanding of

the mathematical concepts that are being

employed. Although there is as yet a growing

body of (evidence-based) arguments for this

discursive approach to the development of

mathematical thinking (see, e.g., Pimm 1995;

Sfard 2008), a number of unresolved issues are

still waiting for elaboration:

• How to reconcile dialogical agreements in

a group of students with the extensive body

of proofs and understandings in the wider pro-

fessional mathematical community? How can

a teacher scaffold the students’ processes of

becoming a valid and reliable mathematics

user in a variety of cultural contexts?

• How to scaffold the emergence of mathemat-

ical thinking in young children that opens

a broad and reliable basis for the development

of rich and valid mathematical thinking? How

can we meaningfully scaffold the process of

learning to talk, informed by mathematical

concepts? Although practical and theoretical
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know-how is currently being expanded (see

van Oers 2010; Fijma 2102), further ecologi-

cally valid empirical studies are needed.

• How can teachers scaffold the process of mas-

tery of automatization in mathematics while

maintaining the foundations of this process in

understanding and meaningful learning?

• How can teachers support the gradual fading of

the teacher’s scaffolding and turn this external

(interpersonal) scaffolding into a personal

quality of self-scaffolding? For this it is neces-

sary to encourage the students to make and

discuss their own personal verbalizations of

the shared concepts and solutions. More study

is needed into this formation of personalized

regulatory abilities on the basis of accepted

mathematical understandings, using a combi-

nation of dialogue (interpersonal exploratory

talk) and polylogue (critical discourse with the

wider mathematical community).

Cross-References
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Mathematics Education
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Definitions and Background

Because mathematical objects cannot be

apprehended directly by the senses (e.g., Otte

2006), their ontological status requires signs such

as symbols and diagrams for their communication

and learning. A sign (from ancient Greek semeion,

meaning sign) is described by Colapietro (1993)

as “something that stands for something else”

(p. 179). Then semiosis is “a term originally used

byCharles S. Peirce to designate any sign action or

sign process; in general, the activity of a sign”

(p. 178). Semiotics is “the study or doctrine of
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signs; the systematic investigation of the nature,

properties, and kinds of sign, especially when

undertaken in a self-conscious way” (p. 179).

Both Duval (2006) and Otte (2006) stressed that

mathematical objects should not be confused with

their semiotic representations, although these signs

provide the only access to their abstract objects.

Ernest (2006) suggested that there are three com-

ponents of semiotic systems (clearly illustrated by

the systems of mathematics), namely, a set of

signs, a set of relationships between these signs,

and a set of rules for sign production.

Semiotics is particularly suited to investigation

of issues in mathematics teaching and learning

because it has the capacity to account for both the

general and the particular. Mathematicians and

teachers employ different symbolic practices in

their work, while sharing the goal of communicat-

ing mathematically: mathematicians aim for

decontextualization in reporting their research

whereas teachers recognize a need for contextuali-

zation in students’ learning of mathematical con-

cepts (Sáenz-Ludlow and Presmeg 2006). Semiosis

is essential in both of these practices. Further, as

Fried (2011) pointed out, tensions between public

and private realms arise in a persistent way in

discussions connected with semiotics in mathemat-

ics education, reflecting “the division between stu-

dents’ own inner and individual understandings of

mathematical ideas and their functioning within

a shared sociocultural world of mathematical

meanings” (p. 389).

Semiotic Lenses and Their Uses

Semiotics has been a fruitful theoretical lens used

by researchers investigating diverse issues in

mathematics education in recent decades, as

attested by Discussion Groups held at confer-

ences of the International Group for the Psychol-

ogy of Mathematics Education (PME) in 2001,

2002, 2003, and 2004 (Sáenz-Ludlow and

Presmeg 2006) and at conferences with a focus

on semiotics in mathematics education (Radford

et al. 2011). Some theoretical formulations are

described briefly in this section, along with

the mention of semiotic investigations in which

these lenses have proved useful in mathematics

education.

Ferdinand de Saussure, working in linguistics,

put forward a dyadic model of semiosis in which

a signifier (such as the word “tree”) stands for a

signified (the concept of tree). Note that in this

example, both the word and its concept are

mental constructs, not objects accessible to the

senses. Saussure’s model allows for a chaining of

signifiers that was used in mathematics education

research by Walkerdine (1988) and Presmeg

(1998). The need to acknowledge the human

subject involved in such semiosis led Presmeg

to the triadic model of Peirce (1992, 1998)

and to a nested chaining model that includes

interpretation of signs (Hall 2000; Presmeg

2006). Charles Sanders Peirce used triads

extensively in his model of semiosis. His main

triad involved the components of object,

representamen that stands for the object in some

way, and interpretant, involving the meaning

assigned to the object-representamen pair. An

illustration used by Whitson (1997) is as follows:

object, it will rain; representamen, the barometer

is falling; and interpretant, take an umbrella.

Peirce used the term sign sometimes to designate

the representamen and at other times to refer to

the whole triad. In any case, the model allows for

a nested chaining that may be continued indefi-

nitely, as each interpretant in turn (and implicitly

thereby the whole triad) may become an object

that is represented by a new representamen

and interpreted. Sáenz-Ludlow (2006) used

this chaining property to illustrate the meanings

emerging in the language games of interactions

in an elementary mathematics classroom,

involving the translation of signs into new signs.

Each of the relationships comprised in the

Peircean triad were analyzed by him into further

triads, e.g., the relationship of the representamen

to its object could be iconic (like a picture),

indexical (pointing to it in some way, e.g.,

smoke to fire), or symbolic (a conventional rela-

tionship, e.g., the numerals to their corresponding

natural numbers). This model also includes the

need for expression or communication: “Expres-

sion is a kind of representation or signification.

A sign is a third mediating between the mind
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addressed and the object represented” (Peirce

1992, p. 281). In an act of communication, then,

there are three kinds of interpretant, as follows: the

“Intensional Interpretant, which is a determination

of the mind of the utterer”; the “Effectual

Interpretant, which is a determination of the mind

of the interpreter”; and the “Communicational

Interpretant, or say the Cominterpretant, which is

a determination of that mind into which the minds

of utterer and interpreter have to be fused in order

that any communication should take place”

(Peirce 1998, p. 478). The latter fused mind Peirce

designated the commens, a notion that is useful in

interpreting developments in the history of math-

ematics through the centuries (Presmeg 2003).

The numerous triads introduced by Peirce provide

lenses for various larger or smaller grains of

analysis in research in mathematics education

(Bakker 2004; Hoffman 2006).

With regard to mathematical communication,

a different theory is provided by the social

semiotics of linguist Michael Halliday, as used

in the research of Morgan (2006), who analyzed

the mathematical texts produced by secondary

school students. Halliday emphasized “the ways

in which language functions in our construction

and representation of our experience and of our

social identities and relationships” (Morgan

2006, p. 219). A fine grain is provided in this

theory by the differentiation of context of situa-

tion, involving various kinds of specific goals,

and context of culture, involving organizing con-

cepts that participants hold in common, and by his

notions of field (institutional setting of an activ-

ity), tenor (relations among the participants), and

mode (written and oral forms of communication).

An independent model is provided by

Steinbring (2005), who took the position that

mathematical signs have both semiotic and epis-

temological functions. With regard to a particular

mathematical concept, he argued that there is

a reciprocally supported and balanced system,

which he called the epistemological triangle.

The three reference points of this triangle are

the mathematical sign/symbol, the object/refer-

ence context, and the mathematical concept. He

provided extensive examples of interaction of

learners in elementary mathematics classrooms

(Steinbring 2005, 2006) to show that the meaning

of signs for individual learners is part and parcel

of the semiotic and epistemological functions

inherent in sign interpretation.

Elaboration and combination of constructs

from semiotic theories have been necessary in

research addressing the complexity of elements

involved in mathematics teaching and learning.

For instance, Arzarello introduced the construct

semiotic bundles and Arzarello and Sabena

(2011) integrated Toulmin’s structural descrip-

tion of arguments; Peirce’s notions of sign, dia-

grammatic reasoning, and abduction; and

Habermas’s model for rational behavior. Several

research studies have used the inclusive

onto-semiotic theoretical model of Godino and

colleagues (e.g., Santi 2011). There is also the

important independent branch of semiosis

known as semiotic mediation, based on the theo-

retical formulations of Vygotsky, and used exten-

sively in research by Mariotti (e.g., Falcade et al.

2007) and Bartolini Bussi (e.g., Maschietto and

Bartolini Bussi 2009). Hoffman (2006) does not

consider this variety of theoretical formulations

of semiosis to be a problem, as long as the termi-

nology is consistently defined and used in each

instance. The various research questions being

investigated demand different tools and lenses,

according to the various semiotic traditions.

Questions for Research on Semiosis in
Learning and Teaching Mathematics

Following the publication of papers from two PME

discussion groups in 2001 and 2002, Sáenz-Ludlow

and Presmeg (2006) identified semiotic “windows

through which to explain the teaching-learning

activity while opening the gates for new avenues

of research in mathematics education” (p. 9) by

addressing questions such as the following:

• What exactly is entailed in the interpretation of

signs?Are signs things and/or processes?When

are signs interpreted as things and when are

signs interpreted as processes by the learner?

• What is the role of speech and social interac-

tion in the interpretation of signs? What is the

role of writing in this interpretation?
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• Are there different levels of sign interpreta-

tion? Do interpretations and the level of inter-

pretations change with respect to different

contexts?What is the role of different contexts

in sign interpretation?

• Is it important for the teacher and the student

to differentiate the variety of semiotic systems

involved in the teaching-learning activity?

• Is there a dialectical relationship between sign

use and sign interpretation? Is there a dialectical

relationship between sign interpretation and

thinking?

• Is it possible to involve students in creative

acts of sign invention and sign combination to

encapsulate the oral or written expression of

their conceptualizations?

• Under what conditions do students attain the

ability to express themselves flexibly in the

conventional semiotic systems ofmathematics?

• Can various semiotic theories be applied to

analyze data gathered using different

methodologies?

• Would it be possible to have a unified semiotic

framework in mathematics education?

The latter remains an open question. However,

some of the potential light thrown by using semi-

otic lenses in mathematics education research

has been demonstrated in investigations already

undertaken.
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Definition and Teaching Situation

Geometry (Ancient Greek: geometrı́a; geo

“earth,” metron “measurement”) is a mathemat-

ical area concerned with the space around us,

with the shapes in the space, their properties,

and different “patterns” and “thinking pat-

terns” for which they serve as trigger and

basis. As Freudenthal (1973) states it: “Geom-

etry can only be meaningful if it exploits the

relation of geometry to the experienced

space. . . Geometry is one of the best opportu-

nities that exist to learn how to mathematise

reality” (p. 407).

From its very beginning, more than two and

a half thousand years ago, geometry was devel-

oped along a few main aspects:

(a) Interacting with shapes in a space. This

aspect arose independently in a number of

early cultures as a body of practical

knowledge concerning lengths, areas, and

volumes and concerning shapes’ attributes

and the relationships among them (the

practical-intuitive aspect).

(b) Shapes, their attributes, and their changes in

space as fundamental ingredients for

constructing a theory (the formal logic

approach). Elements of a formal mathemati-

cal geometry emerged in the west as early as

Thales (sixth century BC). By the third

century BC, this aspect of geometry was put

into an axiomatic structure by Euclid

(Euclidean geometry).

(c) Shapes as basis for reflecting on visual infor-

mation by representing, describing, general-

izing, communicating, and documenting such

information, e.g., for better understanding

concepts, processes, and phenomena in

different areas of mathematics and science

and as a framework for realizing the contri-

bution of mathematics to domains such

as painting, sculpture, and architecture in

which beauty can be generated through aes-

thetic configurations of geometrical shapes.

There is a classic “consensus that the first two

aspects are linked because some levels of

geometry as the science of space are needed for

learning geometry as a logical structure”

(Hershkowitz et al. 1990, p. 70). These two

aspects seemed to be expressed explicitly in

teaching and learning geometry in schools and

in the research work which follows it. For quite

many years the most acceptable way to teach

geometry in K-12 was and in a sense still is

hierarchical division of the themes and teaching

approaches from intuitive (Aspect a) to formal

(Aspect b) along the school’s years, where the

intuitive-interactive approach was the basis for

elementary and preschool geometry and the for-

mal one was left to high school. Seldom, the

formal approach was also used for designing

a learning environment for high school and/or
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universities in which learners developed an

understanding of geometrical structures as

abstract systems not necessarily linked to refer-

ents of a real environment, e.g., the non-

Euclidian geometries.

Approaches towards the role of visualization

in learning and teaching geometry and mathemat-

ics as a whole (Aspect c) varied according to the

observers’ eyes and interest. But, as geometry

engaged with shapes in space, which are seen,

presented, and documented visually, the role of

visualization can’t be ignored. Two aspects of

visualization which are interweaved together are

relevant to teaching and learning geometry:

(a) Visualization as one of the ways for mathe-

matical thinking

(b) Visualization as a representation or as “a lan-

guage” bywhichmathematical thinking, includ-

ing a visual one, might be developed, limited,

expressed, and communicated (Presmeg 2006)

Visual constructs are considered as a potential

support for learning other mathematical

constructs, but what about geometrical con-

structs? Visualization seems to be the entrance

into geometry, the first internalization steps of the

learner while she/he begins to mathematize the

reality into geometrical constructs. There were

quite many research works which were involved

with visualization, but not very many that tried to

investigate to what extent geometrical thinking is

visual, or is interweaved with visual thinking, or

affected by visual thinking? For example, when

the learner is engaged in deductive proving, what

is the effect or the role of visual thinking if any?

Or, the opposite, when students are engaged in

a visual problem solving, what semiotic support

they need and may have for expressing

their problem solving process and products?

This third aspect concerning the role of visuali-

zation is the most neglected one, either because of

the lack of awareness or because of the naı̈ve

assumption that the visual abilities and under-

standing are developed in a natural way and the

learners do not need a special teaching.

The teaching and learning of geometry in

preschool and elementary school was neglected

in many places around the world: For example, at

the preface to their book concerning “learning

environments for developing understanding of

geometry and space,” Lehrer and Chazan (1998)

writes: “ . . .geometry and spatial visualization in

school are often compressed into a caricature of

Greek geometry, generally reserved for the

second year of high school.” Indeed in many

states in the USA, this 1-year-course in Euclid

geometry was taught in high school without any

geometry’s instruction before it.

This unfortunate situation was discussed

intensively in the last few decades and as a result

instructional and research efforts are done in

order to improve it. For example, in the US

NCTM curriculum standards, it is claimed that

“the study of geometry in grades 5–8 links the

informal explorations, begun in K-4, to the more

formalized processes studied in grades 9-12”

(NCTM 1989, p. 112). This intentional claim

(which unfortunately does not mention the visual

aspect) is strengthened by the hierarchical levels’

structure of van Hiele’s theory (1958), which is

discussed in the next section.

Theories Concerning Geometry
Teaching and Learning

Piaget: In his developmental theories of the

child’s conception of space (Piaget and Inhalder

1967) and child’s conception of geometry (Piaget

et al. 1960), Piaget and his colleagues describe

the development of the child’s representational

space. This is defined as the mental image of the

real space in which the child is acting, where

mental representation is an active reconstruction

of an object at the symbolic level. Piaget in his

typical way was interested in the mental transfor-

mations from the real space to the child’s represen-

tational space and in those attributes of real objects

that are invariant under these transformations

and how they develop with age. This approach

is a trigger to some sub-theories. For example,

the distinction between the concept and the concept

image. The concept is derived from its mathemat-

ical definition and the concept image which is the

collection of the – mental images the student has

concerning the concept, or the concept as it is

reflected in the individual mind (Vinner 1983).
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This dichotomy served as a basis formany research

works in mathematics.

van Hiele: Whereas Piagetian theory relates

mainly to geometry as the science of space, van

Hiele’s theory combines geometry as the science

of space and geometry as a tool with which to

demonstrate mathematical structure. The theory

identifies a sequence of levels of geometrical

thought from recognition and visualization up to

rigor (for details on the theory as a whole and on

the levels in particular, see Van-Hiele and

van-Hiele-Geldof 1958; Hershkowitz et al.

1990). The most relevant feature for geometry

instruction and learning is van Hiele’s claim

that the development of the individual’s geomet-

rical thinking, from one level to the next, is due to

teaching and learning experiences and does not

depend much on maturity.

Geometry in Preschool and
Elementary School

The aspect of interaction with shape and space

(a) is the main component in elementary and

preschool geometry learning in which the clas-

sic main goals are constructing knowledge

about basic Euclidean geometric figures and

simple relationships among them. Around the

middle of the twentieth century, it was com-

mon to find a “pre-formal” course for elemen-

tary school, conceptualizing geometry as the

science of space. The focus of this course was

mostly on the identification and drawing of the

regular shapes, Euclidean properties of these

shapes, relationships among shapes, and

a variety of measurement activities. Since the

1960s this type of course has come under

severe criticism: mainly because it lacks induc-

tive activities related to search of patterns,

because there is no implicit and explicit focus

on geometrical argumentation, and above all

because the learners are passive in constructing

their geometrical knowledge. It is worth to note

that teaching visual skills and visual thinking

which is highly recommended (c) is still very

limited.

Freedom in Selecting Geometrical Context,

Content, and Teaching/Learning Paradigms:

As a result from the above criticism, we are

witnesses in the last decades to a trend of refresh-

ing projects in teaching and learning geometry as

a whole, but mostly at the preschool and elemen-

tary school. These projects, which express

democracy in choosing contexts, and approaches

towards teaching and learning geometry,

emerged from holistic vision of what shape and

space could be, rather of what they often are in

schools (see the RME entry in this encyclopedia).

The book edited by Lehrer and Chazan (1998) is

a paradigmatic example for this trend. The book

describes a variety of attractive and productive

environments for learning about space and geom-

etry. In most of the designed learning environ-

ments, described in the book, students play active

role in constructing their own geometrical knowl-

edge. The designers’/researchers’ description of

student’s learning shares a collective emphasis

on internalization, mathematization, and justifica-

tion (Hershkowitz 1998). Internalization is used in

a Vygotskian spirit, as the transformation of exter-

nal activity into internal activity, e.g., the change

from “what I see?” to “how I see?” in accordance

with the change of the observer’s position in the

RME curriculum (Gravemeijer 1998) and the

dragging mode in dynamic geometry projects.

Mathematization is consistent with Freudenthal’s

philosophy of mathematics as human activity in

which mathematizing is seen as a sort of an orga-

nizing process by which elements of a context are

transformed into mathematical objects and rela-

tions. Justification is taken in a broad sense, mean-

ing the variety of actions that students take in order

to explain to others, as well as to themselves, what

they see, do, think, and why. This broad sense is

expressed in the mathematical and cognitive free-

dom towards legitimate kinds of justifications.

Some Comments on Difficulties and Relevant

Research: Research has shown that common

difficulties of learning geometry at the elemen-

tary level emerged mostly from the unique

mathematical structures, in which figures are

represented in learning geometry: From a

mathematical point of view a geometrical
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concept, like other mathematical concepts, is

derived from its definition which includes a

minimal (necessary and sufficient) set of the con-

cept’s critical attributes that an instance should

have in order to be the concept’s example. Hence

these critical attributes may be used by students

as a criterion to classify instances. In contrast,

students very often use one special example of

the concept, the prototype/s as a criterion for

classifying other examples. The prototypes are

attained first and therefore are found in the con-

cepts’ image of quite young learners. The proto-

typical example has the “longest” list of critical

attributes (Rosch and Mervis 1975), e.g., the

squares are prototypical example of quadrilat-

erals, and indeed they have all the quadrilaterals’

critical attributes plus their own critical attri-

butes, like the sides’ equality. This leads to a

prototypical judgment by learners and to a

creation of biased concept images, like identify-

ing a segment as a triangle altitude, only if it is an

interior segment (Hershkowitz et al. 1990; Fujita

and Jones 2007). The prototypes’ phenomenon is

understood better if we analyze it in the context of

the typical structure of basic geometrical figures,

“the opposing directions inclusion relation-

ships” (Hershkowitz et al. 1990), among the

sets of figures (concepts) at one direction and

among their critical attributes at the opposite

direction. This structure explains also other

obstacles in learning geometry: e.g., the figure-

drawing obstacle (Laborde 1993, p. 49), in which

learning difficulty emerges in situations where an

isolated drawing is the only representative of a

figure, where the figure is the geometrical con-

cept as a whole. Laborde made it clear that there

is always a gap between the figure and a drawing

which represents it, because (1) some properties

of the drawing are irrelevant (non-critical attri-

butes of the figure) (it becomes an obstacle when

students try to impose these attributes as critical

attributes on all figures’ examples), (2) the ele-

ments of the figure have a variability which is

absent in a single drawing, and (3) a single draw-

ing may represent various figures (Yerushalmi

and Chazan 1990). Dynamic geometry softwares

enable students to overcome the abovementioned

difficulties and more. By dragging elements of a

drawing which was constructed geometrically on

the computer screen, students may provide an

infinite set of drawings of the same figure. This

variable method of displaying a geometrical

entity stresses the critical attributes, which

become the invariants of the entity under

dragging. Research indicates that students

engaged in dynamic geometry tasks are able to

capitalize on the ambiguity of drawings in the

learning of geometrical concepts.

High-School Geometry or Shapes in
Space as Ingredients for Constructing
a Theory

The two classical roles of teaching high-school

geometry are still experiencing deductive reason-

ing and proofs as part of human culture and

human thinking and verifying the universality of

proved geometric statements. According to

extreme classical approach, experimenting,

visualizing, measuring, inductive reasoning, and

checking examples are not counted as valid

arguments and might be that this is the reason

for neglecting them both in the elementary school

and in the high-school level. Geometrical proofs

are considered to be on a high level of the

argumentative thinking continuum at school, and

the traditional high-school geometry is the

essence of the secondary school geometry in

many places. It starts from what can be seen with

the eyes, where space and shapes provide the

environment, in which the learner gets the feeling

of mathematical theory (Freudenthal 1973). At

more advanced stage, it acquires a more abstract

aspect. But, even in the most abstract stage, we

still deal with some sorts of shapes and spaces,

even when they can be seen with the “minds’ eye”

only. Nevertheless the trends of freedom towards

the meaning of justifications and towards para-

digms of teaching and learning mathematics as

a whole and geometry in particular are taking

their way into the traditional high-school course

in geometry. Euclidian geometry is no longer

discussed in terms of “Euclid must stay” or
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“must go,” as if it is the only representative for

a proper argumentation on the stage. This trend is

accelerated due to several reasons:

i. The difficulty of teaching proving tasks in

school and of understanding the role of

proof: The teaching of mathematical proof

appears to be a failure in almost all countries

(Balacheff 1991; Mariotti 2006). Moreover,

students rarely see the point of proving.

Balacheff (1991) claims that if students do

not engage in proving processes, it is not so

much because they are not able to do so, but

rather they do not see any reason for it (p. 180).

High-school students, even in advanced

mathematics and science classes, don’t realize

that a formal proof confers universal validity to

a statement. A large percentage of students

states that checking more examples is desirable

(Fischbein and Kedem 1982). Many do not

distinguish between evidence and deductive

proof as a way of knowing that a geometrical

statement is true. After a full course of

deductive geometry, most students don’t see

the point of using deductive reasoning in geo-

metrical constructions and remain still naive

empiricists whose approach to constructions

is an empirical guess-and-test loop (Schoenfeld

1986).

ii. New thinking trends concerning the goals of

teaching proofs: For mathematicians, proofs

play an essential role in establishing the valid-

ity of a statement and in enlightening its

meaning. In the last decades more and

more scholars claim that the situation in

school is different: Hanna (1990) suggested

distinguishing, in school geometry, between

(a) proofs that only show that the theorem is

true and (b) proofs that in addition explain and

convince why the theorem is true. Dreyfus and

Hadas (1996) showed that when a learning

situation is provided, in which students feel

the need in proof in order to be convinced and

convince others (e.g., the need to show the

existence of hypothesis), students search for

a proper proof and then a proof becomes a

meaningful mathematical tool for checking

hypothesis. In these ways the importance of

proof is focused in the level of its justifications

and understanding and less in the formal clas-

sic way in which it presented.

iii. Dynamic geometry environments and

proving: The design of dynamic geometry

learning environments raised a question

about the place of the classical proof in the

curriculum, since conviction can be obtained

quickly and relatively easily: The dragging

operation on a geometrical object enables stu-

dents to apprehend a whole class of objects in

which the conjectured attribute is invariant

and hence to be convinced of its truth. The

role of proof is then to provide the means to

state the conjecture as a theorem. Dreyfus and

Hadas (1996) argue that students’ apprecia-

tion of the roles of proof can be achieved by

activities inwhich the empirical investigations

lead to unexpected, surprising situations. This

surprise is the trigger for the question why and

for the proof as an answer to this question.
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Introduction

In recent years it has become popular to replace

the word “sex” in single-sex classrooms and

single-sex schools with the word “gender.”

This substitution warrants some attention for

“(p)recision is essential in scientific writing”

(American Psychological Association [APA]

2010, p. 71).

The APA (2010) advocates the use of the term

“Gender . . .when referring to women and men as

social groups. Sex is biological; use it when the

biological distinction is predominant” (p. 71).

A similar distinction is made by theWorld Health

Organization (WHO) (2012): “‘Sex’ refers to the

biological and physiological characteristics that

define men and women. ‘Gender’ . . . to the

socially constructed roles, behaviours, activities,

and attributes that a given society considers

appropriate for men and women.” Given that the

division of students into same-sex classrooms is

invariably based on biological characteristics, it

is appropriate to retain the term sex in the heading

of this contribution. However, explanations

for differences associated with single-sex
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groupings are commonly linked to social expec-

tations, perceptions, and conventions, that is, on

gender-linked differences, as defined by APA

(2010) and WHO (2012). For a more detailed

discussion, see Leder (1992).

Historically, more emphasis has been placed

on the education of boys than of girls and origi-

nally all-boys schools predominated. Over time,

with increased expectations and demands for

mass education, coeducational schools were

added in many countries. In some countries,

religious convictions have been, and are still,

responsible for sex-segregated education – for

example, in the predominantly Muslim countries

such as Bahrain, Iran, and Saudi Arabia. In many

others, economic and political considerations, as

well as the increased importance attached to the

education of girls, have led to the growth and

ultimately dominance of coeducational schools.

In contrast, in the United States of America with

its strong history of coeducational schools, there

appears to have been a revival of single-sex

schooling, fuelled by legislative changes. This

development is hotly and continuously deplored

and contested by many inside and outside

educational circles (see, e.g., Brown 2011;

Halpern et al. (2011, 2012)).

Characteristics

Mathematics Classes in Single-Sex Schools

Unlike the often short life span of single-sex

mathematics classes in coeducational schools,

the single-sex grouping is maintained throughout

the school life of students in single-sex schools.

The mathematics performance and participation

rates of boys attending single-sex schools have

attracted some attention, but, as noted in a report

by the USDepartment of Education (2005, p. xv),

“males continue to be underrepresented in this

realm of research.” Issues related to girls’ learn-

ing of mathematics have been a major focus of

research comparing benefits of single-sex and

coeducational schools. Findings reported some

two decades ago by Leder (1992) that, when

differences are found, they most frequently

favor those in the single-sex school setting con-

tinue to be replicated. Referring to England and

Wales, Thompson and Ungerleider (2004, p. 4)

pointed to the increased publicity given to school

examination results which publicize the consis-

tent and superior achievements of students grad-

uating from single-sex private and independent

schools, with many of the highest scores coming

from all-girls schools. In addition to a possible

solution for the achievement gap, single-sex

schooling is viewed in some jurisdictions as

a means of balancing enrolments in subject

areas within the coeducational public system in

which there have been extreme imbalances

between boys and girls.

Interpreting the finding of girls’ better perfor-

mance in mathematics in single-sex schools is

problematic, however. When other factors are

taken into account and in particular the fact that

single-sex schools are often independent, private

schools which attract students from higher socio-

economic families, it is clear that any advantages

noted cannot be attributed simplistically to the

single-sex composition of the school. Data from

large-scale, international mathematics tests such

as TIMSS and PISA illustrate unambiguously

that students’ socioeconomic background is an

important variable influencing their performance

in mathematics: in general, the higher the level of

the socioeconomic background of students, the

higher their performance on the mathematics

component of these tests. Factors beyond

students’ background and system-related differ-

ences in human and physical resources have also

been shown to contribute to different achieve-

ment outcomes. In summary, any apparent

achievement advantages found in mathematics

learning for girls attending a single-sex school

cannot be attributed simplistically to one partic-

ular school characteristic, that is, the single-sex

setting per se.

Longitudinal studies of the long-term impact

of single-sex schooling are rare. Data from the

National Child Development Study “a longitudi-

nal study of a single cohort born in a particular

week in 1958 in Britain” (p. 314) offers one such

source (Sullivan et al. 2011). This group attended
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secondary school in the 1970s, at a time when

about one-quarter of the cohort went to single-sex

schools – a much higher proportion than is now

the case. Sullivan et al. (2011, p. 311) report:

We find no net impact of single-sex schooling

on the chances of being employed in 2000, nor on

the horizontal or social class segregation of mid-

life occupations. But we do find a positive pre-

mium (5 %) on the wages of women (but not

men), of having attended a single-sex school.

This was accounted for by the relatively good

performance of girls-only school students in

post-16 qualifications (including mathematics).

Mathematics Classes in Sex-Segregated

Classes in Coeducational Schools

In many countries, systematic documentation of

differences in the mathematics achievement of

boys and girls began in the early 1970s. Given

the important gatekeeping role or critical filter

played by mathematics into further educational

and career opportunities, differences between

the two groups, in favor of boys, in continued

participation in advanced and post-compulsory

mathematics courses were also noted with con-

cern. The introduction of single-sex classes in

coeducational schools, mostly aimed at secondary

school students and not necessarily exclusively in

mathematics, was among the initiatives mounted

to redress the demonstrated achievement discrep-

ancies. The move was considered to be consistent

with the tenets of liberal feminism, that is, helping

females attain achievements equal to those of

males, and the apparent advantages for girls asso-

ciated with the learning of mathematics in single-

sex schools.

The findings reported from single-sex mathe-

matics classes in formally coeducational schools

are largely similar to those described for other

subject areas. Girls typically liked the single-sex

setting and performed somewhat better academi-

cally than in coeducational classes. In a number

of the studies surveyed, boys were more ambiva-

lent than girls about the single-sex setting with

some indicating a firm preference for coeduca-

tional classes. These differences, however,

could often be attributed to differences in student

background factors or school organizational

structures rather than the sex-segregated setting

per se (Forgasz and Leder 2011).

In most of the studies located, the focus was on

the shorter-term effects of the single-sex grouping.

In the few studies in which longer-term effects

were examined, earlier advantages attributed to

the single-sex grouping appeared to dissipate:

“The generally accepted view has been that for

females, single-sex schooling is more advanta-

geous” (OECD 2009, p. 44). Yet nuanced explo-

rations of PISA data do “not uniformly support the

notion that females tend to do better in a single-

sex environment” (OECD 2009, p. 45).

Consistent explanations for the equivocal find-

ings permeate the relevant scholarly literature:

certain groups of students (e.g., those being

harassed in a coeducational setting) were found

to benefit from a single-sex environment, while for

other groups it made no difference. Teacher strat-

egies, instructional materials, and the prevailing

school climate, rather than the sex grouping in the

mathematics class, were more often found to be

critical to students’ success and perceptions of the

class environment. Simplified and at times biased

versions of these findings are regularly reported in

the popular media and play a part in shaping the

perceptions of the public and of stakeholders about

the respective benefits of single-sex and coeduca-

tion schooling (Forgasz and Leder 2011).

To conclude, many complex and interacting

factors influence the school learning environ-

ment – with a single-sex classroom setting per

se unlikely to be the most influential. Some con-

texts, including the primary years of schooling

and the longer-term effect of learning mathemat-

ics in a single-sex rather than a coeducational

setting, have not yet received sufficient attention.

For the present, proponents of single-sex educa-

tion will focus on its putative benefits and critics

on its disadvantages.
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Introduction

“Situated cognition” is a loose term for a variety

of approaches, in education and in other fields of

inquiry, that value context. Its advocates claim

that how one thinks is tied to a situation. “Situa-

tion” is another loose term; it may refer to a place

(a classroom or a laboratory), but a situation may

also reside in relationships with people and/or

artifacts, e.g., “I am with friends” and “I am at

my computer.” This entry briefly considers the

history of situated approaches before looking

at the development of situated schools of thought

in mathematics education. It then considers

“knowing” and, briefly, research methodologies,

implication for teaching, and critiques of situated

cognition.

Characteristics

History

Marx’s 11th thesis on Feuerbach, “Social life

is essentially practical. All mysteries . . . find

their rational solution in human practice

and in the comprehension of this practice.”

(Marx 1845/1968, p. 30), remains a statement

that few, if any, situated cognitivists would

disagree with. Activity theory is an explicitly

Marxist approach used by some mathematics

education researchers which could be called
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“situated”; there are similarities and differences

between these two approaches, e.g., “mediation”

is central to activity theory but it is not a well-

developed construct in current approaches

labelled as “situated cognition” (see Kanes and

Lerman 2007).

Cole (1996) claims that psychology once had

two parts, one that could and one that could not be

studied in laboratory experiments. He argues that

the second part was lost in most of the twentieth-

century psychology. One reason for this loss is

that Western social sciences in the first half of the

twentieth century were dominated by various

forms of positivism, such as behaviorism in psy-

chology (with a knock-on effect in education).

Positivism is a form of empiricism which posits

that we can obtain objective knowledge, a claim

that is anathema to situated cognitivists. To a

behaviorist, learning concerns conditioning,

responses to stimuli, and attaching responses to

environmental stimuli. From the 1950s onwards

JJ and EJ Gibson, in the psychology of percep-

tion, argued differently that perceptual learning

was a part of an agent’s interaction with

the environment; environments afford

animals some actions/activities and constrain

others – a chalkboard affords the construction of

static geometric figures but an electronic white-

board may afford the construction of dynamic

geometric figures. This can be viewed as a form

of situated cognition (where the situation is the

environment) which has influenced some

research in mathematics education; see Greeno

(1994) for a consideration of affordances with

reference to “situation theory” and mathematical

reasoning. The waning of behaviorism as an

academic paradigm in the West, circa 1970,

however, did not immediately usher Cole’s

second psychology. In the place of behaviorism,

mathematics education researchers largely

embraced cognitive models of learning such as

Piaget’s genetic epistemology and information

processing, both of which were content to capture

data in laboratory conditions; note that this

comment is not necessarily a criticism of these

models per se but, rather, from a situated

viewpoint, a comment on keeping research on

learning within Cole’s “first psychology.”

Mathematics Education

In mathematics education, “situated cognition” is

often associated with studies of out-of-school

mathematics towards the end of the twentieth

century, Lave (1988) and Nunes et al. (1993)

being early and influential examples of such stud-

ies. These studies presented data that people

could do mathematics “better” in supermarkets

or on the streets and argued that the mathematical

processes carried out in out-of-school activities

were radically different from those of school

mathematics. These studies directly challenged

the rationalist hegemony of academic (Western)

mathematics and argued that a strong discontinu-

ity exists between school and out-of-school

mathematical practices.

According to Lave (1988), this discontinuity is

a consequence of the fact that learning in and

learning out of school are different social

practices. School mathematics is, indeed, often

ill-suited to out-of-school practices; in some

cases the problems which arise in out-of-school

mathematics are only apparently similar to

school mathematics problems, but in reality

there is a range of explicit and implicit restric-

tions which makes school methods unsuitable,

and thus other methods are used (Masingila

et al. 1996). Despite the evident discontinuity,

some authors who do value context (situation)

have observed an interplay between school and

out-of-school mathematics: Saxe (1991) found

evidence that school mathematics and the

mathematics of street children’s candy-selling

practice in Brazil influence each other; Magajna

and Monaghan (2003) found evidence that, in

making sense of their practice, CAD-CAM tech-

nicians resorted to a form of school mathematics.

Knowing

There are many constructs associated with

situated cognition: community of practice (CoP),

(legitimate peripheral) participation, boundaries,

reification, and identity. This entry does not have
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space to consider these separately but they are all

tied up with a central theme of knowing.

The verb “knowing” rather than the noun

“knowledge” is the subheading of this section

because situated cognitivists view this thing

(knowledge/knowing) as something which

results from doing (participation) rather than a

passively acquired entity. Rather like the

Gibsons’ affordances, knowing is not an

absolute attribute but a relative product of

animal-environment interaction. The “person”

in these interactions is equally not a laboratory

subject but a whole person with goals and views

of themselves in relation to the CoP in which they

participate (hence the relevance of “identity”);

such views have obvious relevance for mathe-

matics education studies of classroom behaviors

in terms of students’ self-conceptions as “a good

student,” “cool,” etc. But, as Kanes and Lerman

(2007) point out, there are different nuances on

“learning” within the situated cognition camp: a

view that learning is a process that may or may

not result from being a member of a CoP and a

view that learning is subordinate to social

processes, “learning is an integral part of gener-

ative social practice in the lived-in world”

(Lave and Wenger 1991, p. 35).

Situated cognitivists views on knowing

emerged partly in exasperation with dominant

cognitive (non-situated) positions on knowledge:

the effect on cognitive research of “locating” prob-
lems in “knowledge domains” has been to separate
the study of problem solving from analysis of the
situations in which it occurs . . . “knowledge
domain” is a socially constructed exoticum, that
is, it lies at the intersection of the myth of decontex-
tualized understanding and professional/academic
specializations. (Lave 1988, p. 42)

Contrasts between situated and cognitive

views on knowing/knowledge have important

implication for the construct “transfer of knowl-

edge” (or “transfer” for short), which is arguably

the philosopher’s stone of mathematics education

research. To be fair to all, there are few serious

researchers around of any persuasion who do not

regard “transfer” as a highly problematic con-

struct. Nevertheless, “transfer” (under the right

conditions, which usually means “knowledge

required in a new task is basically the same as

knowledge acquired in a previous task”) is

a legitimate object of study for purely cognitive

psychologists. It is a myth to radical expositions

of situated cognition such as Lave (1988). View-

ing transfer as a myth can be quite upsetting for

practical mathematics educators who might well

turn to their academic-situated colleagues and

say “what, then, is the point in teaching?”

Engle (2006), however, presents a situated view

of transfer as “framing” – a means of interpreting

phenomena. Engle (2006) examines a long-term

science learning and teaching sequence with

regard to learner construction of content and

teacher framing of the contexts of learning in

terms of time, “making references to both past

contexts and imagined future ones . . .[to] make it

clear to students that they are not just getting

current tasks done, but are preparing for future

learning” (456), and forms of learner participa-

tion. This view of transfer is far removed from the

(non-situated) cognitivist view of “transfer of

knowledge” and has potential for mathematics

education, e.g., the framing of tool use in mathe-

matics learning to promote intercontexuality.

Research Methodologies

There is no research method specifically

associated with situated cognition although

methods used will be primarily qualitative and,

possibly, mixed methods; it is hard to imagine

how one might research being and knowing in

mathematicized situations using only quantita-

tive methods. Qualitative methods used in “situ-

ated research” hopefully suit the focus of the

research. For example, it was noted above that

Kanes and Lerman (2007) point out different

nuances on “learning” within situated research

and a focus on learning from being a member of

a CoP may call for discourse analysis, and a focus

on learning as an integral part of generative social

practice in the lived-in world may call for

ethnographic approaches.

Implication for Teaching

Situated cognition is an approach to understand-

ing knowing and does not prescribe a teaching

approach. That said, reflection on situated
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cognition can be useful for teachers and teacher

educators to critique their thinking about learning

and teaching, as Winbourne and Watson (1998)

do. They recognize the problems of students’

school mathematical experience en bloc of pro-

viding a site for students to participate in a com-

munity of mathematicians but provide examples

of lessons which could (and could not) be termed

“local communities of (mathematical) practice”

(p. 95), where the teachers “orchestrated” student

participation so that student and teacher engage-

ment with mathematics, rather than simple student

behavioral compliance, was essential for the activ-

ity in the lessons.

Critiques of Situated Cognition

There is no shortage of critiques since situated

cognition has courted controversy since the pub-

lication of Lave (1988). These include “situated

friendly” critiques such as Walkerdine (1997)

which suggests that the regulation of individuals

in discursive practice is not developed in Lave’s

work; attacks on the basic claims of situated

cognition, such as Anderson et al. (1996); and

questioning the existence of claims that a strong

discontinuity exists between school and out-of-

school mathematical practice (Greiffenhagen and

Sharrock 2008).
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Definition

Research on the relationship between social class

and socioeconomic status and achievement in

mathematics.

Overview

In many countries around the world, a correlation

is found between working class or low socioeco-

nomic status (SES) and achievement in

mathematics. Secada (1992) traces recognition

of the connection between social class, race, eth-

nicity, and other characteristics, with achieve-

ment in education to the United States Supreme

Court case of Brown versus Board of Education

in 1954. The major work on achievement in

mathematics and social characteristics was

begun in the mid-to late 1980s and has been

a focus of a growing body of work ever since,

with new theoretical perspectives developing

(Valero and Zevenbergen 2004) and with

new forums for dissemination and publication

(e.g., the Political Dimensions of Mathematics

Education (PDME) conferences of the early

1990s, followed by the conferences of the Math-

ematics Education and Society (MES) group).

Here, the focus will be on social class and

socioeconomic status and achievement in mathe-

matics. Ethnicity and race and gender in

mathematics education are separate entries in

the encyclopedia.

Research in this area will be addressed in the

following sections: statistical evidence, sociopo-

litical analyses, explanatory and analytical frame-

works, and research on action or intervention.

Statistical Evidence

Secada (1992) provides a thorough and structured

analysis of data on achievement in the North

American context. While it is clear that such

analyses must be localized to be of use to

researchers, educators, and policy makers, some

of his concluding remarks are as relevant more

than 20 years on. He argues that too often such

analyses are carried out by researchers who are

not in the mainstream of mathematics education

research and thus do not impact sufficiently on

mathematics education researchers, that social

categories of students are unquestioned, and that

the labelling masks the fact that the populations

with lowest achievement are the poor and ethnic

minorities.

Given the timing of the handbook in which

Secada’s chapter appears, it is to be expected that

he would have high hopes for the reform agenda

in the USA in terms of equity. Lubienski (2000)

found, however, that there is evidence that disad-

vantaged students taught through the reform

pedagogy are still underachieving in national

tests. She draws on sociological theory to explain

why the middle classes succeed whatever reforms

take place, though that work has been challenged

(Boaler 2003) on the basis of a study of forms of

pedagogy that can claim to have been successful

in equity terms. Nevertheless, as a general trend,

such reproduction of advantage and disadvantage

needs explanation; this is addressed below.

Sociopolitical Analyses

Freire’s Marxist approach can perhaps be seen as

the earliest inspiration to researchers in

mathematics education in relation to raising

awareness of the idea that education is never

neutral. His Pedagogy of the Oppressed (1970)

contrasted a banking concept of education,

identified with the oppressor, as against a critical

pedagogy, with the goal of empowerment and

emancipation of the oppressed. His work was

based around several themes that have since

been developed in the field. Freire, taking up the

notion that knowledge is a social construct, raised

the question of whose knowledge is to be valued;

he argued for a constructivist view of learning,

not one of “banking” inert knowledge; and that

teaching is a political process and the teacher

should work dialogically, learning from their stu-

dents what matters to them in their lives.

Research on the everyday mathematics of

indigenous, rural, and oppressed groups

(Knijnik 2000) led to and was inspired by

ethnomathematics (D’Ambrosio 1985), a socio-

political theory which sees academic mathemat-

ics as just one of a range of mathematical systems

used by people. D’Ambrosio (2010) argues that
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we remain unconscious of how academic mathe-

matics, so dominant throughout the world, can be

used for the good of society or for domination by

the powerful of the powerless, the latter being the

most common. Valuing academic, and therefore

school mathematics, above all, marginalizes the

lives and values of dominated groups.

Freire’s constructivist view of learning, with

elements from Vygotskian approaches too in his

insistence on the unity of cognition and affect,

emphasizes his rejection of the banking concept,

in which knowledge does not relate to what mat-

ters to the lives of underprivileged students and is

inert for all students. It particularly disadvantages

the underprivileged. His critical pedagogic posi-

tion has been taken up by many, including the

criticalmathematics group (Frankenstein 1983).

The concatenation of the two words signals the

particular focus of researchers in that group,

emphasizing the development of appropriate

materials that challenge hegemonic views of

the neutrality of mathematical knowledge and

research studies of teaching and learning from

this position. Activists such as Gutstein (2009)

have also found Freire’s work inspiring.

The dialogic view of teaching has been devel-

oped by Skovsmose (1994) in particular. Empha-

sizing democracy, a critique of the way that

traditional/academic mathematics formats

a view of the world, and the potential for equality

that comes with a dialogic learning process,

Skovsmose and his collaborators (e.g., Alrø and

Skovsmose 2002) address the potential power of

learning and teaching that engages with what

matters in children’s lives and with how they

can change the world. Skovsmose’s approach is

often referred to as a critical mathematics

position, with the two words separated.

Differences between the ethnomathematics

and critical mathematics education positions

were discussed by Vithal and Skovsmose

(1997). Taking the case of South Africa as a

context, though emphasizing the international

implications, their detailed analysis of the

potentialities of the two perspectives includes a

concern for the empowerment of students when

an ethnomathematics approach is taken, espe-

cially those disadvantaged by apartheid.

Critiques of the work described here come

from the poststructuralist critique of critical

theory (e.g., Ellsworth 1989; Walshaw 2004)

which argues that empowerment is an

enlightenment, universalist concept with no

foundation other than ideology and from argu-

ments that there is a confusion when attempting

to harness everyday practices for the purposes of

teaching mathematics in school, what Dowling

(2001) calls the myth of emancipation (p. 32).

This latter point is developed in the following

section.

Explanatory and Analytical Frameworks

While the statistical evidence confirms the

correlation between low SES and low achieve-

ment in mathematics, and the sociopolitical

perspectives argue forcefully for change,

researchers need explanatory frameworks for

why the correlation exists. It can be argued

that without such analyses, any changes being

made in pedagogy may come from principles

and values but may not make any fundamental

difference.

The sociological theories of Basil Bernstein

and Pierre Bourdieu in particular, both Marxist

sociologists, have been taken up by researchers in

mathematics education to understand the causes

of the correlation. The ideas of these sociologists

of education have similarities and differences.

From their Marxist origins, they both focus on

consciousness as a product of social relations and

in particular relations to the means of symbolic

production.

Bourdieu (1977) introduced the notions of

habitus, cultural capital, and field. In brief, the

field provides the structuring practices which

convey power and status. At the subjective

level, habitus is the embodiment of culture, pro-

viding the lens through which the world is

interpreted. The habitus of children from the

middle classes may bring with it opportunity for

power if it aligns with the expectations of

the school. Thus, certain forms of culture

endow the “possessor” with cultural capital that

can be exchanged for gains that are valued, such

as success in school mathematics. Zevenbergen

(2001) provides clear description of the analytical
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tools Bourdieu’s framework provides and

uses it to analyze classroom interactions in

a year-long ethnographic study. Gates (2004)

uses Bourdieu’s theories to examine teachers’

beliefs from a sociological rather than cognitive

perspective. In an analysis of mathematics

achievement in the context of reforms and

counterreforms of the curriculum in Victoria,

Australia, Teese (2000) also employs Bourdieu’s

theories.

For Bernstein (e.g., 2000), language is an

indicator of different relations to the means of

symbolic production, children from working-

class backgrounds exhibiting a restricted code

and those from middle-class backgrounds

exhibiting an elaborated code. Given that schools

work in an elaborated code from the first day of

children’s participation in school, the manner

in which schools reproduce advantage and

disadvantage, the differential distribution of

knowledge across social backgrounds becomes

obvious. Key sociological concepts of

those researching who succeeds and who fails in

school mathematics, and why, include the

nature of knowledge discourses, the distinction

between the everyday and the “esoteric,” and its

effect on students (Dowling 1998; Cooper and

Dunne 2000); the official and unofficial fields of

pedagogic knowledge and how they are taken

up and by whom (Morgan et al. 2002); the

distinction between strong grammars, such as

mathematical discourse, and weak grammars,

such as education, set within notions of vertical

and horizontal knowledge structures (Lerman

2010); and how forms of pedagogy can be

modified to improve the achievement of

disadvantaged students (Knipping et al. 2008).

Bernstein also shows how curriculum choices,

the recontextualization of knowledge from one

place, academic mathematics in our case, to

another, school mathematics, is determined by

ideology; what is deemed important for students

to acquire is governed by beliefs and values,

though usually implicitly. Researchers have

taken up the issue of values in addressing how

what currently manifests as mathematics in

schools affects students.

Examining gender effects of forms of assess-

ment in mathematics, Wiliam suggests:

We are led to the conclusion that it is a third source
of difference—the definition of mathematics
employed in the construction of the test—that is
the most important determinant of the size (and
even the direction) of any sex differences. (Wiliam
2003, p. 194)

As Lawler says, in a reexamination of one of

the earliest texts addressing disadvantage in

mathematics (Reyes and Stanic 1988):

Mathematics education does not work to realize the
living of the child, but to enact in the child partic-
ular, culturally-defined, ways of operating and
interacting that are deemed to be mathematical.
We treat the content of mathematics as stable
structures of conventional ideas, “inert, unchang-
ing, and unambiguous ‘things’ that children learn”
(Popkewitz 2004, p. 18). And although these things
appear to make the learner more of an active
participant by expanding the child’s role in solving
problems and applying their own thinking, we
simultaneously make them less active in defining
the possibilities and boundaries for their engage-
ment. (Lawler 2005, p. 33)

Lawler argues that changes over some decades

have not made a difference to who succeeds and

who fails. Perhaps, the challenge not addressed so

far, informed by postmodern thinking, concerns

the mathematical content, not only in thinking

about what to teach but why, whether mathemat-

ics should be taught to everyone, and why the

field is so implicated in maintaining the high

status of a mathematical qualification.

Research on Action or Intervention

The literature on interventions and radical action is

very broad and, for the most part, does not distin-

guish between the various social characteristics of

disadvantaged groups, race, gender, social class,

disability, or others. Examples can be found in the

literature mentioned above, such as that of the crit-

ical mathematics group, the literature of the

ethnomathematics group, or the proceedings of the

Mathematics Education and Society conferences.

Concluding Remarks

Localization of statistical evidence has been

mentioned above but could be seen to be vital
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in all aspects of the issue of social class and

socioeconomic status in mathematics education.

Who is disadvantaged, what the causes might be,

what status mathematics has, whether mathemat-

ics for all is part of the values, and what kinds of

interventions might be effective are all informed

by the theoretical and empirical studies described

here but are different across the world. The

research field lacks such analyses from many

parts of the world, and the complicity of main-

stream researchers in the status of mathematics in

society may be the cause of the major focus being

on other aspects of teaching and learning.

Cross-References

▶Cultural Diversity in Mathematics Education

▶Equity and Access in Mathematics Education

▶ Indigenous Students in Mathematics

Education

▶ Sociological Approaches in Mathematics

Education
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Topic and History

Sociological approaches in mathematics

education are those where sociological theory

guides and directs research. In research on math-

ematics education, they have a rather short

history. They are offering vigorous and fresh

perspectives, and they have received increasing

attention during the last 25 years. By using

methods of empirical investigation and critical

analysis, they engage with the complex relation-

ships between individuals, groups, knowledge,

discourse, and social practice, aiming at

a theoretical understanding of social processes

in mathematics education. These relationships

are often conceived as tensions between the

micro level of individual agency and interaction

and the macro level of the social structure of

society. The institutions of mathematics

education and their functioning, often in terms

of social reproduction, are of crucial concern.

Sociological approaches in mathematics

education refer to a field of study and a body of

knowledge that are not defined by clear-cut

boundaries. They use, recontextualize, and refine

concepts and methods from the various branches

of sociology and their neighboring disciplines.

Naturally, sociology of education serves as

the most convenient reservoir of reference for

the sociological study of mathematics education

(e.g., Bernstein, Bourdieu). However, studies

from interpretive (interactionist (e.g., Mead)

and ethnomethodological (e.g., Garfinkel)),

phenomenological (e.g., Berger and Luckmann),

critical (e.g., Adorno), structuralist (e.g.,

Althusser), poststructuralist (e.g., Foucault) and

psychoanalytical (e.g., Lacan), political (e.g.,

Apple), feminist (e.g., Walkerdine), social

semiotics (e.g., Halliday), and discourse

analytical (e.g., Fairclough) perspectives have

substantially contributed to our sociological

understanding of mathematics education.

While only a few sociological studies of

mathematics education had been published

before the mid-1980s, a Fifth Day Special

Program titled Mathematics, Education, and

Society (Keitel et al. 1989) of the 6th Interna-

tional Congress on Mathematical Education

(ICME-6) in 1988 achieved a breakthrough,

quantitatively and in terms of its recognition, of

research on society and institutionalized mathe-

matics education, conceived as the political
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dimensions of mathematics education. This was

the start of a series of international conferences,

initially called Political Dimensions of Mathe-

matics Education (PDME), then Mathematics

Education and Society (MES), which served,

and continues to serve, as the major forum for

presenting and discussing research based on

sociological approaches in mathematics educa-

tion (Matos et al. 2008; Gellert et al. 2010).

Issues of Research

Sociological approaches contribute in a particular

way to what Lerman (2000) has called the “social

turn in mathematics education research.” While

much research included in this “social turn” aims

at conceiving mathematical learning as more

social in character and as a result of action and

interaction, sociological approaches in mathe-

matics education investigate how mathematical

knowledge is produced, distributed, recontex-

tualized, reproduced, and evaluated by

institutional practices. They particularly focus

on how these practices shape identities and

(re-)produce social stratifications. Another con-

cern is the relationships between different con-

texts in which mathematical knowledge is

transmitted, acquired, and assessed. As Ensor

and Galant (2005) claim, many sociological

studies of mathematics education are, at least

implicitly, interested in the pedagogic forms

and the mathematical knowledge supportive for

social justice or try to state more precisely the

pathologies that impede such a development.

Equity and access are issues that motivate some

sociological research in mathematics education.

Jablonka (2009) holds that a prevalent ingredient

of sociological approaches is critique, aiming at

uncovering ideologies, making the invisible

mechanisms of social functioning visible, thus

making the unconscious conscious. Sociological

approaches to research in mathematics education

usually draw on qualitative research methods –

exceptions prove the rule – which is much in

accord with the skepticism of the “new sociology

of education” of the 1970s in respect of a political

arithmetic tradition.

While most of the presentations of sociologi-

cal research at ICME-6 still had been of

descriptive character and not systematically and

explicitly based on sociological theories, they

successfully kicked off substantial advances in

the theoretical foundation of sociological

approaches in mathematics education. Dowling’s

(1998) analysis of mathematical myths and ped-

agogic texts marks a milestone in the subsequent

development of sociological theorizing in

mathematics education. It examines and coordi-

nates a wide range of theoretical positions,

constructing a systematic and theoretically rooted

language of description for analyzing mathemat-

ics textbooks sociologically. By providing math-

ematical activities that establish positions and

messages differentially, mathematics textbooks

construct a hierarchy of student voices through

the distribution of the “myth of participation”

(mathematics is a reservoir of use-values)

and the “myth of reference” (mathematics offers

a gaze on something other than itself). Mathemat-

ical texts for high-achieving students use

abstraction and strategies of expansion to consis-

tently foreground generalized academic mathe-

matical messages. In contrast, texts for

low-achieving students use localizing strategies

to identify the students’ voice with a public

domain setting which is insulated from abstract

mathematics. The curriculum mirrors the divi-

sion of intellectual and manual labor, of class

distinctions, and of code orientations. However,

the ideological roots of mathematics curricula are

far more hidden than overt and Dowling (1998)

can be credited for contributing to their exposure.

For many researchers, it provided an inspiring

interpretation of the late work of the British soci-

ologist of education Basil Bernstein (2000). In

fact, Bernstein (2000) seems to have become the

most common reference in studies of mathemat-

ics education that take sociological approaches. It

provides an ample theoretical framework with

strong internal coherence and explicit organizing

principles – what Bernstein calls a strong

grammar – that systematically links social struc-

ture with human agency, in particular for the

context of pedagogic discourse. The widespread

use of the concepts of the pedagogic device,
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classification and framing values, recognition

and realization rules, horizontal and vertical dis-

course, and recontextualizing fields indicates

a common focus and a coherent growing of

sociological research in mathematics education.

Studies of mathematics curriculum, of assess-

ment of mathematical knowledge, of ability

grouping, of pedagogic identities, and of class-

room instruction practices, which will be

exemplified in the next passage, are all central

themes in sociological research in mathematics

education. Most of the research examples link

these central themes to each other.

Mathematics curricula can be usefully

described and compared in terms of the strength

of the boundaries established between everyday

knowledge and academic mathematical knowl-

edge, as well as between the areas that constitute

the school subjects. Mathematics curricula for

primary and for lower level secondary schools

usually intend to connect school mathematical

knowledge to the local and particular of everyday

knowledge. This aim is reflected in the high pro-

portion of word problems contained in the curric-

ulum materials for the early grades. Gellert and

Jablonka (2009) discuss how students face

substantial intricacies of producing legitimate

text in the classroom, if and because the recontex-

tualization principle of the curriculum is gener-

ally not made sufficiently explicit in classroom

practices. Cooper and Dunne (2000) investigate

how students with different socioeconomic class

backgrounds react to word and context problems.

They analyzed large sets of data from the Key

Stage 2 Tests for 10–11-year-old students in

England. The study documents that students of

families where the parents do manual work have

significantly lower achievement when mathemat-

ics is interwoven with context. Cooper and

Dunne find that these students tend to misinter-

pret the problems and to solve them with their

everyday knowledge, which means that their

mathematical competence is systematically

underestimated in the tests. Wiliam et al. (2004)

argue that for becoming successful in school

mathematics, students need to develop a particu-

lar identity, in fact that of a young mathematics

scholar, and that any other position towards

mathematics, for instance, a more critical view

of the nature of mathematics, is strictly discour-

aged by apparently neutral assessment practices

that maximize differences between individuals

and thus construct disparities in mathematics

achievement. Ability grouping (streaming,

setting, etc.) reinforces exclusion from the sub-

ject by constructing different mathematical hab-

itus for different groups of learners (Zevenbergen

2005). Morgan et al. (2002) report that teachers’

expectations and their subject position in the edu-

cation discourse are heavily influential on their

assessment practices. Consequently, teachers

who teach in schools located in different social

contexts emphasize different local assessment

criteria, thus providing differential orientation

towards mathematical knowledge, resulting

in an unequal “preparation” of students for

standardized mathematics achievement tests. In

contexts of severe social discrimination and infe-

riority, what is transmitted and to be acquired is

often emptied of any mathematical content. The

tasks to be executed by students reflect a very

weak classification between everyday and school

knowledge, and consequently, the evaluative

criteria appear to be weak or absent. It appears

as a perverted form of recontextualization, when

in socially discriminated contexts, the specialized

knowledge of mathematics is subordinated to

everyday knowledge and practices.

Sociological approaches to research on

instructional practices have highlighted that

reform agendas often overlook the different

code orientations of groups of students. Lubienski

(2000) argues that some instructional strategies

that are highly valued in current mathematics

education reforms disadvantage students who

are characterized as of low socioeconomic status.

She demonstrates how socioeconomically

advantaged students tend to profit from intensive

guided discussions in the classroom while more

socioeconomically disadvantaged students

become rather confused by conflicting mathemat-

ical ideas, suggesting that some characteristics of

discussion-intensive mathematics classrooms

might be more aligned with middle-class codes.
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Apparently, the linguistic habitus of socioeco-

nomically advantaged students work as cultural

capital as in school – at least at the discursive

level – the discursive practices are close to prac-

tices that are common in middle-class families.

A similar effect has been observed by Brown

(2000) who investigates parental participation in

school mathematics. He reports that middle-class

parents, whenworking togetherwith their children

on mathematics tasks, tend to emphasize the con-

text-independent and general aspects of the tasks,

while working-class parents focus strictly on the

local and context-bound. Working-class children

profit less than their middle-class peers from

parental involvement in school mathematics.

Inside the mathematics classroom, various

instructional mechanisms produce a stratification

of achievement and success in mathematics that

is not strictly based on the mathematical compe-

tence of the students. These mechanisms draw on

students’ unequal competences in recognizing

the rules and reading the code of mathematics

instruction. For instance, instructional strategies

of embedding mathematics in mundane context

and leaving implicit the relevance of that context

in terms of the criteria for producing legitimate

text separate the students along their code

orientation. Teachers often show a well-

distinguishable ability to maintain two different

discourses at the same time, engaging some stu-

dents in analytical mathematical arguments and

others in substantial everyday reasoning.

This observation is sociologically relevant since

on the long run, the mathematical argument is

institutionally more highly valued. Sociological

approaches emphasize that the diversity, or

heterogeneity, of groups of students is less

a topic of concern than their positioning in

hierarchies of social status.

Finally, research and reflection that explicitly

call for more attention to sociopolitical dimen-

sions are of fundamental importance for the

sociological study of mathematics education.

Here, the concept of power and its social, politi-

cal, and educational ramifications is fundamental.

Skovsmose (1994) introduces the notion of the

formatting power of mathematics to indicate that

mathematics colonizes large parts of reality and

rearranges it. The transmission and acquisition of

mathematical knowledge appear of direct social

importance when concepts of critique, democ-

racy, and M€undigkeit are brought together. For

Valero (2009), power in mathematics education

can be conceived in terms of the structural imbal-

ance of knowledge control and of distributed

positioning. The former view, which reflects

a conflict theoretical stance, points to a constant

struggle between structurally excluded and struc-

turally included groups, in which the powerful

tends to win and to succeed in cushioning the

resistance on the side of the excluded. The latter

view takes power as a relational capacity of social

actors to draw on resources for self-positioning in

situations. This definition does not only facilitate

analyses of how mathematics and mathematics

education is used in discourses affecting people’s

lives but also opens for a self-reflective perspec-

tive on how research in mathematics education is

entangled in the distribution of power. Vithal

(2003) investigates the role and potential power

of mathematics education in postapartheid South

Africa. By coining five pairs of concepts that

work antagonistically and yet in cooperation

with each other – freedom/structure, democracy/

authority, context/mathematics, equity/differen-

tiation, and, pulling these four together, potenti-

ality/actuality – the fundament for a pedagogy of

conflict and dialogue is laid out. Conceiving actu-

ality as intrinsically conflicting, dialogue of var-

ious forms and at many levels is suggested to

inspire and develop potentiality. Gates and

Vistro-Yu (2003), taking on the distributions of

mathematical knowledge and revisiting the pro-

gram ofMathematics for All, describe mathemat-

ics as a gatekeeper to social progress and as a

filtering device. They argue for a strong role of

the mathematics education community to avoid

and counteract the marginalization of some social

groups. Gender, socioeconomic class, and ethnic-

ity are discussed as examples of marginalized

voices (and at the other side of the coin, there

are dominant voices); in mathematics classrooms

characterized by multiple discriminations, con-

tradictions, and clashes in pedagogical practice,
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the marginalization tends to be reproduced and

exacerbated. In essence (Skovsmose and Greer

2012), research on the sociopolitical dimensions

of mathematics education, characterized by

awareness of the inherently political nature of

mathematics education and by acceptance of

social responsibility, is based on, and continually

develops, the critical agency of mathematics edu-

cation researchers.
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Definition

Sociomathematical norms are the normative

criteria by which students within classroom com-

munities create and justify their mathematical

work. Examples include negotiating the criteria

for what counts as a different, efficient, or sophis-

ticated mathematical solution and the criteria for

what counts as an acceptable mathematical

explanation.

Characteristics

Social Norms

Social norms refer to the expectations that the

teacher and students have for one another during

academic discussions. Social norms are present

in any classroom, including science and, English,

for example. However, the social norms that are

established within a student-centered classroom

look very different from those in a traditional

environment. Yackel and Cobb (1996) have

documented at least four social norms that sup-

port student-centered instruction: Students are

expected to (1) explain and justify their solutions

and methods, (2) attempt to make sense of others’

explanations, (3) indicate agreement or disagree-

ment, and (4) ask clarifying questions when the

need arises. The social norms for more traditional

mathematics classes that are teacher-centered

might involve expectations that the teacher

explain one or more solution processes and that

the students attempt to understand and repeat her

reasoning on other problems. Social norms

involve participants’ expectations of each other

during discussions and can be found in

classrooms in any domain. For example,

a student-centered science or literacy classroom

might have similar social norms above such as

explaining and justifying and understanding

students’ explanations.

Sociomathematical Norms

While social norms focus on normative aspects

of participation in any academic area,

sociomathematical norms, on the other hand, are

norms that are specific to mathematical activity.

Similar to social norms, they can be found in any

mathematics classroom, but they would look

different depending on the goals and philosophy

of instruction. They involve the teacher and

students negotiating the criteria for what counts

as an acceptable mathematical explanation, a

different solution, an efficient solution, and a

sophisticated solution in their classroom. For

example, a social norm for a student-centered

classroom might be that students are expected to

explain their thinking, but what counts as an

acceptable mathematical explanation must be

determined among the teacher and students. For

example, Stephan and Whitenack (2003) found

that the criteria for what counts as an acceptable

mathematical explanation in one first-grade class

involved stating not only the procedures for

finding an answer but also the reasons for the

calculations as well as what these calculations

and their results mean in terms of the problem.

The criterion necessarily changes over time as the

students and teachers give and take during their

discussions. For instance, at the beginning of the

year when a first-grade teacher asked her students

to solve the problem, Lena has 11 hearts, Dick

has 2 hearts, how many more hearts does Lena

have than Dick, some students gave the answer 9

while others said 11. Students felt obliged to

explain their thinking (social norm), but their

discussion simply focused on their calculations,

e.g., “I counted up 9 more to get to 11.” Students

who thought the answer was 11 argued that Lena
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has 11 more than Dick so the answer is 11. Since

students’ explanations only drew on their calcu-

lations, the teacher attempted to initiate

a discussion about why someone might count up

to get the answer. Because the criterion for what

counts as acceptable explanation in math class

involved sharing their calculations, students did

not know how to explain why they counted up.

The teacher drew circles on the board to support

students as they tried to explain why counting up

was legitimate (Fig. 1).

A student came to the board, drew a vertical

line after the second “heart,” and counted by ones

up from Dick’s two hearts to “make them have

the same amount.” In this way, the teacher,

through the use of diagrams, helped the students

begin to learn that an acceptable explanation

must involve their reasons for their procedures.

The criterion for what counts as an acceptable

mathematical explanation might be different

depending on the teaching approach used.

For example, in more traditional classrooms,

what counts as an acceptable mathematical expla-

nation might involve describing only the calcula-

tions that one used in their procedure. In the Lena

and Dick problem above, a traditional setting

might find the following explanation acceptable,

“I counted up two more from 9 on my fingers,”

without any reference to why that method has

meaning and leads to a correct answer.

Origin of the Term

The term sociomathematical norms was first

coined by Cobb and Yackel (1996) as they built

a framework for analyzing student-centered, or

what they called, inquiry-based classrooms. They

drew on the emergent perspective, a theory

that says learning occurs both cognitively

as well as in social interaction. Using the emer-

gent perspective, they created the following

framework to help themselves and others

interpret how the teacher and students are

interacting and learning in a classroom:

Social Individual

Classroom social norms Beliefs about own role, others’
roles, and the general nature of
mathematical activity in school

Sociomathematical
norms

Mathematical beliefs and
values

Classroom
mathematical practices

Mathematical conceptions

As the framework shows, an individual

forms his beliefs about his role in the class, his

mathematical beliefs, and his mathematical

learning as he participates in and contributes to

the social and sociomathematical norms and

classroom mathematical practices of his

classroom community. Cobb and Yackel (1996)

stress that learning is both an individual and

social process with neither taking primacy over

the other.

Growth of the Concept

Many mathematics education researchers have

acknowledged the importance of paying close

attention to the establishment of certain

sociomathematical norms in a variety of

classroom settings. In fact, some argue that while

inquiry social norms are mandatory for creating

student-centered mathematics classrooms, they

are insufficient for supporting mathematical

growth (Pang 2001). Pang found that teachers,

who established both strong social and

sociomathematical norms for inquiry instruction,

saw more mathematical growth in their students

than those who had only established strong inquiry

social norms.Given that sociomathematical norms

focus more on the quality of the mathematical

contributions in class, Pang’s finding makes sense.

Mathematics education researchers have

extended Yackel and Cobb’s sociomathematical

norms research by analyzing the development of

these norms at the elementary (Pang 2001;

Stephan and Whitenack 2003; Levenson et al.

2006), middle (Akyuz 2012), high (Kaldrimidou

et al. 2008), and college level (Rasmussen et al.

2003). Findings indicate that negotiating the

criterion for what counts as different, efficient,

Lena

Dick

Sociomathematical Norms in Mathematics

Education, Fig. 1

S 564 Sociomathematical Norms in Mathematics Education



sophisticated, and an acceptable explanation in

inquiry settings are an important focus of the

teachers’ practice.

At the elementary level, Levenson et al.

(2006) extended the work on what counts as an

acceptable explanation when they found that one

teacher’s criterion for what counts as acceptable

involved practically based explanations (those

ground in realistic contexts), even though she

knows that some of her students are capable of

giving more mathematically based explanations

(those that are devoid of pictures and are more

abstract). Additionally, Pang found that teachers

are excellent at establishing social norms that are

consistent with inquiry-based instruction, but not

as much with sociomathematical norms. This is

a concern since Pang argues that mathematical

discussions arise out of sociomathematical

norms, not social norms. Therefore, teachers

must reconceptualize mathematics in their

classrooms going beyond just expecting students

to explain. Stephan and Whitenack (2003)

identified a fifth sociomathematical norm, the

criteria for what counts as an adequate

mathematical diagram.

Of the research conducted at the middle and

high school levels, most focus on documenting

the sociomathematical norms that are established

in higher level mathematics. Kaldrimidou et al.

(2008) found that the criteria for what counts as

an acceptable mathematical explanation was very

procedural in a high school mathematics class

they observed while Akyuz (2012) found that it

was more conceptual (or meaning based) in one

middle school class founded on inquiry-based

instruction. Hershkowitz and Schwarz (1999)

documented two new sociomathematical norms

as they studied students who used a computer

program to aid in their instruction. These two

norms involved the criteria for what counts as

mathematical evidence and what counts

as a good hypothesis.

Keen attention to sociomathematical norms is

even important within college level mathematics

classrooms. Rasmussen et al. (2003) elaborate the

criteria for what counts as a different, elegant,

and efficient solution as well as acceptable expla-

nation in an inquiry-based differential equations

class. They also argue that the criteria for what

counts as acceptable should often involve more

than the procedures for solving the problem.

Other researchers have attempted to teach

sociomathematical norm development in their

professional development workshops (Shriki

and Lavy 2005) as well as with preservice teacher

instruction (Dixon et al. 2009). Some articles

detail the role of the teacher in establishing

these norms (McClain 2005). Additionally,

sociomathematical norms have gained attention

in other research fields as well with Johnson

(2000) coining the term “sociophysics norms”

to refer to the criteria for what counts

as inquiry-based physics discourse.

Common Issues

The research based upon sociomathematical

norms is growing both within the field of

mathematics education as well as other

disciplines. When an idea like this takes root

and begins to grow, oftentimes, it can change

from its original meaning. The most common

way sociomathematical norms are misinterpreted

in the literature today involves losing the fact that

they deal with the criterion for what counts as

good mathematical discourse. The fact that stu-

dents are expected to give different ideas in class

can be cast as a social norm, but the criterion for

what counts as different is negotiated within

the realm of mathematics. It is the role of the

teacher to lead the negotiation of these criteria

and, therefore, the criterion for what counts as an

acceptable mathematical explanation depends

upon the teacher’s own criterion, often influenced

by the mathematics community.

Other research sometimes conflates

sociomathematical norms with students’ beliefs.

For example, the fact that Marcos always gives

procedural explanations and believes that

math involves calculating answers is not a

sociomathematical norm. Rather, that is his belief

about what mathematics is (the individual side of

Cobb and Yackel’s framework).

In summary, sociomathematical norms refer

to the criteria by which solutions are determined

as different, efficient, and sophisticated and

explanations are deemed mathematical
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acceptable in a classroom. The teacher and her

students create these criteria together as they

solve problems and engage is discourse with

one another. Sociomathematical norms are pre-

sent in any mathematics classroom; however, the

criteria for what counts as mathematical solutions

and explanations would probably look different

from classroom to classroom, depending on how

teacher- or student-centered the instruction is.

Sociomathematical norms are different from

social norms in that the former are specific to

mathematics talk. Additionally, social norms

are easier for teachers to establish in their

classrooms, but mathematics grows out of

sociomathematical norms, making it extremely

important for teachers to make them a clear

focus of their teaching practice. This is one area

that deserves more attention and research.
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Definition

An approach to mathematics education and

research on teaching and learning mathematics

(i.e., didactics of mathematics), which concen-

trates on the mathematical contents of the subject

matter to be taught, attempting to be as close as

possible to disciplinary mathematics. A major

aim is to make mathematics accessible and

understandable to the learner.

History

Stoffdidaktik or “subject matter didactics”

(translation suggested by the entry author) has

been a prominent approach to mathematics

education and research into teaching and learning

mathematics (i.e., didactics of mathematics) in

German-speaking countries (e.g., Austria,

Germany, and parts of Switzerland). It grew out

of one of the two main strands of German-

speaking didactics of mathematics in the first

half of the twentieth century, namely, university

studies that focused on the teaching of mathemat-

ics in “gymnasium,” the most demanding type

of school at that time in Germany. This

strand was different from the strand that focused

on teacher training for primary and the

majority of lower secondary schools. With pro-

fessors of mathematics at university interested in

mathematics education (like Felix Klein and

Heinrich Behnke), it had authors basically

coming from university institutions and teachers

of gymnasium, who published in well-established

journals mainly read by mathematics

teachers of gymnasium (like “Zeitschrift f€ur den

mathematischen und naturwissenschaftlichen

Unterricht ZMNU,” later “MNU” or

“Unterrichtsbl€atter f€ur Mathematik und

Naturwissenschaften UMN”). With the widening

of research approaches in didactics of mathemat-

ics during the second half of the twentieth

century, Stoffdidaktik somehow widened its

perspective to the teaching of mathematics in all

types of schools, but lost its position as one of two

major approaches in German-speaking didactics

of mathematics. The title of Reichel’s (1995)

plenary talk at a conference of German-speaking

didacticians is quite revealing: “Is there a future

for subject specific didactics?” (for detailed

description of this development cf. Steinbring

2011, pp 44–46). Nowadays, Stoffdidaktik is

mainly published in journals aiming at practicing

teachers of all levels of schooling in German-

speaking countries (in journals such as “Der

Mathematikunterricht MU”; URL: http://www.

friedrich-verlag.de/go/Sekundarstufe/Mathematik/

Zeitschriften/Der+Mathematikunterricht).

Characteristics

According to Steinbring (2011, p. 45),

Stoffdidaktik is characterized by the assumption

that mathematical knowledge – researched and

developed in the academic discipline – is essen-

tially unchanged and absolute. “. .. it specifically

proceeds to prepare the pre-given mathematical

disciplinary knowledge for instruction as

a mathematical content, to elementarise it and

to arrange it methodically.” As protagonist of

subject matter didactics, Griesel (1974, p. 118)

has identified the following features of “didacti-

cally oriented content analysis” as he prefers to

name the approach: “The research methods of

this area are identical to those of mathematics,

so that outsiders have sometimes gained the

impression that, here, mathematics (particularly

elementary mathematics) and not mathematics

education is being conducted.” In terms of

research methodology, this is a very clear and

somehow very restricted preference, which – at

least in terms of research methods – makes it

difficult to distinguish Stoffdidaktik from

mathematics.

Furthermore, Griesel continues: “The goal of

‘didactically oriented content analysis’ which

essentially follows mathematical methods is to

give a better foundation for the formulation of

content-related learning goals and for the

development, definition and use of a differentiated

methodical set of instruments” (Griesel, 1974,

p. 118, both translations by Heinz Steinbring

2011, p. 45). The practice of “content-oriented

analysis” up to the 1960s suggests that implicitly
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Stoffdidaktik starts from the assumption that after

a decent mathematical analysis, one will find one

and only one best way to teach a certain content

matter, which then should be incorporated

into mathematics textbooks (for a critical

description of this feature of Stoffdidaktik see

Jahnke 1998, p. 68).

In the preface of a book series, which Griesel

himself identifies as a prototypical example of

Stoffdidaktik, Griesel (1971, p. 7) identifies six

areas, which are important for the progress of

didactics of mathematics. The first two are of

utmost importance, especially the first one:

research into the content, the methods, and the

application of mathematics; and didactical ideas

and insights, “which make it possible to attend

better, or at all, to a subject area within instruc-

tion.” For him, the first area was most successful

at that time. The other four influential factors

are general experience, statistically based

evidence about instruction, insights into the

mathematical learning process, and the develop-

ment-psychological and sociological conditions

(translations from Steinbring 2011, p. 45). With

these statements, Griesel identified some limita-

tions of “content-oriented analysis” using math-

ematical methods. He even went as far as calling

them meaningless if the necessary follow-up

empirical investigations show that the results of

Stoffdidaktik are meaningless for the learning

process of mathematics.

From an international perspective, the

approach closest to Stoffdidaktik is the French

approach of “ingenierie didactique” – didactical

engineering – especially its “a priori analysis”

part. Stoffdidaktik shares with didactical engi-

neering a focus on disciplinary mathematics, its

history, and its epistemology. Especially for the

“a priori” part, didactical engineering as well as

Stoffdidaktik in its entirety heavily depend on a

detailed analysis of the content, history, and epis-

temology of the mathematical content matter

under analysis. If taken as a preparation to a

teaching experiment, the a priori part of

didactical engineering tends to enact the very

same activities and methods, as Stoffdidaktik

would apply. A difference between these two

approaches appears when the actual practice is

taken into consideration: From the very begin-

ning, didactical engineering is also interested in

the teacher and learner of the subject matter

under consideration, their preknowledge before

a teaching (experiment), and the consequences

after a teaching experiment. Traditional

Stoffdidaktik was not interested in the human

side of the teaching-learning process nor did it

traditionally look into the consequences of a

certain setup of the teaching-learning process

(for a detailed comparison, see Str€aßer 1996).

The reason for the relative negligence of these

aspects may be the idea of the one and only best

way to teach a certain subject matter, which

allows to forget about alternatives.

The notion of “pedagogical content

knowledge” (“PCK”), which was introduced

into the debate on the professional knowledge of

teachers by Shulman (1987), is also close to

Stoffdidaktik. With PCK as “understanding of

how particular topics, problems, or issues are

organized, represented, and adapted to the

diverse interests and abilities of learners, and

presented for instruction” (Shulman, 1987, p. 8),

PCK shares a close link to subject matter knowl-

edge with Stoffdidaktik. In contrast,

Stoffdidaktik tends to be more authoritarian,

looking for the best one and only mathematical

solution, but cares less for the personal aspects of

the teaching and learning process – with

Shulman’s concept of “content knowledge”

confirming the importance of disciplinary

mathematics for the teaching and learning of the

subject.

Some Examples

A rather comprehensive exemplar of

Stoffdidaktik is the book entitled “Mathematik

wirklich verstehen” (“Really understanding

mathematics”) by Kirsch (1987), which covers a

major part of lower secondary mathematics (espe-

cially numbers and functions with a foundation in

set theory). In some sense, the title marks an impor-

tant difference: While mathematics tends to prove

a statement, Stoffdidaktik aims at understanding

the statement. Vollrath (1974/2006) can be taken
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as the complement on equations and elementary

(school) algebra. Holland (1996/2007) covers

geometry in lower secondary mathematics teach-

ing. Danckwerts and Vogel (2006) with a book on

teaching calculus entitled “Analysis verst€andlich

unterrichten” (How to teach calculus understand-

ably) confirm the effort of Stoffdidaktik to teach

mathematics in an accessible, understandable

manner.

The internationally best known example of

Stoffdidaktik is a plenary by Kirsch at the

ICME congress in Karlsruhe (Kirsch, 1977)

entitled “Aspects of Simplification in Mathemat-

ics Teaching.” The title mirrors the utmost

importance of disciplinary mathematics, which

Stoffdidaktik prepares for teaching this subject.

In order to makemathematics accessible in teach-

ing, Kirsch suggests four activities:

• Concentration on the mathematical heart of

the matter

• Including the “surroundings” of mathematics

• Recognizing and activating preexisting

knowledge

• Changing the mode of representation

which are often summarized under the concept

“elementarization” – with a long tradition in

Germany (see the famous series of books by

Felix Klein Mathematics from an Advanced

Standpoint – original title: Elementarmathematik

vom höheren Standpunkt aus).

For Reichel (1995), “the so-called

Stoffdidaktik was the most important part” of

German didactics of Mathematics. In his “per-

haps amplified understanding of that term,” he

adds a list of 15 research areas to traditional

Stoffdidaktik. Besides other areas mentioned,

Stoffdidaktik should play a major role when ana-

lyzing the image of mathematics, in assessment

questions, in research on using computers, and on

language and (teaching) mathematics – to cite but

a few from Reichel’s list. This already shows that

Reichel has a concept of Stoffdidaktik which

clearly goes further than the traditional

epistemology of school mathematics, content

analysis, elementarization, and teaching methods

with Stoffdidaktik as a major part of research

work in didactics of mathematics.

Recent Development

Reichel’s (1995) text indicates a developmentwith

Stoffdidaktik in the German-speaking didactics of

mathematics: In the last quarter of the twentieth

century, Stoffdidaktik has lost its importance as

one of the most important and widespread research

approaches in the German-speaking community.

Young researchers widened the narrow perspective

of traditional Stoffdidaktik by taking into account

more aspects than disciplinary mathematics, its

history, and epistemology. In this respect, a major

movewas the suggestion of taking into account the

beliefs, ideas, and knowledge of the learner of

mathematics. Vom Hofe (1995) was the most

prominent advocate of this opening up of

Stoffdidaktik to the learner by suggesting to care

for the “Grundvorstellungen” (i.e., basic beliefs

and ideas) of the learner to link mathematics, the

individual (especially: learner), and reality.

Grundvorstellungen are seen as a way to

better understand sense making of an individual,

ways of representation that an individual develops,

and her/his way of using ideas and concepts

with respect to reality. In doing so, the concept of

Grundvorstellungen is not only meant

as a normative idea to inform curriculum

construction but also as a way to describe

the strategies and mindsets of a (potential or

actual) learner. Four concepts structure this

approach to didactics of mathematics, namely, the

individual, the context, the Grundvorstellung, and

mathematics.
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Tempsky, Wien, pp 369–376

Vollrath H-J (1974) Didaktik der Algebra. Stuttgart, Klett

(later editions in 1994, 1999, 2003; from 2006 with

H-G Weigand as co-author)

vom Hofe R (1995) Grundvorstellungen mathematischer

Inhalte. Spektrum, Heidelberg/Berlin/Oxford

Structure of the Observed Learning
Outcome (SOLO) Model

John Pegg

Education, University of New England,

Armidale, NSW, Australia

Keywords

Cognitive development; neo –Piagetian model;

Nature of learning; Assessment framework

Definition

Biggs and Collis (1982) described the Structure

of the Observed Learning Outcome (SOLO)

Model (commonly referred to as the SOLO

Taxonomy) as a generalmodel of intellectual devel-

opment. SOLO had its origins in the stage develop-

ment ideas of Piaget and the information processing

concepts of the 1970s. It can be considered within

the broad research framework referred to as neo-

Piagetian. As such, SOLO has much in common

with the writings of Case (1992), Halford (1993),

and Fischer and Knight (1990) to name a few.

Characteristics

Central to SOLO is the view that there are

“natural” stages in the growth of learning any com-

plexmaterial or skill. Also, these stages “are similar

to, but not identical with, the developmental stages

in thinking described by Piaget and his co-workers”

(Biggs and Collis 1982, p. 15).

The SOLO Model has its roots in the analysis

of responses to questions posed in a variety of

subject/topic areas. The focus of analysis was on

specifying “how well” something was learned, as

a balance to the more traditional approach of

“how much” has been learned. The insight of

Biggs and Collis was that the structural organiza-

tion of knowledge was the issue that discrimi-

nated well-learned from poorly learned material.

For SOLO, learners actively construct their

understandings by building upon earlier
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experiences and understandings. In doing this,

learners pass through sequential qualitatively dif-

ferent “stages” that represent a coherent view of

their world. This development is a result of pro-

cesses of interaction between the learner and his

or her social and physical environment.

Hence, understanding is viewed as an individ-

ual characteristic that is both content and context

specific (Biggs and Collis 1991). SOLO emerges

as a means of describing the underlying structure

of an individual’s performance at a specific

time that is determined purely from a response.

Describing the structure of a response is seen

as a phenomenon in its own right, without neces-

sarily representing a particular stage of intellec-

tual development of the learner (Biggs and

Collis 1982).

The progressive structural complexity in

responses, i.e., cognitive development, is

described in two ways. First is based upon the

nature or abstractness of the task/response and is

referred to as the mode. The second is based on

a person’s ability to handle, with increased

sophistication, relevant cues within a mode and

is referred to as the level of response.

SOLO Modes

SOLO postulates that all learning occurs in one of

five modes of functioning, and these are referred

to as Sensorimotor, Ikonic, Concrete Symbolic,

Formal, and Post-formal. The five modes of

thinking are described (briefly) below.

Sensorimotor (soon
after birth)

A person reacts to the physical
environment. For the very young
child, it is the mode in which
motor skills are acquired. These
play an important part in later
life as skills associated with
various sports evolve

Ikonic (from 2 years) A person internalizes actions in
the form of images. It is in this
mode that the young child
develops words and images that
can stand for objects and events.
For the adult this mode of
functioning assists in the
appreciation of art and music
and leads to a form of knowledge
referred to as intuitive

(continued)

Concrete Symbolic
(from 6 or 7 years)

A person thinks through use of a
symbol system such as written
language and number systems.
This is the most common mode
addressed in learning in the
upper primary and secondary
school

Formal (from 15 or 16
years)

A person considers more
abstract concepts. This can be
described as working in terms of
“principles” and “theories.”
Students are no longer restricted
to a concrete referent. In its more
advanced form, it involves the
development of disciplines.

Post-formal (possibly
at around 22 years)

A person is able to question or
challenge the fundamental
structure of theories or
disciplines

It is important to note that the ages pro-

vided above are approximate indications of

when a mode becomes available and is con-

text dependent. There is no implication that

a person who is able to respond in the con-

crete symbolic mode in one context is able or

would wish to respond in the same mode in

other contexts.

Nevertheless, an implication of this descrip-

tion is that most students in primary and second-

ary school are capable of operating within the

Concrete Symbolic mode. Because of this, the

Concrete Symbolic mode is considered the target

mode for instruction at school, and teaching tech-

niques need to be adopted generally to suit

learners working in this mode. In the case of

a secondary student in certain topics, some may

still respond to stimuli in the Ikonic mode, while

others may respond with Formal reasoning.

Each mode has its own identity and its own

specific idiosyncratic character. While earlier

acquired modes are needed to move to new

modes of abstraction, these earlier modes remain

available to the individual. Within each mode,

responses become increasingly complex as the

cycle of learning develops. This growth is

described in terms of levels using the same

generic terms for each mode. A level refers to

a pattern of thought revealed in what a learner

says, writes, and/or does.
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SOLO Levels

Three levels form a cycle of development. These

descriptions of levels indicate an increasing

sophistication in a learner’s ability to handle

tasks associated with a mode.

Unistructural: The student focuses on the

domain/problem but uses only one piece of rele-

vant data and so may be inconsistent.

Multistructural: Two or more pieces of data

are used without any relationships perceived

between them. No integration occurs. Some

inconsistency may be apparent.

Relational: All data are now available, with

each piece woven into an overall mosaic of rela-

tionships. The whole has become a coherent

structure. No inconsistency is present within the

known system.

Each level integrates the level before it thus

logically acquiring the elements of the prior level.

At the same time, each level forms a logical

and empirically consistent structured whole. An

important consequence is that all learner

responses should be able to be allocated to a

particular level, a mixture of levels, or a mixture

of adjoining levels (referred to as transitional

responses).

Research into SOLO levels since the 1990s

(Campbell et al. 1992; Pegg 1992) when stu-

dents’ responses were analyzed over a greater

range of learning situations than had been under-

taken in earlier research identified more than one

cycle of levels within each mode. In the case of

two cycles of growth identified within a mode,

the cycles describe a continuous pattern of devel-

opment with Relational level of the first cycle

linking to the Unistructural level in the second

cycle. This work has resulted in a greater under-

standing of cognitive development (Pegg 2003).

Conclusion

SOLO is a general framework for systematically

assessing quality in terms of both structural and

hierarchical characteristics. The strength of

SOLO is the linking of the hierarchical nature of

cognitive development (modes) and the cyclical

nature of learning (levels). Each mode/level of

functioning has its own integrity and structure

and its own idiosyncratic selection and use of

data. The main strength of the framework is in

its ability to offer systematic and objective qual-

itative assessments of learning.
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Definition

The construct of attitude has its roots in the

context of social psychology in the early part of

the twentieth century. In this context, attitude is

considered as a state of readiness that

exerts a dynamic influence upon an individual’s

response (Allport 1935).

In the field of mathematics education, early

studies about attitude towards mathematics

already appeared in 1950, but in many of these

studies the construct is used without a proper

definition.

In 1992, McLeod includes attitude among the

three factors that identify affect (the others are

emotions and beliefs), describing it as character-

ized by moderate intensity and reasonable

stability. But the definition of the construct

remains one of the major issues in the recent

research on attitude: as a matter of fact, there is

no general agreement among scholars about the

very nature of attitude.

Therefore, in this entry, the issue of the

definition of attitude towards mathematics (and

also of the consequent characterization of

positive and negative attitude) is developed in

all its complexity.

The Origin of the Construct

Since the early studies, research into attitude has

been focused much more on the development of

measuring instruments than towards the theoret-

ical definition of the construct, producing

methodological contributions of great impor-

tance, such as those of Thurstone and Likert.

As far as mathematics education is concerned,

early studies about attitude towards mathematics

already appeared in 1950: Dutton uses Thurstone

scales to measure pupils’ and teachers’ attitudes

towards arithmetic (Dutton 1951). The interest in

the construct is justified by the vague belief that

“something called ‘attitude’ plays a crucial role

in learning mathematics” (Neale 1969, p. 631).

In these studies, both the definition of the

construct and the methodological tools of

investigation are inherited from those used in

social psychology: in particular, attitude is seen

as “a learned predisposition or tendency on the

part of an individual to respond positively or

negatively to some object, situation, concept, or

another person” (Aiken 1970, p. 551). Recourse

to the adverbs “positively or negatively” is very

evident: indeed a lot of attention by researchers

is focused on the correlation between positive/

negative attitude and high/low achievement.

Aiken and Dreger (1961), regarding this alleged

correlation between attitude and achievement,

even speak of a hypothesis of the etiology of

attitudes towards maths. Aiken (1970, p. 558)

claims: “obviously, the assessment of attitudes

toward mathematics would be of less concern if

attitudes were not thought to affect performance

in some way.”

The Problematic Relationship Between
Attitude and Achievement

Until the early nineties, research into attitude

within the field of mathematics education focuses

much more on developing instruments to mea-

sure attitude (in order to prove a causal correla-

tion between positive attitude towards maths and

achievement in mathematics) rather than on clar-

ifying the object of the research.

But the correlation between attitude and

achievement that emerges from the results of

these studies is far from clear. Underlining the

need for research into attitude, Aiken (1970)

refers to the need of clarifying the nature of the

influence of attitude on achievement: he reports

the results of many studies in which the correla-

tion between attitude and achievement is not

evident. Several years later, Ma and Kishor

(1997), analyzing 113 studies about attitude

towards mathematics, confirmed that the correla-

tion between positive attitude and achievement is

not statistically significant.

In order to explain this “failure” in proving

a causal correlation between positive attitude and

achievement, several causes have been identified:

some related to the inappropriateness of the
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instruments that had been used to assess

attitude (Leder, 1985) and also achievement

(Middleton and Spanias 1999), others that under-

line the lack of theoretical clarity regarding the

nature itself of the construct attitude (Di Martino

and Zan 2001).

In particular, until the early nineties, most

studies did not explicitly provide a theoretical

definition of attitude and settled for operational

definitions implied by the instruments used to

measure attitude (in other words, they implicitly

define positive and negative attitude rather than

giving a characterization of attitude). Up until

that time, in mathematics education, the assess-

ment of attitude in mathematics is carried out

almost exclusively through the use of self-report

scales, generally Likert scales. Leder (1985)

claims that these early attempts to measure atti-

tudes are exceptionally primitive. These scales

generally are designed to assess factors such as

perspective towards liking, usefulness, and

confidence. In mathematics education a number

of similar scales have been developed and used in

research studies, provoking the critical comment

by Kulm (1980, p. 365): “researchers should not

believe that scales with proper names attached to

them are the only acceptable way to measure

attitudes.”

Other studies have provided a definition of the

construct that usually can be classified according

to one of the following two typologies:

1. A “simple” definition of attitude which

describes it as the positive or negative degree

of affect associated to a certain subject.

2. A “multidimensional” definition which

recognizes three components of the attitude:

affective, cognitive, and behavioral.

Both the definitions appear to be problematic:

first of all a gap emerges between the assumed

definitions and the instruments used for

measuring attitude (Leder 1985). Moreover, the

characterizations of positive attitude that follow

the definitions are problematic (Di Martino and

Zan 2001).

In the case of the simple definition, it is quite

clear that “positive attitude” means “positive”

emotional disposition. But even if a positive emo-

tional disposition can be related to individual

choices (e.g., which and how many mathematics

courses to take), there are many doubts about the

correlation between emotional disposition and

achievement (McLeod 1992, refers to data from

the Second International Mathematics Study that

indicates that Japanese students had a greater

dislike for mathematics than students in other

countries, even though Japanese achievement

was very high). Moreover, a positive emotional

disposition towards mathematics is important,

but not a value per se: it should be linked with

an epistemologically correct view of the

discipline.

In terms of multidimensional definition, it is

more problematic to characterize the positive/

negative dichotomy: it is different if the adjective

“positive” refers to emotions, beliefs, or behav-

iors (Zan and Di Martino 2007). The assessment

tools used in many studies try to overcome this

difficulty returning a single score (the sum of the

scores assigned to each item) to describe attitude,

but this is inconsistent with the assumed

multidimensional characterization of the con-

struct. Moreover, the inclusion of the behavioral

dimension in the definition of attitude exposes

research to the risk of circularity (using observed

behavior to infer attitude and thereafter

interpreting students’ behavior referring to the

inferred attitudes). In order to avoid such a risk,

Daskalogianni and Simpson (2000) introduce

a bidimensional definition of attitude that does

not include the behavioral component.

An interesting perspective is that identified by

Kulm who moves to a more general level.

He considers the attitude construct functional to

the researcher’s self-posed problems and for

these reason he suggests (Kulm 1980, p. 358)

that “it is probably not possible to offer

a definition of attitude toward mathematics that

would be suitable for all situations, and even if

one were agreed on, it would probably be too

general to be useful.”

This claim is linked to an important evolution

in research about attitude, bringing us to see

attitude as “a construct of an observer’s desire

to formulate a story to account for observations,”

rather than “a quality of an individual” (Ruffell

et al. 1998, p. 1).
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Changes of Perspective in Research into
Attitude in Mathematics Education

In the late 80s, two important and intertwined

trends strongly influenced research about attitude

in mathematics education.

In the light of the high complexity of human

behavior, there is the gradual affirmation of the

interpretative paradigm in the social sciences: it

leads researchers to abandon the attempt of

explaining behavior through measurements or

general rules based on a cause-effect scheme

and to search for interpretative tools. Research

on attitudes towards mathematics developed, in

the last 20 years, through this paradigm shift

from a normative-positivistic one to an interpreta-

tive one (Zan et al. 2006). In line with this, the

theoretical construct of “attitude towards

mathematics” is no longer a predictive variable

for specific behaviors, but a flexible and

multidimensional interpretative tool, aimed at

describing the interactions between affective and

cognitive aspects in mathematical activity. It is

useful in supporting researchers aswell as teachers

in interpreting teaching/learning processes and in

designing didactical interventions.

Furthermore, the academic community of

mathematics educators recognized the need for

going beyond purely cognitive interpretations of

failure in mathematics achievement. Schoenfeld

(1987) underlines that lack at a metacognitive

level may lead students to a bad management of

their cognitive resources and eventually to

failure, even if there is no lack of knowledge.

The book “Affect and mathematical problem

solving” (Adams and McLeod 1989) features

contributions by different scholars regarding the

influence of affective factors in mathematical

problem solving.

This gives a new impulse to research on affect,

and therefore on attitude, in mathematics, with

a particular interest on the characterization of the

constructs. There is the need for a theoretical

systematization and a first important attempt in

this direction is done by McLeod (1992).

He describes the results obtained by research

about attitude, in particular underlining the

significant results concerning the interpretation

of gender differences in mathematics (Sherman

and Fennema 1977); but he also points out the

problems that emerged in the research about atti-

tude (and more general affective construct),

underlining the need for theoretical studies to

better clarify the mutual relationship between

affective constructs (emotions, beliefs, and atti-

tudes): “research in mathematics education

needs to develop a more coherent framework for

research on beliefs, their relationship to attitudes

and emotions, and their interaction with

cognitive factors in mathematics learning and

instruction” (McLeod 1992, p. 581).

Moreover, McLeod highlights the need to

develop new observational tools and he also

emphasizes the need for more qualitative research.

Following this, narrative tools began to assume a

great relevance in characterizing the construct

(Zan and Di Martino 2007), in observing

changes in individual’s attitude (Hannula 2002),

in assessing influence of cultural and environmen-

tal factors on attitude (Pepin 2011), and in

establishing the relationship between attitudes

and beliefs (Di Martino and Zan 2011).

The TMAModel: A Definition of Attitude
Grounded on Students’ Narratives

In the framework described, following an

interpretative approach based on the collection

of autobiographical narratives of students

(more than 1800 essays with the title “Maths

and me” written by students of all grade levels),

Di Martino and Zan (2010) try to identify how

students describe their relationship with mathe-

matics. This investigation leads to a theoretical

characterization of the construct of attitude

that takes into account students’ viewpoints

about their own experiences with mathematics,

i.e., a definition of attitude closely related to

practice. From this study it emerges that when

students describe their own relationship to

mathematics, nearly all of them refer to one or

more of these three dimensions:

• Emotions

• Vision of mathematics

• Perceived competence
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These dimensions and their mutual

relationships therefore characterize students’ rela-

tionship with mathematics, suggesting a three-

dimensional model for attitude (TMA) (Fig. 1):

The multidimensionality highlighted in the

model suggests the inadequacy of the positive/

negative dichotomy for attitude which referred

only to the emotional dimension. In particular the

model suggests considering an attitude as negative

when at least one of the three dimensions is neg-

ative. In this way, it is possible to outline different

profiles of negative attitude towards mathematics.

Moreover, in the study a number of profiles

characterized by failure and unease emerge.

A recurrent element is a low perceived compe-

tence even reinforced by repeated school

experience perceived as failures, often joint

with an instrumental vision of mathematics.

As Polo and Zan (2006) claim, often in

teachers’ practice the diagnosis of students’ neg-

ative attitude is a sort of black box, a claim of

surrender by the teacher rather than an accurate

interpretation of the student’s behavior capable of

steering future didactical action. The identifica-

tion of different profiles of attitude towards

mathematics can help teachers to overcome the

“black box approach” through the construction of

an accurate diagnosis of negative attitude, struc-

tured in the observation of the three identified

dimensions, and aimed at identifying carefully

the student’s attitude profile.
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Definition

Interviews in which a subject or group of

subjects talk while working on a mathematical

task or set of tasks.

The Clinical Interview

Task-based interviews have their origin in clinical

interviews that date back to the time of Piaget,

who is credited with pioneering the clinical inter-

view. In the early 1960s, the clinical interview

was used in order to gain a deeper understanding

of children’s cognitive development (e.g., Piaget

1965, 1975). Task-based interviews have been

used by researchers in qualitative research in

mathematics education to gain knowledge about

an individual or group of students’ existing

and developing mathematical knowledge and

problem-solving behaviors.

Task-Based Interview

The task-based interview, a particular form of

clinical interview, is designed so that inter-

viewees interact not only with the interviewer

and sometimes a small group but also with a

task environment that is carefully designed for

purposes of the interview (Goldin 2000). Hence,

a carefully constructed task is a key component

of the task-based interview in mathematics

education (Maher et al. 2011). It is intended to

elicit in subjects estimates of their existing

knowledge, growth in knowledge, and also their

representations of particular mathematical ideas,

structures, and ways of reasoning.

In preparing a clinical task-based interview,

certain methodological considerations warrant

attention and need to be considered in protocol

design. These require attention to issues of

reliability, replicability, task design, and general-

izability (Goldin 2000). Some interviews are

structured, with detailed protocols determining,

in advance, the interviewer’s interaction and

questions. Other protocols are semi-structured,

allowing for modifications depending on the

judgment of the researcher. In situations where

the research is exploratory, data from the inter-

views provide a foundation for a more detailed

protocol design. In other, more open-ended

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
# Springer Science+Business Media Dordrecht 2014



situations, a task is presented and there is minimal

interaction of the researcher, except, perhaps, for

clarification of responses or ensuring that the

subjects understand the nature of the task.

Methodology

As subjects are engaged in a mathematical

activity, researchers can observe their actions

and record them with audio and/or videotapes

for later, more detailed, analyses. The recordings,

accompanied by transcripts, observers’ notes,

subjects’ work, or other related metadata,

provide the data for analyses and further protocol

design. Data from the interviews are then coded,

analyzed, and reported according to the research

questions initially posed.

Techniques and Resources

A variety of techniques are used in task-based

interviews, such as thinking aloud and open-

ended prompting (Clement 2000). These can be

modified and adjusted, according to the judgment

of the researcher.

Task-based interviews are used to investigate

subjects’ existing and developing mathematical

knowledge and ways of reasoning, how ideas are

represented and elaborated, and how connections

are built to other ideas as they extend their

knowledge (Maher 1998; Maher et al. 2011).

Episodes of clinical, task-based interviews can

be viewed by accessing the VideoMosaic Collab-

orative, VMC, website (http://www.videomosaic.

org) or Private Universe Project in Mathematics

(http://www.learner.org/workshops/pupmath).

An example of a task-based interview in which

the interviewee is engaged with the interviewer as

well as the task environment that was designed by

the researchers, see http://hdl.rutgers.edu/1782.1/

rucore00000001201.Video.000062046. The epi-

sode shows nine-year-old Brandon, explaining

the notation he used to explain his reasoning. It

also shows how the interviewer’s intervention,

asking Brandon if the solution reminded him of

any other problem, prompted him, spontaneously,

to provide a convincing solution for an isomor-

phic problem (Maher and Martino 1998).

A second example from the content strand of

algebra is a task-based interview of Stephanie,

an 8th grade girl who has been asked to build

a model for (a + b)3 with a set of algebra blocks.

Stephanie, earlier in the interview, has success-

fully expanded (a + b)3 algebraically to the

expression a3 + 3a2b + 3ab2 + b3 and is challenged

by the researcher in this clip to find each of the

terms as it is modeled in the cube that she builds.

In this example, the researcher is assessing

Stephanie’s ability to connect her symbolic and

physical representations as well as observing

how she navigates the transition from a two-

dimensional model of (a + b)2 to a model that

involves three dimensions. All nine of the clips

from this interview are available on the Video

Mosaic Collaborative website and can be found

by searching for the general title: Early algebra

ideas about binomial expansion, Stephanie’s

interview four of seven. The full title of clip 5

is Early algebra ideas about binomial expansion,

Stephanie’s interview four of seven, Clip 5 of 9:

Building (a + b)3 and identifying the pieces. The

link to this clip is http://hdl.rutgers.edu/1782.1/

rucore00000001201.Video.000065479.

Task-Based Interviews for Assessment

Paper and pencil tests are limited in that they do

not address conceptual knowledge and the pro-

cess by which a student does mathematics and

reasons about mathematical ideas and situations.

Adaptations of the clinical task-based interview

have been useful in describing student knowledge

and providing insight into how mathematical

solutions to tasks are built by students. By provid-

ing a structured mathematical task, researchers

can gain insight into students’ mathematical

thinking (Davis 1984). Also, teachers can use

task-based interviews in their classrooms to

study how young children think about and learn

mathematics as well as to assess the mathematical

knowledge of their students (Ginsburg 1977).

Assessments of the mathematical understanding

and ways of reasoning in problem-solving situa-

tions of small groups of students can also be made

with open-ended task-based assessments (Maher

and Martino 1996). See http://www.learner.org/

workshops/pupmath/workshops/wk2trans.html.

An example of a group interview facilitated by

researchers Carolyn Maher and Regine Kiczek
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with four 11th grade students who have been

working on combinatorics problems as a part of

a longitudinal study of children’s mathematical

reasoning since they were in elementary school

(Alqahtani, 2011). In this session they were

discussing the meaning of combinatorial notation

and the addition of Pascal’s identity in terms

of that notation. They were asked to write the

general form of Pascal’s identity with reference

to the coefficients of the binomial expansion.

Their work during the session indicates their

recognition of the isomorphism between the

binomial expansion and the triangle and can be

viewed at http://videomosaic.org/viewAnalytic?

pid¼rutgers-lib:35783.

The Teaching Experiment

According to Steffe and Thompson (2000),

a teaching experiment is an experimental tool

that derives from Piaget’s clinical interview. In

this context, the interviewer and interviewee’s

actions are interdependent. However, it differs

from the clinical interview in that the interviewer

intervenes by experimenting with inputs that

might influence the organizing or reorganizing

of an individual’s knowledge in that it traces

growth over time. In a teaching experiment,

researchers create situations and ways of

interacting with students that promote modifica-

tion of existing thinking, thereby creating a focus

for observing the students’ constructive process.

There typically is continued interaction with the

student (or students) by the researcher who is

attentive to major restructuring of and

scaffolding growth in the student’s building of

knowledge. In these ways, the teaching experi-

ment makes use of and extends the idea of

a clinical interview.

Yet a teaching experiment is similar to a task-

based interview in several ways. First, a problem-

atic situation is posed. Second, as the interviewer

assesses the status of the student’s reasoning in

the process of interacting with the student, new

situations are created in the attempt to better

understand the student’s thinking. Also, as in

some task-based interviews, protocols may be

modified as observation of critical moments

suggests (Steffe and Thompson 2000).

Significance

There is substantial and growing evidence that

clinical task-based interviews and their variations

provide important insight into subjects’ existing

and developing knowledge, problem-solving

behaviors, and ways of reasoning (Newell and

Simon 1972; Schoenfeld 1985, 2002; Ginsburg

1997; Goldin 2000; Koichu and Harel 2007;

Steffe and Olive 2009; Maher et al. 2011). The

interviews provide data formaking students math-

ematical knowledge explicit. They offer insights

into the creative activity of students in

constructing new knowledge as they are engaged

in independent and collaborative problem solving.
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The term “teacher as researcher” is usually used

to indicate the involvement of teachers in educa-

tional research aiming at improving their own

practice. The teachers-as-researchers movement

emerged in England during the 1960s, in the

context of curriculum reform and extended into

the 1980s. Cochran-Smith and Lytle (1999)

reviewed papers and books published in the

United States and in England in the 1980s dis-

seminating some experiences of teacher research.

The main feature of the teacher research move-

ment during this period seems to be an “explicit

rejection of the authority of professional experts

who produce and accumulate knowledge in

“scientific” research settings for use by others in

practical settings” (1999, p. 16). Within this

movement, teachers are no longer considered as

mere consumers of knowledge produced by

experts, but as producers and mediators of knowl-

edge, even if it is local knowledge, to be used in

a specific school or classroom. This knowledge

aims at improving teaching practice.

In mathematics education worldwide, the

teachers-as-researchers movement has been the

subject of debate within the mathematics educa-

tors’ community and of several papers presenting

results of these programs or discussing certain

aspects of teacher research (see Huillet et al.

2011). In these debates, the contention pivoted

around whether its outputs could be regarded as

research. Many research endeavors conducted by

teachers do not fill the requisites of formal

research, such as systematic data collection and

analysis, as well as dissemination of the research

results. Some researchers distinguish two forms

of teacher research in practice: formal research,

aimed at contributing knowledge to the larger

mathematics education community, and less

formal research, also called practical inquiry or

action research, which aims to suggest new ways

of looking at the context and possibilities for

changes in practice (Richardson 1994). A major

aim of most action research projects is the genera-

tion of knowledge among people in organizational

or institutional settings that is actionable – that is,

research that can be used as a basis for conscious

action (Crawford and Adler 1996).

The International Group for the Psychology of

Mathematics Education (PME) started a working

group called “teachers as researchers” in 1988.

This group met annually for 9 years and

published a book based on contributions from

its members (Zack et al. 1997). The book
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comprised accounts of teachers’ different experi-

ences of enquiry in several countries and using

several methods which basically aimed to

improve teaching practice. In 2003 (PME27),

members of a plenary panel intituled “Navigating

between theory and practice. Teachers who nav-

igate between their research and their practice”

shared their experience on how they connect their

role of teacher and researcher (Novotná et al.

2003). This panel was followed by a discussion

group called “research by teachers, research with

teachers” which met at PME in 2004 and 2005,

and working sessions on “teachers researching

with university academics” (2007–2009).

Some mathematics educators claimed that

teachers as researchers typically focus on their

pedagogical practice, rarely challenging the

mathematical content of their teaching

(Huillet et al. 2011). They support this claim in

terms of a review of several papers of the

teachers-as-researchers movement in education.

In most of the papers reviewed, the focus is on

teachers’ classroom practices. They report on

a study where teachers were not researching

their own practice but the Mathematics for

Teaching (MfT) limits of functions for secondary

school level. They suggest that teachers get

involved in research that puts mathematics at

the core: research on Mathematics for Teaching,

with attention to both mathematical and pedagog-

ical issues and their intertwining in practice.

The idea of using research in teacher training

arose long time ago. Yang (2009) contends that in

China, a school-based teaching research system

exists since 1952. In 1992, Clary claims that action

research can become an efficient mean of training.

In recent years, research conducted by teachers has

become an important part of some teacher educa-

tion programs (see Benke et al. 2008).
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la formation des maı̂tres. Actes du colloque. INRP,
Paris, pp 237–245

Cochran-Smith M, Lytle S (1999) The teacher
research movement: a decade later. Educ Res
28(7):15–25

Crawford K, Adler J (1996) Teachers as researchers in
mathematics education. In: Bishop A, Clements M,
Keitel C, Kilpatrick J, Laborde C (eds) International
handbook of mathematics education. Kluwer,
Dortrecht, pp 1187–1205

Huillet D, Adler J, Berger M (2011) Teachers as
researchers: placing mathematics at the centre. Educ
Change 15(1):17–32

Novotna et al (2003): Proceedings of the joint meeting
of PME 27 and PME-NA 25 (Vol. 1, pp. 69–99),
Honolulu, Hawai, July13-18, 2003

Richardson V (1994) Conducting research on practice.
Educ Res 23(5):1–10

Yang Y (2009) How a Chinese teacher improved class-
room teaching in Teaching Research Group: a case
study on Pythagoras theorem teaching in Shanghai.
ZDM Math Educ 41:279–296

Zack V, Mousley J, Breen C (eds) (1997) Developing
practice teachers’ inquiry and educational change.
Deakin University Press, Geelong

Teacher Beliefs, Attitudes, and
Self-Efficacy in Mathematics
Education

Peter Liljedahl1 and Susan Oesterle2

1Faculty of Education, Simon Fraser University,

Burnaby, BC, Canada
2Mathematics Department, Douglas College,

New Westminster, BC, Canada

Keywords

Beliefs; Attitudes; Self-efficacy; Affect;

Teaching efficacy

Teacher Beliefs, Attitudes, and Self-Efficacy in Mathematics Education 583 T

T

http://dx.doi.org/10.1007/978-94-007-4978-8_24
http://dx.doi.org/10.1007/978-94-007-4978-8_24
http://dx.doi.org/10.1007/978-94-007-4978-8_134
http://dx.doi.org/10.1007/978-94-007-4978-8_134


Beliefs, attitudes, and self-efficacy are all aspects

of the affective domain (McLeod 1992). The

affective domain can be conceptualized as an

internal representational system, comprising

emotions, attitudes, beliefs, morals, values, and

ethics (DeBellis and Goldin 2006). These are

often placed on a continuum, with feelings and

emotions at one end, characterized as short-lived

and highly charged, and beliefs at the other end,

typified as more cognitive and stable in nature

(Philippou and Christou 2002). In the context of

mathematics, the affective domain was introduced

to explain why learners who possessed the

cognitive resources to succeed at mathematical

tasks still failed (Di Martino and Zan 2001; see

also Affect in Mathematics Education). In the

context of teachers of mathematics, over the last

30 years there has been a growing interest in how

affective factors influence classroom practice,

specifically with reference to beliefs (Thompson

1992; Philipp 2007), attitudes (Ernest 1989), and

self-efficacy (Bandura 1997).

Philipp (2007) defines beliefs as “the lenses

through which one looks when interpreting the

world” (p. 258). There are many different types of

beliefs that may influence teaching, including

but not limited to beliefs about mathematics,

beliefs about the teaching of mathematics, beliefs

about the learning of mathematics, beliefs

about students, beliefs about teachers’ own

ability to do mathematics, to teach mathematics,

etc. Recognition of the power of beliefs to affect

teaching has led to investigations into the beliefs

of preservice teachers and the role that their

experiences as mathematics students plays in

their initial beliefs about what it means to teach

mathematics (cf. Fosnot 1989; Skott 2001) and

the role of teacher education programs to reshape

these beliefs (Green 1971). Research on teachers’

beliefs is complicated by a number of factors,

including the often blurry boundary between

beliefs and knowledge (Wilson and Cooney

2002) and beliefs and attitudes/emotions, as

well as challenges in finding ways to measure

beliefs and their impact. There is a substantial

amount of literature on consistencies (e.g.,

Leatham 2006; Liljedahl 2008) and inconsis-

tencies (e.g., Hoyles 1992; Speer 2005) between

teachers’ espoused beliefs, enacted beliefs, actual

beliefs, and the attributed beliefs that the

researchers assign to them.

Attitudes can be defined as “a disposition to

respond favourably or unfavourably to an object,

person, institution, or event” (Ajzen 1988, p. 4).

Attitudes can be thought of as the responses that

individuals have to their belief structures. That is,

attitudes are the manifestations of beliefs

(Liljedahl 2005). Negative attitudes towards

mathematics can interfere with teacher learning.

Unfortunately, these negative attitudes can be very

difficult to change in adults (Evans 2000).

Research on the relationship between teachers’

attitudes and teacher practice is rare (Philipp2007).

In her cross-cultural study, Ma (1999) found that

basic attitudes towards mathematics along with

their lack of confidence in their own abilities

affected teachers’ willingness to engage in mathe-

matical problem solvingwith their students. Ernest

(1988) found some indications that attitudes

towards teaching mathematics were more influen-

tial in teachers’ practice than their attitudes

towards mathematics. Other desirable attitudes of

mathematics teachers that have been discussed in

the literature are curiosity (Simmt et al. 2003),

high motivation for success for themselves and

their students (Rowan et al. 1997; Kukla-Acevedo

2009), as well as appreciation for the elegance of

solutions and for a “good” problem (Ball 2002).

Teachers’ self-efficacy sits on the boundary

between beliefs and attitudes as it also incorpo-

rates emotional factors, i.e., confidence and anxi-

ety. The research often distinguishes between, and

sometimes conflates, personal teaching efficacy,

teachers’ beliefs in their own ability to teach

effectively, and general teaching efficiency or

outcome expectancy, which relates to teachers’

beliefs that teaching can make a difference

(Tschannen-Moran et al. 1998). Teacher self-

efficacy has been found to influence teachers’

attitudes and practice (Riggs and Enochs 1990),

commitment to teaching (Coladarci 1992), and

student achievement (Ashton and Webb 1986);

however, research in this area is challenged by

difficulties in clearly defining and measuring self-

efficacy and its impact (Bandura 1993). There has

also been considerable interest in the factors that
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influence self-efficacy (Bandura 1997), particu-

larly in preservice teacher education, as it has

been suggested that self-efficacy is most mallea-

ble early in teachers’ careers (Hoy 2004). Inter-

estingly, Swars et al. (2009) note that if teachers’

efficacy beliefs are connected to the traditional

teacher-centered teaching approaches, they will

be in tension with the constructivist philosophies

of current reform curricula in mathematics.

So, if teacher efficacy matters at all, we need to

ensure that it is associated with “appropriate”

pedagogical beliefs.

References

Ajzen I (1988) Attitudes, personality, and behaviour.
Open University Press, Milton Keynes

Ashton PT, Webb RB (1986) Making a difference:
teachers’ sense of efficacy and student achievement.
Longman, New York

Ball DL (2002)What do we believe about teacher learning
and how can we learn with and from our beliefs?
Proceedings of the 24th international conference for
psychology of mathematics education – North
American Chapter, Athens

Bandura A (1993) Perceived self-efficacy in cognitive
development and functioning. Educ Psychol
28(2):117–148

Bandura A (1997) Self-efficacy: the exercise of control.
Freeman, New York

Coladarci T (1992) Teachers’ sense of efficacy and
commitment to teaching. J Exp Educ 60:323–337

DeBellis V, Goldin G (2006) Affect and meta-affect in
mathematical problem solving: a representational
perspective. Educ Stud Math 63(2):131–147

Di Martino P, Zan R (2001) Attitude toward mathematics:
some theoretical issues. In: van denHeuvel-PanhuizenM
(ed) Proceedings of 25th annual conference for
the psychology of mathematics education, Utrecht,
Netherlands. vol 3, pp 351–358

Ernest P (1988) The attitudes and practices of student
teachers of primary school mathematics. In: Proceed-
ings of the 12th annual conference of the international
group for the psychology of mathematics education,
Veszprem, 20–25 July 1988, vol 1, pp 288–295

Ernest P (1989) The knowledge, beliefs and attitudes of
the mathematics teacher: a model. J Educ Teach
15(1):13–33

Evans J (2000) Adult’s mathematical thinking and
emotions: a study of numerate practices. Routledge
Falmer, London/New York

Fosnot C (1989) Enquiring teachers, enquiring learners: a
constructivist approach for teaching. Teachers
College Press, New York

Green T (1971) The activities of teaching. McGraw-Hill,
New York

Hoy AW (2004) The educational psychology of teacher
efficacy. Educ Psychol Rev 16:153–176

Hoyles C (1992) Mathematics teaching and mathematics
teachers: a meta-case study. Learn Math 12(3):32–44

Kukla-Acevedo S (2009) Do teacher characteristics
matter? New results on the effects of teacher
preparation on student achievement. Econ Educ Rev
28(1):49–57

LeathamKR (2006)Viewingmathematics teachers’ beliefs
as sensible systems. J Math Teach Educ 9(1):91–102

Liljedahl P (2005) Mathematical discovery and affect: the
effect of AHA! experiences on undergraduate
mathematics students. Int J Math Educ Sci Technol
36(2–3):219–236

Liljedahl P (2008) Teachers’ insights into the relationship
between beliefs and practice. In:Maaß J, SchlöglmannW
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Definition

TEDS-M is the first empirical cross-national

study of teacher preparation to collect data on

the organization, curriculum, processes, and

outcomes of teacher education from national

probability samples of institutions, teaching

staff, and students in 17 countries (Botswana,

Canada, Chile, Chinese Taipei, Georgia, Ger-

many, Malaysia, Norway, Oman, Philippines,

Poland, Russian Federation, Singapore, Spain,

Switzerland, Thailand, and the United States).

TEDS-M was designed to focus on the outcomes

of the mathematics preparation of teachers at the

primary and lower secondary levels and to serve

as a valuable tool to help inform and develop

mathematics teacher preparation policy for

future mathematics teachers.

The TEDS-M study was carried out under the

aegis of the International Association for the Eval-

uation of Educational Achievement (IEA) and

was made possible by a major grant from the US

National Science Foundation. The College of

Education at Michigan State University (MSU)

and the Australian Council of Educational

Research (ACER) were the joint international

study centers (ISCs) for TEDS-M under the

executive direction of Principal Investigator

Maria Teresa Tatto of MSU. To design and carry

out the study, the ISCs worked in collaboration

with the International Association for the Evalua-

tion of Educational Achievement (IEA) Data

Processing and Research Center (DPC), the IEA

Secretariat in Amsterdam, Statistics Canada, and

the TEDS-M national research centers in the 17

participating countries. Together, these teams of

researchers and institutions conceptualized the

study, designed and administered the instruments,

collected and analyzed the data, and reported the

results.

The TEDS-M study findings in detail can be

found in Tatto et al. 2012, and in the IEA website

[http://www.iea.nl/?id=20] along with additional

reports, and the publicly available data from the

study. This entry focuses on the following persis-

tent questions addressed by TEDS-M:What char-

acterizes the institutions and the curriculum of

teacher education programs? What are the

The source for this entry is: TattoMT, Schwille J, Senk SL,
Ingvarson L, Rowley G, Peck R, Bankov K, Rodriguez M,
Reckase M (2012) Policy, practice, and readiness to teach
primary and secondary mathematics in 17 countries. Find-
ings from the IEA teacher education and development study
in mathematics (TEDS-M). International Association for
the Evaluation of Student Achievement, Amsterdam. The
study was funded by a major grant to MSU from the US
National Science Foundation NSF REC 0514431 (M.T.
Tatto, PI), any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation.
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characteristics of future primary and secondary

teachers who are expected to teach mathematics?

What are the outcomes of teacher education

concerning professional teachers’ knowledge

and beliefs in mathematics?

Institutions

The TEDS-M found that the nature of preservice

teacher preparation institutions is diverse within

and across countries. There is a wide array of

programs residing in public and private institu-

tions; some in universities and some in colleges

outside universities. Some offer programs only in

education, some are comprehensive with regard

to the fields of study offered. Some offer univer-

sity degrees, and some do not. Teacher education

programs are typically categorized according to

whether the opportunities to learn that they offer

are directed at preparing future teachers for pri-

mary schools or for secondary schools. However,

this categorization proved to be an oversimplifi-

cation within the context of TEDS-M and likely

within the larger international context. The terms

primary and secondary do not mean the same

thing from country to country. There is no uni-

versal agreement on when primary grades end

and secondary grades begin. Therefore, programs

were defined by types, according to their pur-

poses using two organizational variables – grade

span (the range of school grades for which

teachers in a program were being prepared to

teach) and teacher specialization (whether the

program was preparing specialist mathematics

teachers or generalist teachers). Primary program

types were grouped according to whether

they prepare specialist teachers of mathematics

or generalist teachers and then subdivided

into three groups according to the highest

grade level for which they offer preparation:

(1) program types that prepare teachers to teach

no higher than grade 4, (2) program types that

prepare teachers to teach no higher than grade 6,

and (3) program types that prepare teachers to

teach no higher than grade 10. The specialist

teachers of mathematics constituted group (4).

At lower secondary level, program types were

placed in two groups, according to whether grad-

uates from those program types would be eligible

to teach (5) no higher than grade 10 or (6) up

to the end of secondary schooling (Tatto et al.

2012).

Curriculum

In the TEDS-M study participating institutions

provided detailed information about the aca-

demic and professional content of their

preservice teacher education programs. This

included information about the number of subject

areas graduates would be qualified to teach (i.e.,

specialists versus generalists) and the number of

hours of instruction allocated to each area.

Regarding specialization, one distinct pattern

emerged. While most programs prepare future

primary teachers to teach more than two subjects,

those preparing future secondary teachers, for the

most part, prepare them to teach one or two sub-

jects. Regarding the relative emphasis given to

specific areas of the teacher education program –

as indicated by the number of hours allocated to

each – the data revealed that teacher education

programs generally offer courses in four

areas: (a) liberal arts, (b) mathematics and

related content (academic mathematics, school

mathematics, and mathematics pedagogy),

(c) educational foundations, and (d) pedagogy.

Specifically regarding mathematics-related

courses, TEDS-M found that in general, those

programs that intend to prepare teachers to

teach higher curricular levels such as lower and

upper secondary provide, on average, opportuni-

ties to learn mathematics in more depth than

those programs that prepare teachers for the pri-

mary level. Thus, on average, future lower and

upper secondary teachers had greater opportunity

to learn mathematics, both at the tertiary level as

well as the school level, than future primary

teachers. The exception to this pattern was

found within the primary mathematics specialist

group where higher opportunity to learn tertiary

mathematics was reported more frequently

than within any of the other program groups.

Regarding school mathematics in particular,

preservice teacher education programs in the

countries participating in the study included all

or a combination of some of the following topics:

numbers; measurement; geometry; functions,
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relations, and equations; data representation,

probability, and statistics; calculus; and valida-

tion, structuring, and abstracting. But these pro-

grams typically rationed the quantity and depth of

future primary teachers’ opportunities to learn

school level mathematics (with primary teachers

predominantly studying topics such as numbers,

measurement, and geometry above any other

topics). As programs prepare teachers for higher

grades, the proportion of areas reported as having

been studied increases. Importantly, TEDS-M

found that the Asian countries and other countries

whose future teachers did well on the TEDS-M

assessments did offer algebra and calculus as part

of future primary and lower secondary teacher

education. And while the secondary curriculum

across a large number of countries calls for

instruction in basic statistics, the study found

a general gap in this area in teacher education as

reported by future teachers. This variability is

mirrored in the opportunities to learn in the math-

ematics pedagogy domains between primary and

lower secondary groups. In other areas TEDS-M

found that opportunity to learn how to teach

diverse students was highly variable with many

countries reporting few or no opportunities to

learn in this domain. Opportunity to learn general

pedagogy was high among all primary programs

and most secondary programs. Most programs

preparing future primary teachers provide oppor-

tunities to make connections between what they

learn in their programs and future teaching

practice; but in the secondary program groups

these opportunities were not as prevalent. The

TEDS-M findings regarding overall opportunities

to learn in mathematics teacher education reflect

what seems to be a cultural norm in some

countries, namely, that teachers who are expected

to teach in primary – and especially the lower

primary – grades need little in the way of

mathematics content beyond that included in the

school curriculum. The pattern among secondary

future teachers is generally characterized by

more and deeper coverage of mathematics

content; however, there was more variability in

opportunities to learn mathematics and

mathematics pedagogy among those future

teachers being prepared for lower secondary

school (known in some countries as “middle

school”) than among those being prepared to

teach Grade 11 and above. Not surprisingly, the

countries with programs providing the most

comprehensive opportunities to learn challenging

mathematics had higher scores in the TEDS-M

tests of knowledge. In TEDS-M, primary level

and secondary level teachers in high-achieving

countries such as Chinese Taipei, Singapore, and

the Russian Federation had significantly more

opportunities than their primary and secondary

counterparts in the other participating countries

to learn university and school level mathematics.

This tendency seems to be closely related to the

expectation that primary schools can be staffed

with generalist teachers, defined in this study as

teaching three or more subjects. Although this

assertion may seem reasonable, the question of

how much content knowledge teachers need to

teach effectively is still an issue of much debate.

The TEDS-M findings signal an opportunity to

examine how these distinct approaches play out

in practice. If relatively little content knowledge

is needed for the lower grades, then a lesser

emphasis on mathematics preparation and

nonspecialization can be justified. The key ques-

tion is whether teachers prepared in this fashion

can teach mathematics as effectively as teachers

with more extensive and deeper knowledge, such

as that demonstrated by specialist teachers.

Although TEDS-M has not provided definitive

conclusions in this regard (this question necessi-

tates studying beginning teachers and their influ-

ence on student learning), this question is

currently under investigation by a study called

FIRSTMATH, as a follow-up of TEDS-M, also

funded by NSF and based at Michigan State Uni-

versity (Tatto 2010). What TEDS-M does show is

that within countries, future teachers intending to

bemathematics specialists in primary schools had

higher knowledge scores on average than their

generalist counterparts, and similarly, future

teachers intending to teach upper secondary

had higher scores on average than those intending

to teach lower secondary grades (see Tatto

et al. 2012).
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The Characteristics of Future Primary and

Secondary Teachers Who Are Expected to

Teach Mathematics

The TEDS-M study found that different

countries’ policies designed to shape teachers’

career trajectories have a very important

influence on who enters teacher education and

who eventually becomes a teacher. These

policies can be characterized as of two major

types (with a number of variations in between):

career-based systems where teachers are recruited

at a relatively young age and remain in the public

or civil service system throughout their working

lives, and position-based systems where teachers

are not hired into the civil or teacher service but

rather are hired into specific teaching positions

within an unpredictable career-long progression

of assignments. In a career-based system, there is

more investment in initial teacher preparation,

knowing that the education system will likely

realize the return on this investment throughout

the teacher’s working life. While career-based

systems have been the norm in many countries,

increasingly the tendency is toward position-

based systems. In general, position-based sys-

tems, with teachers hired on fixed, limited-term

contracts, are less expensive for governments to

maintain. At the same time, one long-term policy

evident in all TEDS-M countries is that of requir-

ing teachers to have university degrees, thus,

securing a teaching force where all its members

have higher education degrees. These policy

changes have increased the individual costs of

becoming a teacher while also increasing the

level of uncertainty of teaching as a career.

A major part of TEDS-M involved examining

the participating countries’ policies for assuring

the quality of future teachers. The study found

great variation in these policies, especially with

respect to the quality of entrants to teacher

education programs, the methods for assessing

the quality of graduates before they can gain

entry to the teaching profession (e.g., periodic

formative and summative examinations both writ-

ten and oral, a thesis requirement, and others), and

at the organizational level, the accreditation of

teacher education programs. The TEDS-M data

indicated a positive relationship between the

strength of quality assurance arrangements and

country mean scores in the TEDS-M tests of

mathematics content knowledge andmathematics

pedagogy knowledge. Countries with strong qual-

ity assurance arrangements, such as Chinese Tai-

pei and Singapore, scored highest on these

measures. Countries with weaker arrangements,

such as Georgia and Chile, tended to score lower

on the two measures of future teacher knowledge.

These findings have implications for

policymakers concerned with promoting teacher

quality. Quality assurance policies and arrange-

ments can make an important difference to

teacher education. These policies can be designed

to cover the full spectrum, from polices designed

to make teaching an attractive career to policies

for assuring that entrants to the profession have

attained high standards of performance. The

TEDS-M findings point to the importance of

ensuring that policies designed to promote teacher

quality are coordinated and mutually supportive.

The TEDS-M data shows that countries such as

Chinese Taipei and Singapore that do well on

international tests of student achievement, such

as TIMSS, not only ensure the quality of entrants

to teacher education but also have strong systems

for reviewing, assessing, and accrediting teacher

education providers. They also have strong mech-

anisms for ensuring that graduates meet high stan-

dards of performance before gaining certification

and full entry to the profession.

Aside from qualifications, TEDS-M found

that future teachers being prepared to teach at

the primary and secondary school levels were

predominantly female, although there were

more males at the higher levels and in particular

countries. They seemed to come from well-

resourced homes, and many reported having

access to such possessions as calculators,

dictionaries, and DVD players, but not personal

computers – now widely considered essential for

professional use. The latter was especially the

case among teachers living in less affluent coun-

tries such as Botswana, Georgia, the Philippines,

and Thailand. The TEDS-M survey found that a

relatively small proportion of the sample of
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future teachers who completed the survey did not

speak the official language of their country

(which was used in the TEDS-M surveys and

tests) at home. Most future teachers described

themselves as above average or near the top of

their year in academic achievement by the end of

their upper secondary schooling. Among the

reasons the future teachers gave for deciding to

become teachers, liking working with young

people and wanting to influence the next genera-

tion were particularly prevalent. Many believed

that despite teaching being a challenging job,

they had an aptitude for it (see Tatto et al. 2012).

The Outcomes of Teacher Education:

Mathematics Professional Knowledge

and Beliefs

Mathematics Content and Mathematics

Pedagogy Content Knowledge for Teaching

Regarding themathematics andmathematics ped-

agogy content knowledge of future teachers, the

TEDS-M study provides the first solid evidence,

based on national samples, of major differences

across countries in the (measured) mathematics

knowledge outcomes of teacher education. The

answer to the TEDS-M research question about

the teaching mathematics knowledge that the

future primary and secondary teachers had

acquired by the end of their teacher education

was clear, for themost part, this knowledge varied

considerably among individuals within every

country and across countries. The difference in

mean mathematics content knowledge (MCK)

scores between the highest and lowest-achieving

country in each primary and secondary program

group was between 100 and 200 score points, or

one and two standard deviations. This difference

is a substantial one, comparable to the difference

between the 50th and the 96th percentile in the

whole TEDS-M future teacher sample. Differ-

ences in mean achievement across countries in

the same program group on mathematics peda-

gogical content (MPCK) were somewhat smaller,

ranging from about 100–150 score points.

Therefore, within each program group (e.g., pre-

paring teachers to teach (1) no higher than grade

4, (2) no higher than grade 6, (3) no higher than

grade 10, (4) as specialists, (5) no higher than

grade 10, and (6) up to the end of secondary

schooling) and by the end of the teacher prepara-

tion programs, future teachers in some countries

had substantially greater mathematics content

knowledge and mathematics pedagogical content

knowledge than others. On average, future

primary teachers being prepared as mathematics

specialists had higher MCK and MPCK scores

than those being prepared to teach as primary

generalists. Also, on average, future teachers

being prepared as lower and upper secondary

teachers (e.g., group 6) had higher MCK and

MPCK scores than those being prepared to be

only lower secondary teachers. In the top-scoring

countries within each program group, the major-

ity of future teachers had average scores on math-

ematics content knowledge and mathematics

pedagogy content knowledge at or above the

higher anchor points (see Tatto et al. 2012). In

countries with more than one program type per

education level, the relative performance on

MCK and on MPCK of the future teachers with

respect to their peers varied. For instance, the

mean mathematics content knowledge score of

future primary teachers in Poland ranked fourth

among five countries preparing lower primary

generalist teachers, but first among six countries

preparing primary mathematics specialists. An

important conclusion of the TEDS-M study is

that the design of teacher education curricula

can have substantial effects on the level of

knowledge that future teachers are able to acquire

via the opportunities to learn provided to them

(see Tatto et al. 2012).

Beliefs

The TEDS-M study assessed beliefs about the

nature of mathematics (e.g., mathematics is a set

of rules and procedures, mathematics is a process

of enquiry), beliefs about learning mathematics

(e.g., through teacher direction, through student

activity), and beliefs about mathematics achieve-

ment (e.g., mathematics is a fixed ability)

(Philipp 2007; Staub and Stern 2002). We found

that in general, educators and future teachers in all

countries were more inclined to endorse the pat-

tern of beliefs described as conceptual in

orientation and less inclined to endorse the
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pattern of beliefs described as computational or

direct-transmission. Several countries showed

endorsement for the belief that mathematics is a

set of rules and procedures. The view that

mathematics is a fixed ability was a minority

one in all countries surveyed, yet its existence is

still a matter of concern because it implies a less

inclusive approach to teaching mathematics to all

learners. The TEDS-M data shows important

cross-country differences in the extent to which

such views are held. The program groups within

countries endorsing beliefs consistent with a

computational orientation were generally among

those with lower mean scores on the knowledge

tests. In some high-scoring countries on our

knowledge tests, however, future teachers

endorsed the beliefs that mathematics is a set of

rules and procedures as well as a process of

enquiry (see Tatto et al. 2012). The TEDS-M

findings thus showed endorsement for both of

these conceptions within mathematics teacher

education. This finding suggests the importance

for teacher education institutions to find an

appropriate balance on these conceptions when

designing and delivering the content of their

programs (Tatto 1996, 1998, 1999).
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Reflections on an emerging field: researching
mathematics teacher education. Educ Stud Math
60(3):359–381

Ball DL, Bass H (2000) Interweaving content and
pedagogy in teaching and learning to teach: knowing
and using mathematics. In: Boaler J (ed) Multiple
perspectives on the teaching and learning of
mathematics. Ablex, Westport, pp 83–104

Ball DL, Even R (2004) The International Commission on
Mathematical Instruction (ICMI) – the fifteenth ICMI
study, the professional education and development of
teachers of mathematics. J Math Teach Educ
7:279–293

Even R, Ball D (eds) (2009) The professional education
and development of teachers of mathematics, vol 11,
The 15th ICMI study series. Springer, New York

Hill H, Rowan B, Ball D (2005) Effects of teachers’
mathematical knowledge for teaching on student
achievement. Am Educ Res J 42:371–406

Lerman S, Tsatsaroni A (2005) Policy and practice in
mathematics education. In: Goos M, Kanes C,
Brown R (eds) Proceedings of the fourth international
mathematics education and society conference. Centre
for Learning Research, Griffith University, Queens-
land, Australia, pp 228–237

Llinares S, Krainer K (2006) Mathematics (student)
teachers and teacher educators as learners. In:
Gutierrez A, Boero P (eds) Handbook of research on
the psychology of mathematics education: past,
present and future. Sense, Rotterdam, pp 429–459

Margolinas C, Coulange L, Bessot A (2005) What can the
teacher learn in the classroom? Educ Stud Math
59(1–3):205–304

Morris AK, Hiebert J, Spitzer SM (2009) Mathematical
knowledge for teaching in planning and evaluating
instruction: what can preservice teachers learn? J Res
Math Educ 40(5):491–529

Shulman L (1987) Knowledge and teaching: foundations
of the new reform. Harv Educ Rev 57:1–22

Teacher Education Development Study-Mathematics (TEDS-M) 591 T

T

http://dx.doi.org/10.1007/978-94-007-4978-8_107
http://dx.doi.org/10.1007/978-94-007-4978-8_107
http://firstmath.educ.msu.edu/
http://firstmath.educ.msu.edu/
http://teds.educ.msu.edu/
http://www.iea.nl/


Tatto MT (2007) Educational reform and the global
regulation of teacher education on teachers’ beliefs
about instructional choice. Int J Educ Res 45:231–241

Tatto MT, Lerman S, Novotná J (2009) Overview of
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Definition

Issues and strategies concerning the supply and

retention of high-quality mathematics teachers in

primary and secondary classrooms.

Characteristics

The supply and retention of high-quality

mathematics teachers are crucial to the success

of any education system. Faced with mounting

evidence that the most important in-school

influence on student achievement is teachers’

knowledge and skill (Hattie 2009), policy makers

are paying closer attention to strategies likely to

recruit, prepare, and retain the best possible

teachers. While policy decisions about pupil-

teacher ratios, initial teacher education pathways,

and teaching conditions influence countries’

overall supply and demand balance, a universal

and relatively unfulfilled demand for high-quality

mathematics teachers prevails. For some

developing countries, this demand is evident

across all sectors. For countries that – in various

ways – produce sufficient numbers of generalist

teachers for primary schools, the focus is on a

search for ways to ensure sufficient numbers of

well-qualified mathematics specialist teachers

for upper primary and/or secondary schools

(Tatto et al. 2012).

In looking to address teacher quality, concerns

about the sufficiency of mathematics and peda-

gogical content knowledge, both at the recruit-

ment and graduate phase of teacher education, are

central. A trend is for countries to require teacher

graduates to meet additional criteria measured by

tests of mathematics knowledge or periods of

probationary teaching in schools before gaining

professional certification. Efforts to increase

recruitment of potential mathematics teachers

have prompted the design of alternative teacher

education pathways which provide additional

mathematics content focus. An allied recruitment

issue is the trend for an increasing proportion of

career switchers to enter teaching. For many

career switchers, their experiences of learning

mathematics are distal and often confined to

mathematics service courses. Findings from

a large-scale survey study of elementary and

middle school teachers in the USA (Boyd et al.

2011) suggesting that career switchers may be

less effective at teaching math than other teachers

during their first year of teaching warrant further

investigation of how the use of mathematics in

previous careers might impact on the quality of

students’ mathematical learning experiences and

design of teacher education programs.

Echoing findings from the UK and South

Africa, Ingersoll and Perda (2010) claim that the

shortage of quality mathematics teachers in the

USA is not just an issue of recruitment – but also

an issue of retention. Common across many

education systems, high teacher attrition rates are
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linked to inadequate degree of classroom auton-

omy, inadequate provision of professional

development opportunities, unrealisticworkloads,

and pupil discipline and behavior problems. Col-

lectively, these contribute to high levels of dissat-

isfaction, high stress levels, and low teacher

morale. Importantly, in many countries retention

impacts differentially – with high poverty, high

minority, and urban public schools experiencing

higher rates of turnover.

Efforts to increase retention rates focus on

induction programs for newly qualified teachers.

However, while access to induction programs is

becoming commonplace, the effectiveness of

induction varies across and within educational

systems (Britton et al. 2012). Charged with

enacting reforms in mathematics teaching, begin-

ning teachers need opportunities to engage and

experiment with ambitious mathematics teaching

within a culture of expansive whole-school

learning. Likewise, efforts to support experienced

mathematics teachers’ professional growth have

highlighted the value of communities of practice

that lead to increased investment by teachers in

ways that develop long-term teaching trajectories

while simultaneously strengthening their

professional identities as mathematics teachers.

To counter effects of low morale, professional

learning experiences must involve deliberate

acknowledgement of teachers’ strengths of current

practices (Graven 2012). Importantly, efforts

focused on building teacher quality need also to

be partnered with supportive teacher education

contexts (Artzt and Curcio 2008), supportive

school contexts (Johnson 2012), and informed by

evidenced-based research (Alton-Lee 2011).
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Definition

Teacher-centered teaching is an approach to

teaching that places the teacher as the director

of learning and is mainly accomplished by lec-

ture, repetitive practice of basic skills, and con-

structive feedback.

Intellectual Heteronomy

Many researchers have contended that one of the

most important contributions that education can

make in individuals’ lives is to their development

of autonomy (Piaget 1948/1973). Autonomy is

defined as the determination to be self-governing

to make rules oneself rather than rely on the rules

of others to make one’s decisions (heteronomy).

Kamii (1982) suggests that autonomy is the ability

to think for oneself and make decisions indepen-

dently of the promise of rewards or punishments.

In relation to education, Richards (1991) distin-

guishes between two types of traditions in the

mathematics education of children, what he

terms school mathematics and inquiry mathemat-

ics. School mathematics is what is typically

thought of as a teacher-directed environment in

which learning mathematics is a process of both

memorizing teacher-modeled rules and proce-

dures and solving routine problems that often

have little significance to the real world until mas-

tery of the teacher’s solution methods is attained.

Heteronomy is fostered here as students learn to

replicate what the teacher has shown them.

Teacher-centered instruction has been around

for years and generally refers to a complex ped-

agogy that places the teacher as the mathematical

authority for learning. This approach to teaching

and learning has enjoyed prominence for decades

despite recent pushes towards student-centered

teaching. Teacher-centered classrooms can best

be described as environments in which the

teacher emphasizes mastery of content and basic

skills and transfers knowledge primarily by

lecture and repetition. The students are viewed

as recipients of information and can master the

skills by repeated practice and memorization.

The term teacher-centered instruction is also

known as direct instruction and explicit

instruction in educational circles.

Contrast with Student-Centered Instruction

Recent research has suggested that teachers shift

their practices towards more student-centered

instruction (Yackel and Cobb 1994; Hiebert et al.

1997; Tarr et al. 2008) primarily to promote higher

and deeper engagement of students with the math-

ematics. Additionally, Mathematics Education in

Europe reports thatmanyEuropean countries have

reconceptualized their mathematics instruction

towards more student-centered teaching (http://

eacea.ec.europa.eu/education/eurydice/documents/

thematic_reports/132EN_HI.pdf).

While some researchers have shown that students

perform better on standardized tests when taught

using teacher-centered instruction, others have

shown the opposite, leaving room for exploring

which of the characteristics of both approaches can

be used to maximize learning. The table below

illustrates the major differences between teacher-

and student-centered approaches and represents

a merging of two tables found at the sites: www.

nclrc.org/essentials/goalsmethods/learncentpop.html

and http://assessment.uconn.edu/docs/Teacher

CenteredVsLearnerCenteredParadigms.pdf.

Teacher centered Learner centered Theme

Focus is on instructor Focus is on both
students and
instructor

Role of
instructor

Instructor talks;
students listen
passively

Students interact
with instructor and
one another, students
are engaged

Mathematical
learning is
transmitted from
teacher to student

Students construct
knowledge through
gathering and
synthesizing
information and
integrating it with the
general skills of
inquiry,
communication,
critical thinking,
problem solving, and
so on

Lesson
design

Emphasis is on
acquisition of
knowledge outside
of the context in
which it will be used

Emphasis is on using
and communicating
knowledge
effectively to address
issues arising in real-
life contexts

(continued)
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Teacher centered Learner centered Theme

Lessons are designed
so that the
mathematics can be
broken into small
manageable pieces

Lessons are designed
around a problematic
situation that
students must solve
without much pre-
lecture. Students
mathematize the
situation

Students work alone Students work in
pairs, in groups, or
alone depending on
the purpose of the
activity

Role of
students

Environment is
viewed as
competitive and
individualistic

Culture is
cooperative,
collaborative, and
supportive

Instructor monitors
and corrects every
student utterance

Students talk without
constant instructor
monitoring; both
instructor and
students provide
analyze solutions,
particularly when
questions arise

Assessment

Instructor answers
students’ questions

Students answer
each other’s
questions using
instructor as an
information resource

Assessment is used
to monitor learning

Assessment is used
to monitor learning
and to inform
instruction

Classroom is quiet Classroom is noisy
and interactive

Characteristics

Role of the Instructor

The role of the instructor in a teacher-centered

classroom is to impart knowledge onto the

student through lecture and modeling of the

mathematics concept(s). A typical lesson format

might consist of reminding students of the work

they did previously or eliciting prerequisite

knowledge that is needed to begin a new concept.

Once the groundwork has been laid by the

teacher, she states the objectives for the class

period and proceeds to lecture, drawing upon

a variety of sources. Generally speaking, the

teacher’s goal is to illustrate how and why

a basic skill or concept works by showing how

to solve a diverse set of problems. She breaks the

modeling down into chunks that will be more

easily understood by the students. When the

modeling is complete and student questions

have been answered, the teacher will have them

practice solving very similar problems either

independently or with peers. At this time, she

will walk around the room to monitor student

behavior and provide positive and/or negative

feedback. The guidance here is heavy with

students practicing and making corrections to

their errors until mastery is attained. Most of the

talk is teacher directed with little student talk.

There are obviously variations in this lesson

design and often direct instructors attempt to

make the lesson more engaging by relating

some of the mathematics to real life and by using

manipulative or notations. These manipulatives

and diagrams/notations are controlled by the

teacher and used as a modeling device.

Direct Instruction Lesson Design

In a direct instruction approach, the teacher might

begin with students working through a series of

prerequisite skills, like whole number operations

and inequalities (e.g., 3 < 8). When the prerequi-

site skills are mastered, then the teacher explicitly

states the objectives. To help students see the

importance of integers, she might show some

examples of real-world situations that illustrate

integer concepts. Then, the teacher models for

students how to solve problems. For example, it

is common to show students how to order integers

on a horizontal number line by startingwith a zero

marked near the middle of the line and counting

the necessary spaces either left or right for each

integer. In a direct instruction environment, the

lesson is carefully structured and the teacher is the

center of the activity, showing students how to

place integers on the number line and order inte-

gers appropriately. During this part of instruction,

the teacher asks questions as a way to monitor

whether students are able to repeat the skills she

has shown them. Next, the class enters a period of

guided practice with the teacher monitoring stu-

dent progress and giving immediate feedback. For

students still struggling with the skill, she might

give prompts or hints to help them along their
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learning. When students demonstrate accuracy

without teacher assistance, they are asked to

work independently to reach mastery of the skill.

An instructional strategy that is becoming

increasingly acknowledged as useful for lessons

that follow direct instruction is called concrete-

semiabstract-abstract (CSA) design. Take,

for example, the teaching integer operations.

A CSA approach would have students represent

integers with two colored chips (see also Bennet

and Musser 1976; Maccini and Hughes 2000;

Flores 2008), black being positive and red

representing negative integers. Basically,

a black chip and a red chip cancel each other out

and represent what is called a zero pair. What is

crucial to understanding this scenario is that zero

added to any amount will not change the original

amount. For example, if a student has 5 black

chips (a + 5 value) and adds 2 red and 2 black

chips, she has to recognize that, although the total

number of chips has increased to 9, the value of 5

remains the same since the 4 chips represent zero.

In the example below, students have already

reached mastery of the integer concept of order-

ing positive and negative numbers and are being

introduced to the operation of addition for the

first time. Following the CSA design, the teacher

first shows students a workmat separated into two

areas, a negative and a positive area. At the con-

crete phase of instruction, students are taught

how to model an integer word problem with

chips. For example, consider the problem, “In

State College, Pennsylvania, the temperature on

a certain day was�2 �F. The temperature rose by

9 �F by the afternoon. What was the temperature

that afternoon?” (Maccini and Hughes 2000).

Teachers would model the problem by placing

two red chips on the negative side of the mat and

nine black chips on the positive side (Fig. 1).

A conversation might look like this:

T: What is the temperature at the beginning of the

day? (T displays a mat with chips on the

overhead projector while each student has

the same at their desks.)

Ted: �2.

T: So since the temperature is 2� below zero, is

negative, we would put two red chips on the

negative side. Go ahead, get two red chips and

put them on your own mat. Now, what does

the next part of the word problem say? Maya?

Maya: The temperature rose by 9 �F by the

afternoon.

T: The temperature rose by 9 �F by the afternoon.

That means we should put nine black chips on

the positive part of the mat. Please put those on

there (Maya puts nine black chips on the pos-

itive side). Now, to find out the temperature at

the end of the day, we need to take out zero

pairs. A zero pair is one red chip and one black

chip. They equal zero because one positive

and one negative chip cancel each other out,

make 0. So we can just take them away. I’ll

take away one set (physically removes one red

and one black chip together). You do the next

one Grace. (Grace comes to the overhead and

takes a red and black chip off the mat). How

many chips do we have left?

Gwen: 7.

T: Right, seven chips. What color are they?

(Students say “black.”) Right. Are black

chips positive or negative?

Students: Positive.

Teacher-Centered Teaching in Mathematics Education, Fig. 1
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T: OK, so it is a positive 7 �F at the end of the day.

Let’s try another one.

As students work out more and more exam-

ples, either with the teacher or in small groups, the

teacher walks around and gives immediate feed-

back concerning the correctness of their methods

and answers. In the next phase, the semi-concrete,

students are given a worksheet that is structured

so that students continue their previous activity

but instead of using actual chips, they are to

draw their chips on the work paper and solve the

problem with their drawings. Again, the teacher

provides positive and/or corrective feedback as

the students solve these problems.

Finally, in the abstract phase, students are

asked to write symbolic equations for integer

word problems and use rules for addition/subtrac-

tion of integers to solve them. Mastery of the

skills at each of the phases is required before

moving on to the next phase. If a student produces

an incorrect answer or method, the teacher

reteaches by modeling the methods again. The

students practice the modeled methods until mas-

tery is attained.

The Role of the Students. As can be seen in the

example above, the teacher does a great job of

modeling and explaining to the students the steps

behind integer addition. She has placed integers in

a real-world context, using manipulatives to help

students make sense of the concept. The students,

for their part, are required to follow her steps and

answer questions as best they can throughout the

modeling. The teacher has broken down integer

operations into one small chunk, working with

addition first. Once studentsmaster addition prob-

lems, through repetition and feedback, the teacher

will move to subtraction. The role of the student is

to practice the skill enough to master the content.

The classroom environment is fairly quiet with

little interaction between students, unless the

teacher allows them to practice with one another.

Assessment. Assessment is typically

conducted as a way to monitor student success

in performing the skills that have been taught. In

this way, assessment occurs on a regular basis

and immediate feedback is given to students.

The goal is to reach mastery on basic skills and

move on to more sophisticated ones.

Further Areas of Research

There are a number of studies that show

students who have received direct instruction

outperform students who received student-

centered instruction. Typically, these tests

revolve around mathematical achievement on

calculational proficiency. However, critics of the

teacher-centered approach also cite studies show-

ing that students who received student-centered

instruction perform equally well on calculational

problems and outperform their teacher-centered

peers on critical thinking problems. It is clear that

research shows disparate results and the

mathematics education field must work towards

reconciling these differences. One suggestion

that seems to be popular in the special education

field, and supported by statements from the

National Mathematics Advisory Panel (2008),

is to merge explicit and student-centered instruc-

tion together (Hudson et al. 2006; Scheuermann

et al. 2009). Proponents of this approach are typ-

ically from special education and advocate mak-

ing instruction more realistic and hands on (like

the integer example), but simultaneously scaf-

folding students’ learning by explicit and direct

means.
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Definition

The teacher’s activities and methodologies with

the use of digital technologies: changing uses of

digital technologies in the last years, main and

recent issues, theoretical perspectives, and

considerations for the future.

Characteristics

Much of the research related to the use of digital

technologies in mathematics education has

focused on learners and on the particular effects

that a given technology might have on the nature

and quality of student learning. Over the past

decade, in a shift that has occurred more

generally in mathematics education research,

researchers have begun to pay more attention to

the existing practices of teachers, as they relate to

the use of technology, and the changes that

such practices might or must undergo in order to

more effectively make use of available technolo-

gies. This change of focus is driven in part by

the fact that despite the availability of and insti-

tutional support for digital technologies, the

everyday practice of most teachers has changed

little with respect to the use of technology

(Laborde 2008). This entry focuses on the chang-

ing uses of digital technologies over the past 30

years and provides an overview of the theoretical

perspectives that have been developed over the

past decade to study ways of understanding and

supporting changing teaching practices.

Teachers’ Changing Uses of Digital

Technologies

Since its introduction in schools – in the 1980s –

the use of ICT (information and communication

technology) in teaching mathematics has had two

main functions: (a) as a support for the organiza-

tion of the teacher’s work (producing work

sheets, keeping grades) and (b) as a support for

new ways of doing and representing mathemat-

ics. The past decade has seen an evolution of

technology itself with the introduction of new

communication and representational infrastruc-

tures (Hegedus and Moreno-Armella 2009).

The representational infrastructures used in

mathematics education can involve specific

software for teaching topics such as statistics,

algebra, and modelling as well as graphical,
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numerical, symbolic, and geometric environ-

ments that are used to represent mathematical

objects. Over time, teachers have moved from

content-specific graphical and mathematical pro-

grams toward more generic and multi-

representational environments (Thomas 2006).

The communication infrastructures (such as

electronic mail, web platforms, and social net-

works) have become useful both for teacher pro-

fessional development and for teaching practice

in the classroom. In the first case, teachers can

become members of communities of colleagues

in the same school, in a network of schools or in

a teacher education program (as community of

practice, in the sense of Wenger 1998), or in

a research program (as community of inquiry,

Jaworski 2006). They can participate in these

communities in synchronous and asynchronous

activities aimed at sharing materials, designing

curricular plans, doing teaching experiments,

collecting data for assessment, and discussing

results. In the second case, they can organize

their classroom activities in ways that combine

face-to-face interactions with distance ones

mediated by these infrastructures.

The use of digital environments in classroom

in recent years has changed from a more

“private” to a “public” use that integrates the

private use (Hegedus and Moreno-Armella

2009; Robutti 2010), as predicted in Sinclair

and Jackiw (2005). This shift, which echoes the

historical shift from the use of individual

handheld slate to blackboards, can be described

again in terms of the technology available. White

the computer laboratory and handheld technol-

ogy (calculators) settings featured individual or

small group interactions with the technology that

could not easily be shared with the whole class

and with new infrastructures combine the public-

private uses or reverse the dominant interaction.

In the former case, handheld devices can

be connected to the teacher’s computer, which

projects student-generated work to a large public

screen or to an interactive whiteboard. Further,

Robutti (2010) documents that “blended”

approach, in which the public screen not only

displays the student work in real time, providing

immediate feedback, it enables individual

students to compare and connect their own work

with that of others. In the latter case, teachers can

use projectors or interactive whiteboards to

enable whole classroom sharing of digital repre-

sentations, thus retaining control of the use of the

technology and reducing the need for student

instrumentation – such a modality has become

increasingly frequent in both primary and

secondary school classrooms.

Teacher Practice and Technology: Theoretical

Perspectives

Over the past decade, there has also been a shift in

focus from the learner to the teacher, echoing the

broader increase of attention in mathematics edu-

cation research. Early research involved studying

the variables, such as attitudes and levels of pro-

ficiency, which affect teachers’ use of a given

technology (Thomas 2006). Subsequent attention

was placed on the interaction that might occur

between teachers’ proficiency with and attitude

toward technology use and their proficiency with

and attitude toward mathematics. For example,

in the case of DGS (and other dynamic mathe-

matical environments), the dynamic/visual con-

ception of a given mathematical object or

relationship that the technology offers might not

accord with the static/algebraic conception that

a given teacher has developed – or that the text-

book and assessment items assume. The resulting

mismatch will have an important effect on the

way a given technology is used (see Laborde

2001; Sinclair and Robutti 2012) and on the

related learning process.

By extending the well-known PCK framework

to TPACK (Koehler and Mishra 2009),

researchers have also drawn attention to the way

new technology resources interact with

teacher’s pedagogical and content knowledge.

This framework highlights the fact that technol-

ogy use cannot change (or be changed) in isola-

tion of other aspects of teacher practice. This

echoes the extensive research that documents

the way in which the use of technology changes

the learner and the learner’s understanding. With

a dual focus on the teacher and the learner, Borba

and Villarreal (2005) have coined the phrase

“humans-with-media,” a term that emphasizes
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the way in which the technology is considered

part of these communities and can influence

teaching and learning processes.

More recently, however, researchers have

sought to better theorize their understanding of

teaching practices using technology in such a way

to move beyond the logical demarcation of types

of teacher knowledge perpetuated by TPACK.

Two main approaches have emerged. Ruthven’s

(2009) Structuring Features of Classroom Prac-

tice framework identifies five structuring features

of classroom practice that shape the choices that

teachers make when integrating new technolo-

gies: working environment, resource system,

activity structure, curriculum script, and time

economy. So, for example, in terms of resource

system, teachers must decide how they will build

a coherent set of elements that function in

a complementary manner in the classroom – this

might involve choosing a digital tool that uses

the same kind of notation that is used in the

textbook or encouraging students to take notes

on their laptops, where their technology-based

explorations are taking place, instead of in

their notebooks. Ruthven et al. (2009) used

this framework to identify the various adapta-

tions of teaching practices in their study of

teachers’ use of graphing software at lower

secondary level.

The second approach draws on the notion of

“instrumental genesis,” which has been exten-

sively used to study the way in which tool and

person coevolve and which has focused on the

ways in which learners go from being untutored

operators of a given tool to being proficient users.

Guin and Trouche (2002) extend this notion to

“instrumental orchestration,” which focuses

more specifically on technology integration in

teaching and learning. In particular, instrumental

orchestration involves practices that take into

account both the constraints involved in using

a tool and the way in which students’ use of the

tool develops. Orchestration is described in

terms of two variables: (1) “didactical configura-

tion” is the arrangement of artifacts in the

environment, and (2) “exploitation mode” is the

way the teacher decides to exploit a didactical

configuration for the benefit of her didactical

intentions. Drijvers et al. (2010) introduce also

the “didactical performance,” which involves the

ad hoc decisions taken while teaching about how

to perform in the chosen didactic configuration

and exploitation mode.

Gueudet and Trouche (2009) call “documen-

tational genesis” the way teachers go from

being untutored operators of materials (any

kind of teaching resource, including digital

technologies) to being proficient users of

them. As teachers develop ways of using these

materials, they turn into documents that have

stable usage schemes. This approach enables

researchers to attend to the broad range of

materials involved in a particular lesson, as

well as the relationship between a teacher’s

preparation of it and its implementation in the

classroom.

Central Considerations for the Future

As Stacey (2002) argues, “new technology ren-

ders some traditional examination questions

obsolete and others problematic” (p. 11). As

such, even in situations where there is a high

adoption of technology in teaching (e.g., the use

of CAS in university-level courses in Canada)

(Buteau et al. 2009), assessment continues to be

pencil and paper driven. However, many have

argued that until teachers develop practices in

which technology is used both in formative and

summative assessment, the putative effects of

these technologies (increasing the focus on con-

ceptual understanding, enabling broader forms of

mathematical expression, empowering student

agency and creativity, etc.) will be greatly

compromised.
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Definition

The relationship between technology and

mathematics curriculum from the perspective

of research, mathematical practices in the

classroom, and recent learning theories with

mathematical digital technologies.

Characteristics

Mathematics was one of the earlier subjects to

make use of the computer in the classroom, and

the first digital computers were primarily

developed to solve differential equations,
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having evolved from Babbage’s automatic

calculating machine. In the 1970s computer

programming began to be taught in schools in

some countries around the world, although this

was not explicitly linked to the mathematics

curriculum, despite the fact that programming is

strongly related to the idea of variable and

algorithm. At a similar time the Logo program-

ming language was developed by Seymour

Papert and colleagues with its best known

feature being an on-screen turtle which could

be controlled by programming commands

(Papert 1980). During the 1980s Logo began to

be used in schools, and evidence from empirical

studies suggested that Logo could engage young

students in exploring mathematical ideas such

as ratio and proportion, geometry, variables,

functional variation, recursive processes, mathe-

matical generalization, and its symbolization

(Hoyles and Noss 1992). Interestingly different

perspectives began to emerge in terms of the

relationship of technology use and the mathemat-

ics curriculum, with some people arguing that

technology use in the mathematics classroom

should fit with the existing curriculum and others

arguing that technology should be used to

introduce students to complex mathematical

ideas that had previously been inaccessible to

them, for example, introducing the underlying

ideas of calculus to primary school students

(Kaput 1994). The Logo programming language

had been developed as a means of transforming

school mathematics and the curriculum. By

contrast in the 1980s, dynamic geometry environ-

ments were developed (e.g., The Geometer’s

Sketchpad and Cabri) to support the learning of

geometry within the curriculum, although

dynamic geometry environments have evolved

so that they can be used within different curricu-

lum areas (e.g., functions and trigonometry).

By the early 1990s a wide range of technolo-

gies were available to be usedwithin school math-

ematics, including graph plotting packages,

spreadsheets, and computer algebra packages

which have been developed for university and

professional mathematicians (e.g., Mathematica).

Sometimes these technologies have been designed

to fit with particular aspects of the school

mathematics curriculum (e.g., the graph plotting

package Autograph or the statistics education

package Fathom), sometimes they have been

designed to make mathematics accessible to new

groups of students (e.g., SimCalc which was

designed to democratize the learning of calculus),

and sometimes they have been adapted from

technologies that had not been designed for

educational purposes (e.g., spreadsheets, see,

e.g., Sutherland and Rojano 1993).

Nowadays technologies for learning

mathematics are increasingly available on mobile

devices, which include calculators and tablet

computers, and such devices linked to the Inter-

net can provide students with access to a wide

range of mathematical digital technologies. How-

ever, research clearly shows that whatever the

designer’s intentions students can use technolo-

gies developed for learning mathematics for

nonmathematical purposes (Bartolini Bussi and

Mariotti 2008). For example, students might use

dynamic geometry tools to draw shapes or pic-

tures on the screen instead of constructing math-

ematical objects using geometrical properties.

Theories of learning with mathematical digital

technologies provide explanations for why this

is the case and at the same time offer a framework

for developing classroom practices that exploit

the potential of technology for mathematical

learning. For example, the theory of instrumental

genesis (Artigue 2002) distinguishes between the

technology (artifact) and the instrument, separat-

ing what relates to the intention of the designer

(the technology) and what is constructed by the

user and relates to the context of use (the instru-

ment). This theory has been used to explain the

discrepancy between the students’ behavior and

the teacher’s intentions and points to the impor-

tance of the design of mathematical activities and

the role of the teacher within technology-

enhanced learning environments. Other theories

such as the theory of semiotic mediation and

the theory of constructionism also provide

frameworks for designing technology-enhanced

learning environments for mathematics

(Drijvers et al. 2010).

The extended presence of computers,

calculators, and mobile devices in schools, as
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well as three decades of using these technologies

in education at an experimental level, has resulted

in an increasing interest in the relationship

between mathematics curriculum and technology

development among researchers, teachers,

parents, educational authorities, and curriculum

designers and developers. Nevertheless, the

potential impact that such technologies may

have in the official curriculum has been and still

is a controversial issue in these communities.

Despite this controversy, research experiences

with a variety of computer programs and tools

have already influenced curriculum changes

in many countries, and this has happened in

different ways, such as (1) connecting different

mathematics curricular areas, both at the same

and at different school levels, due to the possibil-

ity to work with multiple digital representations

(which are dynamically linked to each other) of

one concept or situation (e.g., the concept of

function); (2) giving students an early access to

powerful mathematical ideas (e.g., mathematics

of variation); (3) incorporating new topics in the

curriculum (e.g., 3D geometry); (4) making it

possible for students to analyze large authentic

data sets in statistics; and (5) removing classic

topics. With regard to this last point, in the early

1990s, manipulative aspects of algebra were sub-

stantially reduced in the UK national curriculum

at secondary school level (Sutherland 2007) but

have since been reintroduced and are increasingly

emphasized due to an appreciation of the

importance of symbolic manipulation with

paper and pencil for developing symbol sense.

In this respect there is a continuing debate about

the relative importance of paper-and-pencil

mathematics versus computer-based mathemat-

ics in terms of developing mathematical knowl-

edge and understanding, with many people

arguing that digital technologies for mathematics

do not replace paper-and-pencil technologies.

The relationship between technology and the

mathematics curriculum is constantly in flux,

changing over time and varying between

countries, from countries like the USSR in the

1980s, which considered informatics as “a new

mathematics” and introduced meta-content,

such as discovery, collaboration, generalization,

transfer, and mathematics across different subject

areas (Julie et al. 2010), to countries that explicitly

introduce in the mathematics curriculum the use

of software such as dynamic geometry, Logo,

spreadsheets, graphing calculators, computer

algebra systems (CAS), and applets for the

teaching of specific mathematical domains either

in a compulsory way (e.g., Hong Kong, Russia,

France) or in an optional way (e.g., South Africa,

Mexico, Brazil, and Central American countries).

A common denominator in many of these

examples is a disparity between implementation

of the use of such technology in the mathematics

classroom (which tends to be teacher-centered)

and the pedagogical strategies suggested in the

curriculum documents (such as learner-centered

and exploratory or experimental approaches).

Overall it is widely recognized that at the level

of the classroom, mathematics teachers are not

exploiting the potential of technologies for

learning mathematics despite what might be

specified in the curriculum and despite the

research evidence that indicates the ways in

which technologies could be used in mathematics

education (Assude et al. 2010).

As part of the non-static relationship of

technology with curriculum, technological

evolution and innovation are also potential

factors of mathematics curricular changes. The

progress made in improving dynamic geometry

programs offers students access to advanced

geometric ideas in three dimensions, mainly

changing the point of view of a 3D scene and in

this way, visually obtaining full information of a

3D object. In computer algebra systems (CAS), it

is possible to either de-emphasize manipulative

skills and focus students’ work on conceptual

tasks (Kieran 2007) or promote conceptual and

technical aspects of mathematics (Lagrange

2003). Applets and other programs run on digital

tablets which allow students to physically touch

and manipulate representations of mathematical

objects. Recent versions of spreadsheets offer a

friendly environment for mathematical modeling

tasks using (hot-linked) graphical, symbolic, and

numeric representations of phenomena of the

physical world, which opens up the possibility

of promoting mathematical modeling approaches
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more generally in the curriculum. For example,

the open-source software GeoGebra favors the

connection between Euclidean, Cartesian, and

analytic geometry.

Beyond the potential or real influence of the

use of digital technologies in the official

mathematics curriculum, the actual implementa-

tion of effective modes of technology use in the

mathematics classroom is still a big challenge, a

situation that represents an opportunity for prom-

ising future research. In this regard, the experi-

ence from longitudinal studies dealing with

alternative technology-enhanced mathematics

curricula provides an important antecedent. One

of the innovations in some of these experiences is

the use of technology for curriculum design and

development with a functional approach to alge-

bra at secondary, tertiary, and university levels.

For example, in the pioneering technology project

Computer-Intensive Algebra (Penn State Univer-

sity), beginning algebra concepts were introduced

in mathematical modeling contexts, and students

used specialized software to work with numeri-

cal, graphical, and symbolic representations

of functions of one and two variables (Fey,

et al. 1991). In a similar way, in the VisualMath

curriculum project (Yerushalmy and Shternberg

2001), specialized software with multiple

nonsymbolic representations of functions was

used, in a functional approach in which letters

represent quantities that vary, and solving

equations consists of identifying a particular

case of the comparison of two functions. It is

worth mentioning that in such experimental

studies, technology is one of the main factors

of curriculum change, demonstrating the feasibil-

ity of its implementation in an educational

system.

Nowadays Internet connectivity potentially

changes the ways in which digital technologies

can be integrated into the mathematics curricu-

lum, both in terms of applications that are avail-

able in “the cloud” and because teachers and

students can work collaboratively within virtual

communities. Teachers are increasingly using

the Internet to access teaching resources and

organize their work. Internet connectivity is also

changing the way in which digital technologies

are being designed, with, for example, the

dynamic geometry software GeoGebra

developed as a free software within the open-

source software movement. A promising area of

future research is to investigate the ways in which

connectivity can transform mathematical

practices in schools and in particular whether

students can use social media to create collabo-

rative mathematical communities. Another

important area of research relates to the ways in

which digital technologies can be used to assess

the learning of mathematics, and many people

consider that assessment practices have to

change before digital technologies become fully

integrated into the mathematics curriculum.
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Introduction and Historical Background

The role of the teacher, educational context, and

design are three key factors, called by Drjvers

(2012) decisive and crucial to promote or hinder

the successful integration of digital technology

in mathematics education. By using the term

“design,” the author means not only the

design of digital technology involved but also

the design of corresponding tasks and activities

and the design of lessons and teaching, in general.

An appropriate design, according to the

author, refers explicitly to the instrumental gene-

sis model which considers co-emergence of tech-

nical mastery to use technology for solving

mathematical problems and the genesis of mental

schemes leading to conceptual understanding

(Drjvers 2012). As such, the model seeks a

match between didactical and pedagogical func-

tionality in which digital tool is incorporated with

the tool’s characteristics and affordances. It

also emphasizes a priority of pedagogical and

didactical considerations as main guidelines and

design heuristics over technology’s limitations

and properties related to its affordances and

constrains (Drjvers 2012).

This global definition of “design” related to

the technology use in mathematics education was

given by Drijvers during his plenary talk at the

ICME Congress in Seoul, Korea, in 2012, which

reflects 40 years of history after S. Papert’s talk,

also during the ICME Congress in Exeter, Great

Britain, in 1972, expressing ideas of the

micro-world vision which set up a long-term

guidelines in research and development of the

technology design principles (Healy and Kynigos

2010). The turtle geometry microworld (and

related programming language LOGO specifi-

cally designed for learning) grounded in the the-

ory of constructionism is one of the first examples

of technology design which – instead of being

the aid to teach school mathematics – provides

an opportunity to make mathematics

“more learnable” where computers are used “as

mathematically expressive media with which to

design an appropriate mathematics fitted to the

learner” (Healy and Kynigos 2010, p. 63; see also

Papert 1980 and Kynigos 2012).

In their analysis of technology development in

mathematics education based on 25 years of pub-

lication in the JRME (Journal for Research in

Mathematics Education), Kaput and Thompson

(1994) argue that “technology can reinforce any
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bias the user or designer brings to it” (p. 678) and

do it by changing fundamentally the experience of

doing and learning mathematics and this in three

main aspects, interactivity, control, and connec-

tivity. At the early stages, computer environments

were reproducing a “human-human” interactivity

via so-called CAI (computer-assisted instruction)

by putting computers in the role of teacher

presenting standard skill-based materials.

Designers had a full control to engineer constrains

and supports, create agents to perform actions for

the learner (resources, aid, feedback, representa-

tion systems), and thus could influence students’

mathematical experiences (Kaput and Thompson

1994). Finally, connectivity was seen as linking

teachers to teachers, students to students, students

to teachers, and, in a more general sense, the

world of education to wider worlds of home and

work (Kaput and Thompson 1994). At the more

subtle level, the technology development

involved “a gradual reshaping or expansion of

human experience – from direct experience in

physical space to experience mediated by the

computational medium” (Kaput and Thompson

1994, p. 679).

This vision was directing mainstream of

research and practice of designing technology-

enhanced learning and teaching environments

over the past 20 years that resulted in building

of interactive microworlds that foster modelling

and collaboration by “layering of mathematical

and scientific principles and abstraction and

embedding increasing problem-solving complex-

ity into the software” (Confrey et al. 2009, p. 20).

Such environments need to be engaging for the

students so to help them to achieve goals they find

compelling by making, at the same time, mathe-

matics “visible to students and expressed in

a language with which they can connect”

(Confrey et al. 2009, p. 20). Kaput et al. (2007)

use the term “infrastructure” which implies not

only material support for activity but also social

systems at different size scales, like communities

of practice (in the sense of Lave and Wenger

1991). Related to the users of mathematics and

mathematics education software, this implies

active participation in a practice as an intrinsic

property of membership, “whether one uses the

technology as interactive tool or as a medium

in which one designs and builds interactive

artifacts (technology as ‘tutee’)” (Kaput et al.

2007, pp. 177–178).

Example of a Microworld

Design of a dynamic visualization software envi-

ronment 3DMath (Christou et al. 2006) aimed at

enabling learners to construct, observe, and

manipulate geometrical figures in a 3D-like

space. General principles of the design meeting

these purposes are based on three major fields of

educational theory: constructivist perspective

about learning as personally constructed and

achieved by designing and making artifacts that

are personally meaningful, semiotic perspective

about mathematics as a meaning-making

endeavor that encourages multiple representa-

tions of knowledge, and fallibilist nature of math-

ematics where knowledge is a construction of

human beings and is subject to revision (Christou

et al. 2006). Also, according to the authors, core

visual abilities must be taken into account: per-

ceptual constancy, mental rotation, perception of

spatial positions, perception of spatial relation-

ships, and visual discrimination – accumulation

of representations makes possible the creation of

mental images.

Related to these perspectives, design princi-

ples for the 3DMath would (a) allow students to

see a geometric solid presented in several possible

ways; (b) introduce software-controlled speed

and directions of rotations that can enable stu-

dents to devise strategies of movement and antic-

ipated their results; (c) integrate intuitive

interface allowing the learner to make and design

personally meaningful artifacts by means of rich

semiotic resources enablingmultiple perspectives

and representations; (d) help students to focus on

mental images; (e) be rich in the ability to manip-

ulate and transform solids; (f) focus on observa-

tion, construction, and exploration; (g) contribute

to the development of visual abilities (dragging,

tracing, measuring, adding text, and diagrams);

and (h) add export of construction and control of

available (hidden) options (Christou et al. 2006).
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Virtual Learning Communities in
Mathematics Education

Virtual communities emerge in early 2000s

expanding affordances of the Internet technology

while allowing for designing collaborative learn-

ing environments in mathematics. For example,

a Math Forum community brings together

teachers, students, parents, software developers,

mathematicians, math educators, professionals,

and tradespeople. While having different experi-

ence, expertise, and interest in mathematics by

playing different roles, they all contribute in build-

ing sustainable learning space with a variety of

educational resources that helps to scaffold each

other’s understanding of mathematics (Renninger

and Shumar 2004). From the point of view of the

design, we note two key features, namely, the

content with extensive archives and links to infor-

mation and the interactive tools that promote

information exchange, discussion, and community

building (Renninger and Shumar 2004). This type

of the design lets participants to try out and select

different ways of working with the content and

thus facilitate learning driven by their personal

questions and interests (Renninger and Shumar

2004). The website provides them with services

that support learning, such as Problem of the Week

section with five interactive, nonroutine, challeng-

ing problems posted weekly accompanied further

with solutions and explanations; Ask Dr. Math

service allowing posing and answering frequently

asked questions from the members; and

Teacher2Teacher discussion forum, examples of

lessons, projects, games, and a newsletter

(Renninger and Shumar 2004).

The design of virtual communities is a cyclic

process which reflects a design-based research

(DBR) model of the CASMI (Communauté

d’Apprentissages Scientifiques et Mathématiques

Interactifs, www.umoncton.ca/cami) community

(Fig. 1). The model illustrates an innovative

research approach suitable for studying complex

problems in real, authentic contexts in collabora-

tion with practitioners. Research and develop-

ment happens through continuous cycles of

design, enactment, analysis, and redesign which

would lead to sharable theories that help

communicate relevant implications to practi-

tioners and to other educational designers

(Design-Based Research Collective 2003).

The DBRmodel allowed for implementing five

techno-pedagogical principles in the CASMI:

friendly welcome allowing everyone (students,

teachers, parents) to join the community at any

time; math challenge using authentic, complex,

and contextualized problems to which everymem-

ber can submit a solution via an e-form on the

website; formative individual feedback provided

by mentors (mostly university students) aiming to

encourage each participant to be persistent and

continue to participate; acceptance of variety of

styles and strategies valuing different ways of

thinking as rich and valuable contribution to the

community; and open communication as a vehicle

of the community to promote knowledge sharing

and knowledge building through collaboration and

discussion (Freiman and Lirette-Pitre 2009).

A newest development of collaborative

models of technology-enhanced learning envi-

ronments is grounded in what Gadanidis and

Namukasa (2012), referring to the works of

Levy (1998) and Borba and Villarreal (2005),

call “integral component of a cognitive ecology

of the human-with-technology thinking collec-

tives” (p. 164). As new media affordances,

Gadanidis and Namukasa (2012) mention

Analysis

Design

Enaction

(enactment)

Technology Design in Mathematics Education,

Fig. 1 ADBR cycle for the CASMI community (Freiman
and Lirette-Pitre 2009, p. 248)
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democratization, as new media learning

resources are available from any place with the

Internet access; multimodality that connects

physical, linguistic, cognitive, and symbolic

experiences; collaboration that allows for new

ways of thinking collaborative, participatory,

and distributed; and performance metaphor

with multimedia authoring tools used to

create online content which are orchestrated

(programmed) as “stage” “scenes,” “actors”

making of the Web a “performative medium”

(p. 167).

Applications and Task Design with
Technology

Designing tasks with interactive technology is yet

another direction of research and practice of

mathematics education over the past decades.

According to the epistemic model developed by

Leung (2011), the task design “focuses on peda-

gogical processes in which learners are

empowered with amplified abilities to explore,

re-construct (or re-invent) and explain mathemat-

ical concepts using tools embedded in

a technology-rich environment” (p. 327). Sinclair

(2006) brought attention to the issues related to

the use of interactive web-based applets (web-

based sketches) whose design principles are

under-researched. A design of the computer-

based tasks is grounded in a complex combina-

tion of a variety of theories in mathematics

education on the use of manipulatives, teaching

approaches for some specific topics, and structure

of classroom discussions, which can be borrowed

and adapted for the use in the technological envi-

ronment often in the constructivist perspective

which seeks in helping students to build their

own understanding by connecting new ideas and

prior understanding; the activity theory is also

used to explain learning as being dependent on

personal experience and can be mediated by the

tools. In its turn, the activity theory can be linked

to the affordance theory in a way that Martinovic

et al. (2012) conceptualize as a “handshake”

which is prerequisite for an action by a subject,

for example, a student, during the explorative

activities on mathematics software, needs to be

able to use features of the software and to con-

sider the objects constructed in/by the software as

material/real.

Interactive geometry sketches based on two

reflection tasks were designed in Sinclair’s

study using the Geometer’s Sketchpad and

saved as JavaSketches (Jackiw 2002, cited in

Sinclair 2006, p. 32). The findings from the

experimentation with teachers and students

reveal several issues related to some technical

problems with the sketches, student difficulties

with the wording of questions and instructions, as

well as interpretation of mathematical concepts

embedded in the applets; therefore more research

is needed in order to develop strategies to gather

information about the needs and the abilities of

end users during the design process (Sinclair

2006, pp. 34–35).

New Paths in Research and Practice with
Technology Design

A recent development in the design of technology

applications to support mathematics learning is

related to the mobile technology, to constructing

complex integrated systems by combining micro-

worlds and virtual community features, and use

of games.

Mobile Learning Design

First reports are coming from pilot studies about

design for mobile devices, such as cellular

phones with the use of Sketch2Go andGraph2Go

(Botzer and Yerushalmy 2007). The first enables

students to sketch graphs (constant, increasing,

and decreasing functions) and get an immediate

feedback of the drawn graph and present a graph

of the rate of change thus reinforcing visual

exploration of (physical temporal) phenomena

and providing with qualitative indication of the

ways in which sketch drawn by the user changes;

this motivates students to experiment with

a given situation, analyze it, and reflect upon it.

The second application (Graph2Go) is a graphing

calculator which operates for given sets of func-

tion expressions and enables the dynamic
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transformation of functions (including changing

parameters of algebraic expression, Botzer and

Yerushalmy 2007, p. 314).

Combining Multiple Platforms

The design of a virtual learning environment that

integrates synchronous and asynchronous media

with an innovative multiuser version of

a dynamic math visualization and exploration

toolbox is discussed by Stahl (2012) using the

example of the VMT with GeoGebra. The com-

bination of features of the computer-supported

collaborative learning (CSCL) software

(VMT – Virtual Mathematics Team platform

that engages learners in significant discourse

and practicing teamwork) and dynamic mathe-

matics software (such as Geometer’s Sketchpad,

Mathematica, Cabri, or GeoGebra allowing users

to manipulate geometric diagrams and equa-

tions). The combination of both environments,

VMT and GeoGebra, helped to overcome issues

related to multi-user collaboration by means of

a client–server architecture. This allows “multi-

ple distributed users to manipulate constructions

and to observe everyone else’s actions in real

time (through immediate broadcast by the server

and further logged in detail for replay and

research)” (Stahl et al. 2012, p. 5).

Design of Games for Teaching and Learning

Mathematics

While exploring educational potential of com-

puter games in mathematics, Hui (2009) men-

tioned several general categories of games, such

as action, adventure/quest, fighting, puzzle, role-

play, simulations, sports, and strategy games. For

mathematics education, problem solving and

deductive reasoning as well as skills like numer-

ical calculation and monetary skills are men-

tioned by the author as the most viable avenues

for acquisition and application of mathematics in

computer games (Hui 2009).

Kafai (2006) discussed two different perspec-

tives on design of games for learning: making

games for learning instead of playing games for

learning. The instructionist perspective builds on

a vision that making a game for practicing the

multiplication tables can make the learning of

academic matters more fun, if not easier by

embedding school-like exercises in a computer

game (Kafai 2006). For example, a game called

How the West Was Won offered the players to

throw a dice than perform various arithmetic

operations on the numbers to determine how far

to advance a token on the board (Kafai 2006). By

mentioning Math Blaster as another example of

thousands of instructional games on the market,

the author mentions that little is known about

which features make an educational game good

for learning and few studies are available on what

are successful design features for good educa-

tional games (Kafai 2006). As about construc-

tionist perspective, the main idea expressed by

Kafai (2006) is that rather than embedding “les-

sons” directly in games, the goal should be

directed to providing students with opportunities

to construct their own games and thus new rela-

tionships with knowledge in the process, as

shows the study of primary children and

preservice teachers designing games with

representing fractions in different ways. Not

only this opportunity makes possible game

design environment in which the user can load

fraction design tools with a set of objects and

graphic tools for creating, representing, and oper-

ating on fractions (like splitting, fair sharing) and

fraction objects. Moreover, there were also tools

allowing students and preservice teachers –

designers to share, annotate, and modify their

designs using electronic discussion forum.

Researchers found that conversation and discus-

sion among participants were essential in helping

the designers build more sophisticated represen-

tations (Kafai 2006).

Cross-References
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Education
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Description

The Learning Framework in Number (LFIN,

Fig. 1) consists of a set of progressions of student

learning related to early arithmetic. Each progres-

sion relates to a specific domain of mathematics

learning and, taken together, the domains are

T 610 The Learning Framework in Number

http://www.icme12.org/upload/submission/2017_F.pdf
http://www.icme12.org/upload/submission/2017_F.pdf
http://atcm.mathandtech.org/EP2009/papers_full/2812009_17199.pdf
http://atcm.mathandtech.org/EP2009/papers_full/2812009_17199.pdf
http://gerrystahl.net/pub/icme_design.pdf
http://gerrystahl.net/pub/icme_design.pdf


interrelated. Each progression takes a summary

form referred to as a model and consisting of

a table, setting out progressive levels of knowl-

edge of the domain. The LFIN relates to young

children’s early arithmetical learning and was

the first example of such a framework (Wright

1986, 1991, 1994, 1998). Figure 1 shows LFIN

in summary form and includes models for

four domains: Early Arithmetical Learning;

Forward Number Word Sequences; Backward

Number Word Sequences; and Numeral Identifi-

cation (Steffe 1992; Wright et al. 2006; Wright

2008). The origin of LFIN is independent of

that of learning trajectories (Simon 1995) and

instructional progressions (Gravemeijer 2004).

Nevertheless, LFIN has been described (Clem-

ents and Sarama 2009) and can be regarded

as a set of interrelated learning/instructional

trajectories.

Origin

LFIN was initially developed as part of

a research study of the knowledge progression

across a school year, of children in the first and

second years of school (Wright 1991, 1994).

In this study, use of a process of videotaped,

interview-based assessment enabled the profil-

ing of the knowledge of 45 children – 15 drawn

from each of three classrooms – on LFIN at the

beginning, middle, and end of the school year.

Table 1 shows the progress of 15 students from

a class in the Kindergarten year. This study

not only showed the kinds of knowledge

progressions typical of students in the first and

second years of school but also highlighted the

relatively wide range of knowledge within

a given classroom.

Applications

LFIN has been used in several research studies to

chart the progress of very large cohorts of stu-

dents (Thomas and Ward 2002; Wright and

Gould 2002). These studies were undertaken in

conjunction with large-scale, systemic

implementations of new initiatives in early arith-

metic instruction, which adopted or drew on

LFIN as a guiding pedagogical model (Bobis

et al. 2005). Table 2 is drawn from a study in

which 23,121 students with ages ranging from

4.5 to 9.9 were assessed to determine their

Stages: Early Arithmetical

       Learning

0 - Emergent Counting

1 - Perceptual Counting

2 - Figurative Counting

3 - Initial Number Sequence

4 - Intermediate Number

     Sequence

5 - Facile Number Sequence

Levels: Numeral Identification

0 - Emergent Numeral 

Identification.

1 - Numerals to ‘10’

2 - Numerals to ‘20’

3 - Numerals to ‘100’

4 - Numerals to ‘1000’

Levels: Forward Number Word Sequences (FNWS) 

       & Number Word After

0 - Emergent FNWS.

1 - Initial FNWS up to ‘ten’.

2 - Intermediate FNWS up to ‘ten’.

3 - Facile with FNWSs up to ‘ten’.

4 - Facile with FNWSs up to ‘thirty’.

5 - Facile with FNWSs up to ‘one hundred’.

Levels: Backward Number Word Sequences

       (BNWS) & Number Word Before

0 - Emergent BNWS.

1 - Initial BNWS up to ‘ten’.

2 - Intermediate BNWS up to ‘ten’.

3 - Facile with BNWSs up to ‘ten’.

4 - Facile with BNWSs up to ‘thirty’.

5 - Facile with BNWSs up to ‘one

     hundred’. 

The Learning Framework in Number, Fig. 1 The Learning Framework in Number (LFIN) (Adapted with permis-
sion from Wright et al. (2006), p. 20)
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stage on the domain of Early Arithmetical

Learning.

Finally, LFIN has been used extensively in

professional practice in at least eight countries,

as a guiding model for both classroom instruction

and intensive intervention with low-attaining

students (Wright et al. 2006).

Cross-References

▶Hypothetical Learning Trajectories in

Mathematics Education

▶Number Teaching and Learning
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Definition

The van Hiele Theory had its beginnings in the

1950s in the companion doctoral work of

husband and wife team Pierre van Hiele and

Dina van Hiele-Geldof. Dina died in 1959 and

Pierre continued to develop and refine the Theory

that is explored thoroughly in his 1986 book,

Structure and Insight.

Much of the resurgence of interest in teaching

of Geometry that began in the 1980s and 1990s

can be traced to the ideas developed in the van

Hiele Theory. Detailed accounts and summaries

of this early, but still highly relevant, work can be

found in the following: Clements and Battista

(1992), Fuys et al. (1988), Burger and

Shaunghnessy (1986), Hoffer (1981), Lesh

and Mierkiewicz (1978), Mayberry (1981), and

Usiskin (1982).

Characteristics

The Theory has two main aspects that combine to

provide a philosophy of mathematics education

(not only of Geometry). The two key aspects to

the theory are:

1. Levels that students grow through in acquiring

competence and understanding

2. Teaching phases that assist students to move

through the levels

Van Hiele’s ideas have much in common with

those of Piaget (Piaget et al. 1960) in that they

ascribe student understanding to a series of levels

or stages. However, there are important differ-

ences between the two theories. For example, the

van Hiele Theory:

• Places explicit importance on the role of lan-

guage in moving through the levels.

• Concentrates on learning rather than develop-

ment; hence the focus is on how to help

develop student understanding.

• Postulates that ideas at a higher level result from

the study of the structure at the lower level.

Most of the research effort has been directed at

the van Hiele levels of thinking – a hierarchical

series of categories that describe cognitive

growth in students. The second and equally

important aspect that has not received the same

degree of scrutiny or acknowledgement is the

notion of five teaching phases to help guide activ-

ities that lead students from one level to the next.
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Van Hiele Levels

Van Hiele envisaged five levels, and these are

described below within the context of two-

dimensional geometrical figures:

Level 1. Students recognize a figure by its

appearance (i.e., its form or shape). Prop-

erties of a figure play no explicit role in its

identification.

Level 2. Students identify a figure by its proper-

ties, which are seen as independent of one

another.

Level 3. Students no longer see the properties of

figures as independent. They recognize that

a property precedes or follows from other

properties. Students also understand relation-

ships between different figures.

Level 4. Students understand the place of deduc-

tion. They use the concept of necessary and

sufficient conditions and can develop proofs

rather than learn them by rote. They can devise

definitions.

Level 5. Students can make comparisons of var-

ious deductive systems and explore different

geometries based upon various systems of

postulates.

Although these descriptions are content spe-

cific, van Hiele’s levels are actually stages of

cognitive development: “the levels are situated

not in the subject matter but in the thinking of

man” (van Hiele 1986, p. 41). Progression from

one level to the next is not the result of maturation

or natural development. It is the nature and qual-

ity of the experience in the teaching/learning

program that influences a genuine advancement

from a lower to a higher level, as opposed to the

learning of routines as a substitute for

understanding.

It is this focus on teaching that pervades the

ideas inherent in the van Hiele’s writings – so

much so that the “theory” is perhaps better

described as pedagogical rather than psychologi-

cal, as many (or most) of the problems identified

in students’ learning have their basis in teaching

practices rather than in the cognitive processes

that may underlie performance.

It is important to state that the van Hiele levels

are not without controversy. Some of these issues

are discussed in Pegg and Davey (1998).

Van Hiele Phases

In terms of the van Hiele phases, the initial work

in this area appeared through the doctoral thesis

of Dina van Hiele-Geldof. Her thesis was trans-

lated from Dutch into English as part of the

investigation led by Geddes (see Fuys et al.

1984) and provides a valuable insight into how

the phase concept emerged.

The purpose of Dina’s study was to detail her

experiences and teaching procedures with 2 Year

7 (12 years old) Geometry classes over a year.

The students were studying Geometry for the first

time, and the main question posed in the study

was to see if it was possible to follow a teaching

approach that allowed students to develop from

one level to the next in a continuous process.

As a result of this work, five phases were

identified that allowed students to move from

one level to the next. The descriptions of the

phases (see Pegg 2002) given below are adapted

fromDina’s last paper that was written just before

her death and also translated into English by the

Geddes team.

Phase 1: Information (Inquiry). This part of the

process allows students to discuss what the

area to be investigated is about.

Phase 2: Directed Orientation. Out of the first

phase and the resulting discussion, students

begin to look at the area to be studied in

a certain way. This part of the process involves

the teacher in directing the class to explore the

object of study by means of a number of sim-

ple tasks.

Phase 3: Explicitation. As a result of the manip-

ulation of materials and the completion of

simple tasks set by the teacher, the need to

talk and to converse about the subject matter

becomes important. During the early part of

the process, the students are encouraged to

use their own language. However, over time

the teacher gradually incorporates, where

appropriate, correct technical terms.

Phase 4: Free Orientation. Here students are

given a variety of activities and are expected

to find their own way to a solution. The

teacher’s role is to encourage different solu-

tions to the problems as well as the inventive-

ness of the students.

T 614 The van Hiele Theory



Phase 5: Integration. The students achieve an

overview of the area of study by themselves.

They are now clear of the purpose of the study

and have reached the next level.

As with the van Hiele levels, there is an intu-

itive appeal about the learning phases outlined

above.

Summary

The van Hiele theory is directed at improving

teaching by organizing instruction to take into

account students’ thinking, which is described

by a hierarchical series of levels. According to

the theory, if students’ levels of thinking are

addressed in the teaching process, students have

ownership of the encountered material. As

a result, they have the potential to develop insight

(the ability to act adequately with intention in

a new situation). For the van Hieles, the main

purpose of instruction is the development of

such insight.
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Definition

According to Karl Popper, widely regarded as

one of the greatest philosophers of science in

the twentieth century, falsifiability is the primary

characteristic that distinguishes scientific theo-

ries from ideologies – or dogma. For example,

for people who argue that schools should treat

creationism as a scientific theory, comparable to

modern theories of evolution, advocates of crea-

tionism would need to become engaged in the

generation of falsifiable hypothesis and would

need to abandon the practice of discouraging

questioning and inquiry. Ironically, scientific
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theories themselves are accepted or rejected

based on a principle that might be called survival

of the fittest. So, for healthy theories on develop-

ment to occur, four Darwinian functions should

function: (a) variation, avoid orthodoxy and

encourage divergent thinking; (b) selection, sub-

mit all assumptions and innovations to rigorous

testing; (c) diffusion, encourage the shareability

of new and/or viable ways of thinking; and (d)

accumulation, encourage the reusability of viable

aspects of productive innovations.

Characteristics

The History and Nature of Theory

Development

To describe the nature of theories and theory

development in mathematics education, it is use-

ful to keep in mind the preceding four functions

and to focus on two books that have been pro-

duced as key points during the development of

mathematics education as a research community:

Critical Variables in Mathematics Education

(Begle 1979) and Theories of Mathematics

Education (Sriraman and English 2010).

Begle was one of the foremost founding

fathers of mathematics education as a field of

scientific inquiry; and his book reviews the liter-

ature and characterizes the field when it was in its

infancy. For example, before 1978, the USA’s

National Science Foundation had funding

programs to support curriculum development,

teacher development, and student development;

but, it had no comparable program to support

knowledge development (i.e., research). Simi-

larly, before 1970, there was no professional

organization focusing on mathematics education

research or theory development; there was no

journal for mathematics education research; and

in the USA, just as in most other countries, there

existed no commonly recognized curriculum

standards for school mathematics. Furthermore,

most mathematics educators thought of them-

selves as being curriculum developers, program

developers, teacher developers, or student devel-

opers (i.e., teachers) – and only secondarily as

researchers. And, if any theories were invoked to

guide their research or development activities,

these theories were mainly borrowed from edu-

cational psychology such as Bloom’s taxonomy

of educational objectives, Gagne’s behavioral

objectives and learning hierarchies, Piaget’s

stage theory, Ausabel’s advanced organizers

and meaningful verbal learning, and later

Vygotsky’s socially mediated learning, and

Simon’s artificial intelligence models for cogni-

tion. However, the practitioners’ side of these

mathematics education researchers made it diffi-

cult for them to ignore the fact that very few of

their most important day-to-day decision-making

issues were informed in any way by these

borrowed theories.

In contrast to the preceding state of affairs,

Sriraman and English’s (2010) book clearly doc-

uments a shift beyond theory borrowing

toward theory building in mathematics educa-

tion; the relevant theories draw on far more

than psychology, and the mathematics education

research community has become far more inter-

national – and far more multidisciplinary in

its membership. Furthermore, the field changed

significantly after the National Council of

Teachers of Mathematics (NCTM) published its

nationally endorsed Curriculum and Evaluation

Standards for School Mathematics (NCTM

1989), commonly referred to as the Standards in

the USA. Since then, similar documents were

produced in many other countries throughout

the world. But, to what extent have these docu-

ments been products of empirical research and

theory development instead of dogma? The

NCTM Standards themselves were not based on

any research per se, but simply an envisioning

of what mathematics education in classrooms,

i.e., in practice might look like and what the

appropriate content might look like, keeping the

learner in mind.

Curricular Standards and Mathematics

Education Research

Two decades later, consider the USA’s newest

Common Core State Curriculum Standards

(CCSC 2012). In this case, there clearly exist

some instances where these CCSC Standards

were informed by the work of a few researchers.
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But, it is equally clear that this document was

produced using a process of political consensus

building in which the views of some stakeholders

were given great attention (e.g., university-based

mathematicians and teacher educators), whereas

others were ignored almost completely (e.g., engi-

neers, social scientists, and other heavy users of

mathematics outside of schools). Consequently,

the CCSC Standards exhibit little recognition of

the fact that, outside of school in the twenty-first

century, many new kinds of problem-solving situ-

ations abound in which new types of mathematical

thinking are needed. In fact, little is said in the

CCSC Standards that could not have been said

when Begle was in his prime. For example:

• The mathematics education community still

does not know how to operationally define

measurable conceptions of almost any of the

higher-level understandings or abilities that

the CCSC Standards refers to as “mathemati-

cal practices.” So, the only goals that are

stated in ways that can be documented and

assessed tend to be the CCSC’s long lists of

“things students should know and be able to

do” (i.e., declarative statements {facts} or

condition-action rules {skills}).

• In spite of the CCSC’s claim of being based on

research-based learning progressions, it still

is unclear how the mastery of the CCSC’s lists

of “things students should know and be able to

do” interacts with the development of higher-

order “conceptual understandings of the type

which are needed to conceptualize (i.e., math-

ematize by quantifying, dimensionalizing,

coordinatizing, systematizing) situations that

do not occur in a pre-mathematized form. In

particular, it is unclear how (or whether) the

CCSC’s lists of “things students should know

and be able to do” should be treated as “pre-

requisites” which must be “mastered” before

students should be introduced to deeper and

higher-order conceptual understandings and

abilities. Furthermore, modern research in

the learning sciences clearly has shown that

(a) students’ and teachers’ conceptual under-

standings of most “big ideas” in the K-12

curriculum develop (in parallel and interac-

tively) over time periods of many years and

(b) students’ conceptual understandings of

these “big ideas” are a great deal more situated

and socially mediated than theories of 30 years

ago led educators to believe.

• Modeling continues to be characterized as the

application of concepts (traditionally) taught in

school. Yet, research in the learning sciences

clearly is showing that, in modern societies, in

students’ everyday lives outside of schools and

departments of mathematics, many of the situ-

ations that students need to mathematize

involve (a) integrating ideas and procedures

drawn from more than a single textbook topic

area and (b) using more than a single, solvable,

and differentiable function. For example, in

problem-solving situations that involve data

analysis and statistics, Bayesian and Fisherian

computational models tend to be far more

accessible and powerful than traditional

methods that depend on Calculus and the use

of traditional analytic methods. And, in situa-

tions that involve several interacting agents,

issues often arise that involve feedback loops,

second-order effects, and issues such as maxi-

mization, minimization, or stabilization. And

again, graphics-oriented computational models

make it possible for quite young children to

deal effectively with situations that no longer

need to be postponed until after courses in

Calculus.

Perhaps the most important general theme

that cuts across many of the chapters in

Sriraman and English’s book is that, from early

number concepts through proportional reasoning

and Calculus, the mathematics education com-

munity in general has been quite naı̈ve about:

(a) what it means to “understand” nearly every

“big idea” in the K-12 curriculum; (b) how these

understandings develop along dimensions such

as concrete-abstract, intuition-formalization, or

situated-decontextualized; (c) what it means for

one concept or ability to be prerequisite to

another; and (d) how understandings of both

“big ideas” and basic “facts and skills” evolve

as interconnections and distinctions develop.

Begle’s powerfully influential School Mathe-

matics Study Group (SMSG) projects provide

clear instances of a curriculum development
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project that attempted to make research and the-

ory development important parts of their collec-

tive agenda. For example, the National

Longitudinal Study of Mathematics Abilities

(NLSMA) was an important part of SMSG initia-

tives. Nonetheless, in their introduction to

Begle’s book, Wilson and Kilpatrick reported

that “(Begle) tried to persuade the SMSG

advisory board to sponsor research as well as

curriculum development, but he was not successful

(p. x.).” Similarly, in his keynote address at

the First International Congress of Mathematics

Education, Begle stated:

I see little hope for any further substantial improve-
ments in mathematics education until we turn
mathematics education into an experimental
science – until we abandon our reliance on philo-
sophical discussions based on dubious assump-
tions, and instead follow a carefully constructed
pattern of observation and speculation, the pattern
so successfully employed by physical and natural
scientists.

Much of what goes on in mathematics
education is based on opinions that are so firmly
held that the thought of doubting them crosses very
few minds. Yet, most of these opinions have no
empirical substantiation, and in fact many of them
are, if not wrong, at least in need of serious
qualifications (p. xvi).

In other words, Begle believed that a large

share of what paraded as theory in mathematics

education was (and continues to be) dogma. For

example, in his reviews of the literature in topic

areas ranging from problem solving to teacher

development, Begle identified many examples

of dubious opinions which continue to go

unquestioned.

• Concerning Teacher-Level Knowledge:

Despite all of our efforts, we still have no

way of deciding, in advance, which

teachers will be effective and which will not.

Nor do we know which training programs will

turn out effective teachers and which ones will

not (p. 29) . . . . The outcomes of teaching does

not depend just on the teacher (or the program

used) but rather is the result of complex inter-

actions among teachers, students, the subject

matter, the instructional materials available,

the instructional procedure used, the school

and community, and who knows what other

variables (p. 32) . . . . Many of our common

beliefs about teachers are false, or at the very

best rest on shaky foundations. For example,

the effects of a teacher’s subject matter knowl-

edge and attitudes on students learning seem

to be far less powerful than most of us had

realized (p. 54).

Most mathematics educators surely believe

that teacher-level understandings of topics to be

taught should involve understanding both more

and also differently than students. But, we still

know little about the nature of these teacher-level

understandings.

• Concerning Problem Solving: A substantial

amount of effort has gone into attempts to find

out what strategies students use in attempting

to solve mathematical problems . . .. But no

clear-cut directions for mathematics education

are provided by the findings of these studies. In

fact, there are enough indications that prob-

lem-solving strategies are both problem- and

student-specific to suggest that hopes of finding

one (or a few) strategies which should be

taught to all (or most) students are far too

simplistic (p. 145).

In the NCTM’s most recent Handbook of

Research in Mathematics Education (Lester

2007), the chapter on problem solving (Lesh

and Zawojewski 2007) concludes that very little

has changed since Begle’s time. Newwords (such

as metacognition, or habits of mind) have been

introduced to replace previously discredited con-

structs (such as those reviewed by Begle), but the

following fundamental issues remain. (a) Strate-

gies, heuristics, or other meta-level procedures

which seem to provide useful after-the-fact

descriptions of what successful problem solvers’

behaviors seem to have done do not necessarily

provide prescriptions of what novice problem

solvers should do next during ongoing problem-

solving activities, and (b) if attention focuses on

a small number of larger or more general rules of

behavior, then these general rules tend to lack

prescriptive power. But, if attention focuses on

a larger number of smaller or more specific rules

of behavior, then knowing when to use such

behaviors is a large part of what it means to

understand them. And transfer of learning that
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was expected to occur in such studies has been

unimpressive.

Theories Versus Models

Sriraman and English’s book identifies a trend in

which theory development shifts toward model

development; and modeling perspectives are

being used to provide alternatives to traditional

theories related to topic areas ranging from

teacher development to problem solving; and

accompanying design research methodologies

are being used to supplement what can be inves-

tigated using more traditional methods.

The key assumption that underlies a model

and modeling perspective is that all relevant

“subjects” – including not only students and

teachers but also researchers themselves – are

model developers. Students develop models to

make sense of mathematical problem-solving sit-

uations that do not occur in a pre-mathematized

form. Teachers develop models to make sense of

students’ model development activities. And

researchers develop models of interactions

among students, teachers, and learning environ-

ments. For example, in the case of both teaching

and problem solving, it is widely recognized that

highly effective people not only do things differ-

ently than their less experienced or less effective

counterparts, but they also see (or interpret)

things differently. Furthermore, the interpretation

systems that they develop are both learnable and

assessable – as well as being powerful, sharable,

and reusable (i.e., transferrable).

Similarly, according to MMP, students’ con-

ceptual understandings of “big ideas” are expected

to involve conceptualizing (mathematizing or

mathematically interpreting) situations; relevant

models are expected to involve the gradual inte-

gration, differentiation, reorganization, and adap-

tation of existing models. In other words, for a

given “big idea” in the K-12 curriculum, a large

part of “conceptual understanding is expected to

involve the development of powerful, sharable,

and reusable models.

To highlight some other important ways that

model development is expected to contribute to

theory development, while at the same time being

different than theory development, it is useful to

shift attention to curriculum development and

program development. Critics often accuse the

mathematics education research community of

failing to provide “scientifically sound” empirical

evidence about curriculum materials that “work”

(ref needed). But, most mathematics education

researchers are also practitioners – e.g., teachers,

teacher educators, or developers of curriculum

materials. And it is precisely their practitioner

side that makes them aware of the uselessly sim-

plistic nature of most studies claiming to show

that some curriculum innovation “works” – using

standardized and randomly assigned “treatment

groups” and “control groups” in situations where

(a) the criteria for “working” tend to be poorly

aligned with the most important goals of the

curriculum that is used, (b) it is well known that

“working” depends on far more than the curricu-

lum materials themselves, and (c) curriculum

innovations don’t simply act on students and

teachers – students and teachers also react (or

act back)! So, successful curriculum innovations

usually involve continual adaptations – based on

the strengths and weaknesses of individual stu-

dents and teachers and based on their reactions at

various stages of implementation.

The Complexity of Models in Mathematics

Education

To see why no two situations are never exactly

alike and why the same thing never happens

twice, consider the following. During the 1980s

and 1990s, a number of learning theorists who

wanted to apply their learning theories to mathe-

matics education developed a methodology

called aptitude-treatment-interaction studies

(ATI). These ATI studies recognized that, even

in very simple learning situations (e.g., one stu-

dent and one teacher), different students reacted

differently to a given treatment. So, attempts

were made to identify profiles of student attri-

butes (A1, A2, . . ., An) which could be matched

with alternative preplanned treatment attributes

(T1, T2, . . . Tm). But, the results of these ATI

studies showed that progressively finer-grained

student and treatment profiles not only led to

unworkable combinatorial nightmares, but they

also involved feedback loops in which students
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acted on treatments as much as treatments acted

on students. So, what emerged in such situations

is similar to what happens when two identically

configured double pendulums are set in motion at

exactly the same time. Within a few cycles, iden-

tical systems will function in ways that are quite

different – and unpredictably so (as shown in the

Figs. 1 and 2 below).

These kinds of systems are studied in a branch

of mathematics known as complexity theory.

And one thing complexity theory implies is that,

even in situations that are as simple as a double

pendulum, feedback loops tend to lead to

unpredictable behaviors in only a few cycles.

So, simple input–output rules of the form

{Use treatment A and result B will occur.} are

not likely to work for situations involving

student-teacher interactions, student-student

interactions, teacher-treatment interactions, and

student-treatment interactions – all functioning

simultaneously.

No research methodology is “scientific” if it is

based on assumptions that are inconsistent with

those that are considered to be reasonable for the

subjects and situations being investigated. So,

a fundamental dilemma that mathematics educa-

tion researchers face is that (quite often) they are

trying to understand subjects that they (as

a community) also are trying to change, design,

or develop. This means that mathematics educa-

tion researchers tend to be more like engineers

and other “design scientists” than they are like

“pure” scientists in fields such as physics or

chemistry. In a completely “pure” science,

a theory would tell which problems are priorities

to solve; the theory also would determine the

correctness of permissible solution processes;

and the theory also would determine when the

problem is solved. Whereas, in design sciences,

problems arise in the “real world” (outside of any

theory); solution processes usually need to inte-

grate ideas and procedures drawn from a variety

Theories of Learning Mathematics, Fig. 1 Two identical starting points for a double pendulum system
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of disciplines (or textbook topic areas); and prob-

lems are not solved until the relevant real-life

issue is resolved.

Why do realistically complex problems tend

to require solutions which draw on more than a

single theory? One reason is because “real-life”

problems often involve partly conflicting con-

straints – such as high quality and low costs, low

risk and high gain, simple and complete. Is a Jeep

Cherokee a better buy than a Ford Taurus or

a Toyota Prius? Answers depend on preferences of

relevant decision makers. So, “one size fits all” is

seldom a principle that decisionmakers will accept.

The central shortcoming of mathematics edu-

cation research is not a lack of success in produc-

ing effective programs and materials. The central

problem is lack of accumulation – coupled with

the repeated recycling of previously discredited

ways of thinking. And for accumulation to occur,

it is important to notice that, in mature sciences,

research communities tend to devote large

portions of their time and energy to the develop-

ment of tools to provide infrastructure for their

own use. So, it is revealing that the mathematics

education research community still does not have

tools to document and assess the most important

achievements that are expected of students,

teachers, or programs.

To recognize why lack of accumulation has

been such a problem in mathematics education,

consider the following facts. If it were possible (It

isn’t!) to inspect the archives of all past curricu-

lum innovation projects which have been

supported by agencies such as the US National

Science Foundation, then (beginning with early

projects such as School Mathematics Study

Group, The Madison Project, and MiniMast and

continuing up to current times) inspectors of

these archives would have no difficulty produc-

ing convincing evidence that important parts of

most of these projects would be highly likely to

be useful and effective today (under some

Theories of Learning Mathematics, Fig. 2 Stopping the two systems after 10 s
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conditions and for some students, some teachers,

some schools, and some communities). On the

other hand, other parts clearly would be missing

or in need of significant revision. For example,

most projects that focused on the development of

innovative learning materials for children were

not accompanied by adequate teacher develop-

ment materials or implementation plans to help

projects evolve from entry-level implementations

(during the first year) to more complex and com-

prehensive implementations (during the Nth

year). Furthermore, most of these projects did

not provide assessment tools to document the

achievements of higher-level achievements of

students, teachers, or programs.

If mathematics education researchers pointed

to one topic area where they believe theory

development to be strongest, they’d likely point

to either (a) early number concepts or (b) early

algebraic reasoning (or rational numbers and pro-

portional reasoning). Evidence of this theory

development in learning is found in the literature

related to Piaget-like cognitive structures (Steffe

1995; Steffe et al. 1996), cognitively guided

instruction which focuses on task variables

which are not at all like Piagetian cognitive struc-

tures, the focus on counting strategies and

Vygotsky’s socially mediated views of develop-

ment, and focus on computer-based embodiments

which are in some ways similar to those used by

Zoltan Dienes (Sriraman 2008) but which also

emphasize constructs similar to those empha-

sized by Steffe.

Yet, each of the preceding perspectives are

based on significantly different (and in some

ways incompatible) ways of thinking about math-

ematics concept development. One place where

differences can be seen where the preceding per-

spectives differ has do with “learning trajecto-

ries” (or “learning progressions”) through which

development occurs. The notion of “learning

trajectories” generally describes development

(in both learning and problem-solving situations)

as if it were like a point moving along a path. Yet,

the following facts are well known:

1. It is easy to change the difficulty of a given

task by several years by varying mathemati-

cally insignificant aspects of the task.

2. Research on models and modeling has shown

that thinking is far more situated than tradi-

tional perspectives have suggested – because

thinking tends to be organized around experi-

ence as much as it is organized around

abstractions.

3. For a given concept, understandings develop

along a variety of interacting dimensions: con-

crete-abstract, situated-decontextualized, spe-

cific-general, intuition-formalization, etc.

4. In each of the preceding dimensions, there

exist “zones of proximal development”

(ZPD) similar to those described by Vygotsky.

Can these ZPDs be unpacked?

5. The development of “big ideas” interacts – so

that understandings of any one of them depend

partly on the development of others.

We conclude this encyclopedic entry with

more questions than answers per se, with the

hope of the community becoming interested in

answering these fundamental questions in their

quest for developing theories of mathematical

learning.

• How do understandings of various “big ideas”

interact?

• How does the development of “big ideas”

interact with the development of “basic

skills”?

• How does the development of “big ideas”

interact with the ability to use these ideas

in situations that are not pre-mathematized

(outside of mathematics classrooms)?

Cross-References

▶History of Mathematics Teaching and

Learning
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Terms and Definitions

Many of today’s mathematics classrooms around

the world are nowadays equipped with a variety

of technologies. By using the term “technology,”

we mainly mean “new technology,” as we refer to

the “most prominent,” recent, and “modern tool”

in the teaching of mathematics that is labeled

with terms “computers,” “computer software,”

and “communication technology,” according to

Laborde and Str€aßer (2010), p. 122. Another term

“digital technology” which denotes a wide range

of devices including a hardware (such as proces-

sor, memory, input–output, and peripheral

devices) and software (applications of all kinds:

technical, communicational, consuming, and

educational) is used by Clark-Wilson, Oldknow,

and Sutherland (2011). This is contrasted with yet

another term Information and Communication

Technology (ICT) widely used in a variety of

educational contexts and describes the use of

so-called “generic software” which means word

processing, spreadsheets, along with presenta-

tional and communicational tools (such as

e-mail and the Internet) (2011).

Historical Background

Historically, technology and mathematics go

alongside by mutually influencing each other’s

development (Moreno and Sriraman 2005). His-

tory does provide us with many technologies that

enhance people to count (stones, pebbles, bones,

fingers), to calculate (abacus, mechanic devoices,

electronic devices), to measure (ruler, weights,

calendar, clock), to construct (compass, ruler),

and to record statistical data (cards with holes,

spreadsheets) (Fig. 1).

As example of such devices, we can name the

famous Ishango bone, an artifact of ingenious

mind of our ancestors recently analyzed by

Pletser and D. Huylebrouck (1999) who point at

its possible function as one of the oldest known

computational tool along with its other possible

uses (calendar, number system, etc.). The inven-

tion of mechanical counting devices takes its ori-

gins from different kinds of abacus, such as Greek

abax, meaning reckoning table covered with the

dust or later versionwith disksmoving along some

lines (strings) (Kojima 1954). It is interesting that

in some cultures, abacus was used till very recent

times, as in Russia, in the everyday commerce to

do calculations with moneys. Today, they may

appear as educational support to enhance reasoning

about quantities, such as Rekenrek (Blanke 2008).
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Punch cards were invented by Hollerith, and his

machine was used by the US Census Bureau to

process data from 1890 till 1950s when it was

replaced by computers (http://www.census.gov/

history/www/innovations/technology/the_hollerith_

tabulator.html) (Fig. 2).

First Computers and Their Use in
Education

Computers themselves can be seen as “mathe-

matical devices,” and their timeline goes back

to abacus and is further marked by names of

Leonardo da Vinci who conceived the first

mechanical calculator (1500), followed by

“Napier’s bones” invented by Napier for multi-

plication (1600), based on the ancient numerical

scheme known as the Arabian lattice; then comes

the Pascaline, a mechanical calculator invented in

1642 by Pascal. Leibnitz (1673) and Babbage

(1822) were among others who significantly con-

tributed to the advancement in creation of auto-

matic calculators which led, in the first half of the

1920s century, to the construction of the first

computers, such as ENIAC (Electrical Numerical

Integrator and Calculator), by Mauchly and

Eckert, in 1946, mainly for military purposes.

The second half of the twentieth century was

marked by the rise of the IBM (International

Business Machines); one of its models was used

to prove the famous Four-Color Theorem (Appel

and Haken 1976) (Fig. 3).

The time period after 1950 and till early 1980s

was marked by as rather slow but sure penetration

of mainframe and minicomputers in education,

including mathematics education. With the main

focus on accessibility of such devices for schools

(question of costs and space), other questions

arose by mathematics educators at that time

regarding the purposes of its use and impact on

learning. Zoet (1969) pointed at several

dilemmas, namely, (1) about the capacity of com-

puters to process data, like in business manage-

ment to produce bills for millions of customers,

on the one side, and to compute data, like in

mathematical modelling where scientists need

to do large amount of calculations in a short

period of time; (2) about the time needed to

master a particular part of technology (to solve

mathematical problems) . . . which will soon be

replaced with a new one; and (3) about the pos-

sibility of computer to assist a greater number of

students to grasp principles of mathematics, as

well as strengthen and broaden students’ under-

standing, about whether mathematics learned by

Types of Technology in

Mathematics Education,
Fig. 1 http://nrich.maths.
org/6013

Types of Technology in Mathematics Education,

Fig. 2 http://www.sciencemuseum.org.uk/objects/math-
ematics/1927-912.aspx
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the students will be more functional, once they

see how it is used in computers, or if small com-

puters can be integrated into mathematics pro-

grams as the slide rule in the training of

engineering students.

In 1970s–1980s, special languages, like FOR-

TRAN, PASCAL, BASIC, were used as the first

software, and their mastery was necessary to

use computers effectively including mathematics

calculations and modelling of mathematical

processes and thus enhancing learning. One of

such languages (LISP) was used to create the

LOGO, a programming language designed by

Papert (1980) specifically for educational pur-

poses. According to Pimm and Johnston-Wilder

(2005), a common starting point in creating

LOGO programs was writing commands

allowing for directing and controlling a “turtle”

on the screen. This idea led to construction

of specific mathematically rich learning environ-

ments called microworlds (Pimm and Johnston-

Wilder (2005)) (Fig. 4).

In 1984, the NCTM (National Council of the

Teachers of Mathematics) produced a yearbook

entirely devoted to the topic on Computers in

Mathematics Education (Hansen and Zweng

1984) portrays newest types of technologies

called microcomputers as having endless list of

applications available for mathematics teachers

and learners which are becoming widely accessi-

ble for schools at low cost; it also adds graphics

capabilities to support mostly two-dimensional

representations (Fey and Heid 1984). Again this

technology development interacts with pedagogi-

cal use as tutor, tool, and tutee (Fey and Heid

1984, referred to Taylor 1980) with questioning

whether “traditional collection of mathematical

skills and ideas needs” to be acquired by students

to enable them “to operate intelligently in the

computer-enhanced environment for scientific

work,” or one must have “new skills or under-

standings” to get prepared “for mathematical

demands that lie in the twenty-first century”

(Taylor 1980, p. 21). Regarding the format of

integration of such technology in the process of

teaching, educational institutions usually put

computers in one classroom (computer lab)

shared by several groups of students, or they can

put a number of desktop computers (1–4) in

a regular classroom, so teachers and students can

work with them individually or in small groups.

On those computers, teachers could find gen-

eral software, including spreadsheets (like

Supercalc, Lotus, or Excel) that could be used in

multiple teaching and learning purposes, for

example, to conduct probabilistic experiments

Types of Technology in

Mathematics Education,
Fig. 3 http://www-03.ibm.
com/ibm/history/exhibits/
mainframe/mainframe
_PP3168.html

Types of Technology in Mathematics Education,

Fig. 4 http://el.media.mit.edu/logo-foundation/logo/turtle.
html, repeat 3 [forward 50 right 60]
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and simulations (Anand et al. 2012). 1980s and

1990s were also marked by widely spread use of

educational games, on small floppy disks, and

later multimedia on CD-ROMs and DVDs, help-

ing even the very young students to learn basics

about numbers and shapes and develop

mathematical thinking while playing with pat-

terns. Another kind of the software specifically

designed for mathematics classroom based on a

constructionist’s ideas leads to the development

of dynamic and interactive computer environ-

ments in geometry (dynamic geometry systems)

and algebra (computer algebra systems). Different

types of virtual manipulatives thus become avail-

able to teachers to make learning more visual,

dynamic, and interactive (Moyer et al. 2002).

Computer networks – systems of

interconnected computers and systems of their

support called Intranet and Internet that emerge

and spread out in 1990s and 2000s. The first

(Intranet) allows to connect computers with

a restraint number of people having access to it;

often it is used within an organization, like school

or school board, or university. The second (Inter-

net) is open to a much wider audience, in many

cases worldwide, although it can serve closed

groups/communities built with different pur-

poses. This technology, with the time becoming

more rapid (high-speed), wireless, and handheld,

enhances communication of people or machines

with other people or machines to share informa-

tion and resources in all areas including mathe-

matics. As example of such kind of technology,

we will analyze web 2.0 tools.

E-learning: Web 2.0 Tools and Their Use
in Mathematics

Solomon and Schrum (2007) use the year 2000 as

a turning point in the development of a new Inter-

net-based technology calledWeb 2.0. They begin

their timeline with year 2000 when the number of

web sites reached 20,000,000. The year 2001 was

marked by the creation of Wikipedia, the first

online encyclopedia written by everyone who

wanted to contribute to the creation of the shared

knowledge. In 2003, the site iTunes allowed

creating and sharing musical fragments. In 2004,

the Internet bookstore Amazon.com allowed

buying books entirely online. In 2005, the

video-sharing site Youtube.com appeared,

allowing producing and sharing short video

sequences. The authors state that by the year

2005, the Internet had grown more in 1 year

than in all the years before 2000, reaching

1,000,000,000 sites by 2006.

The result of this tremendous growth of Inter-

net-based environments and the educational

resources generated by them is a transformation

of e-learning itself. According to O’Hear (2006),

the traditional approach to e-learning was based

on the use of a Virtual Learning Environment

(VLE) which tended to be structured around

courses, timetables, and testing. That is an

approach that is too often driven by the needs of

the institution rather than the individual learner.

In contrast, the approach used by e-learning 2.0

(a term introduced by Stephen Downes) is “small

pieces, loosely joined,” as it combines the use of

discrete but complementary tools and web ser-

vices – such as blogs, wikis, and other social

software – to support the creation of ad hoc learn-

ing communities. Let us look at several features

of these tools as we analyze a few examples of

mathematical opportunities they create (adapted

from Freiman 2008).

Wiki is an Internet tool allowing a collective

writing of different texts as well as sharing

a variety of information. Everybody can eventu-

ally be a contributor to the creation of a web site

on a certain topic (or several topics, as it is in the

case of the Wikipedia, www.wikipedia.org/).

Podcasts can be used to audio-share mathe-

matical knowledge among a larger auditorium

than one with people sitting in a traditional class-

room. It can be used as a method of delivering

mathematical lectures online as well as for the

promotion of mathematics.

Video-casting opportunities are provided by

multiple Internet sites, allowing the creation and

sharing of video sequences produced by the users.

For example, an article published in one local

newspaper informs the readers about one univer-

sity professor who put a 2-min video about

a Mobius strip on the Youtube.com site.
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The sequence was viewed by more than one

million users within 2 weeks. The environment

offers not only an opportunity to view the video

but also to assess it (using a 5-star system) and to

share it with others, as well as publish a comment.

Photo sharing is yet another form of creating

and sharing knowledge, available on several

dynamic sites with photo galleries like Flickr.

Regrouped by categories that can be found by

an easy-to-use search engine, the photos can be

published and discussed by the members of

a community, as for example, the community

that discusses geometric beauty which numbers

almost 5,000 members. Each photo is provided

with a kind of ID card that documents useful

information such as the date of its publication,

the author’s (or publisher’s) username, as well as

the list of all other categories to which the photo

belongs, the date when the photo was taken, and

how many other users added it to their albums.

Discussion forums allow building online com-

munities that talk to each other by posting ques-

tions and giving answers. This collective work

may enable a student who is struggling with

mathematical homework to address other people

and ask for help, as illustrated by the following

example from the math forum site (mathforum.

org). The message posted by one user says that

“after having asked a teacher and having read

a book,” she “still had a feeling” that she needed

more explanation, so she appealed to the whole

virtual community asking for help. The discus-

sion on some questions can take the form of

multiple exchanges between members.

Blogs may provide multiple educational

opportunities as they are built by means of easy-

to-use software that removes the technical

barriers to writing and publishing online. The

“journal” format encourages students to keep

a record of their thinking over time facilitating

critical feedback by letting readers add

comments – which could be from teachers, peers,

or a wider audience. Students may use blogs for

different purposes: to provide a personal space

online, pose questions, publish work in progress,

and link to and comment on other web sources.

The learning model that can be extracted from

our examples features three major educational

trends related to the web 2.0 technology: knowl-

edge building/co-constructing, knowledge shar-

ing, and socialization by interaction with other

people. Moreover, further development towards

semantic web (web 3.0) technology has

a potential to enhance self-learning, critical

thinking, and collaborative and exploratory

learning.

M-Learning: Anytime, Anywhere with
Laptops and Other Handheld Devices

Another recent trend is related to the rapid

changes brought by so-called mobile technology

that enhances anytime anywhere learning. Tak-

ing its roots from different types of calculators, it

provides today’s mathematics classrooms with

several types of portable devices, such as laptop

computers, iPads, iPhones, and other types of

mobile technology (Fig. 5) (Jones et al. 2012).

According to Burrill et al. (2002), the first type

of handheld technology mentioned as a part of the

secondary school curriculum in 1986 was a Casio

fx-7000Gmodel. Even if the appropriate role of it

in mathematics classroom was at that time (and

still remains) debatable, it supported the creation

of new visions for mathematics education while

calling for broader access to deeper mathematics

for all students (Burrill et al. 2002). Regarding

the newest development of this type of technol-

ogy, Burrill (2008) sees its potential to combine

various learning environments like computer

algebra systems (CAS) and Dynamic Geometry

computer software, such as Dynamic Geometry

Sketchpad or Cabri: “new technologies such as

TI-Nspire bring together both of these

environments in one handheld, providing the

opportunity to create an even wider variety of

dynamic linked representations, where

a change in one representation is immediately

and visibly reflected in another” (http://tsg.

icme11.org/document/get/218).

Several laptop studies report about a variety of

teaching and learning opportunities to use 1–1

portable technology for several subjects includ-

ing mathematics. Freiman et al. (2011) developed

and implemented problem-based learning (PBL)
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interdisciplinary scenarios (math, science, lan-

guage arts) to measure and document students’

actual learning process, particularly in terms of

their ability to scientifically investigate authentic

problems, to reason mathematically, and to com-

municate. In a rapidly changing world of technol-

ogy and infinity of educational applications,

mathematics teachers can now try to integrate

newest technology, like iPads, in mathematics

lessons. While only few research available, first

pilot studies, like one reported by HMH

(2010–2011, http://www.hmheducation.com/fuse/

pdf/hmh-fuse-riverside-whitepaper.pdf) seems to

have a positive impacts on students’ performance.

In this study, individual iPads were used along

with the HMH Fuse: Agebra 1 programs. The

application helped students use its multimedia

components whenever and wherever they saw fit,

regardless of Internet availability. In addition,

students could take device home and “customize

them,” adding their own music, videos, and addi-

tional applications (Freiman et al. 2011).

Among other types of technologies to be

mentioned are interactive whiteboards which,

according to Jones (2004), might encourage

more varied, creative, and seamless use of teach-

ing materials; increase student’ enjoyment and

motivation; and facilitate their participation

through the ability to interact with materials.

While the whiteboards support and extend

whole-class teaching in a more interactive way,

haptic (in-touch) devices have a potential to

enhance multimodal learning in 3-D spaces, on

the individual base, or working in small groups,

as the technology becomes less costly, more

flexible in terms of usability, with better feedback

options, allows for better merging with other

mathematical learning environments, such as

dynamic geometry (G€uçler et al. 2012).
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Definition

Urban Mathematics Education (and/or Urban

Mathematics Education Research) is character-

ized as a specific focus on the multilayered com-

plexities as well as the challenges and promises

of mathematics teaching and learning in high-

density populated geographic areas. These

“urban” areas more times than not contain greater

human and cultural diversity in terms of “race,”

ethnicity, socioeconomic class, language, reli-

gion, disabilities/abilities, and sexual orientation

and gender expression. Often times the phrase

urban schools and, in turn, urban mathematics

education are used as euphemistic proxies for

(re)segregated schools and mathematics class-

rooms with high concentrations of poor and his-

torical marginalized racial and/or ethnic student

populations (e.g., in the United States, schools

and classrooms with majority Black, Brown,

and/or recent immigrant students [i.e., bilingual

and multilingual students]).

Suburban School/Urban School Binary

Over the past 40 years or so, a discursive binary

between suburban school and urban school has

emerged that privileges the suburban. This

privileging has resulted in (re)segregated urban

schools being further defined by euphemisms

such as “hard-to-staff schools,” “high-needs

schools,” and/or “low-performing schools”

(Lipman 2011). Such euphemisms are used to

gloss over challenges that too often plague

urban schools such as ageing and inadequate

infrastructures; dense and disconnected bureau-

cracies; uncertified or inadequately trained

teachers; limiting and misdirected funds; and

the ever-lingering damaging effects of race

and racism, and xenophobia in general (Darling-

Hammond 2010). These challenges, which

typically have been found within what was

commonly known as the urban “inner-city”

school, are increasingly found in suburban and

even rural schools (i.e., metropolitan suburban/

rural sprawl) as schools in these geographic areas

face similar challenges with the ever-changing

racial, socioeconomic class, and citizenship

status student demographic of suburban and

rural communities and schools. These

ever-changing demographics are motivated, in

part, by gentrification of inner-city urban spaces

(Lipman 2011).

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
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Research in Urban Mathematics Education

Many researchers who work within the urban

mathematics education domain deconstruct the

euphemisms of urban schools as they make

the social (Lerman 2000) and sociopolitical

(Gutiérrez 2013) turns in mathematics education

research. These researchers most often place an

emphasis on contextualizing not only the mathe-

matics classroom but also the concentric circles

of school, district, community, and society at

large in which the urban mathematics classroom

is embedded (Weissglass 2002). Such contextu-

alization makes possible a more complete

analysis of the effects of the neoliberal and

neoconservative agenda of urban (mathematics)

education (Lipman 2011). Here, the mathematics

teaching and learning dynamic of the classroom

is not stripped of the sociocultural and sociopo-

litical power relations that exist within the

multiplicity of interactions that occur in the

mathematics classroom among teachers and stu-

dents and the mathematics being taught and

learned. Analyses of such power relations bring

to the fore issues of equity and access, identity,

and race, class, gender, language, and other

sociocultural and sociopolitical discourses and

practices that marginalize or silence groups of

students, which, in turn, limit mathematics

access, participation, and contribution of large

groups of students.

Since the early to mid 2000s, a new trend in

urban mathematics education research has

emerged that highlights and examines the math-

ematics achievement and persistence of Black

and Brown children within urban contexts and

the effectiveness of urban teachers, schools, and

districts (see, e.g., the edited volumes Leonard

andMarin 2013; Martin 2009; Téllez et al. 2011).

Much of this emerging research provides

counter-stories or -narratives to the discourses

of deficiency and ineffectiveness that too often

frame urban mathematics students, teachers, and

classrooms. For exemplars of urban mathematics

education research, see the Journal of

Urban Mathematics Education (JUME), a

peer-reviewed, open-access, academic journal

published twice a year: http://education.gsu.edu/

JUME.
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Introduction

Values are a significant feature of education in

any field, but it is only recently that values in

mathematics education have been considered sig-

nificant, or even recognized. This entry provides

a historical perspective to the growing relevance

of values in mathematics education. It also

illustrates how different researchers have

addressed different aspects of values depending

on their theoretical and educational foci.

One focus has values being addressed as

a characteristic of the person, which approaches

values as a psychological construct. It builds on

the research in mathematics education which

explores values as related to learners’ and

teachers’ attitudes, beliefs, and affect generally.

The other main research focus conceptualizes

values as a sociocultural construct and is more

concerned with the sociocultural context of

mathematics education in which values are

observed and negotiated. This approach builds

on the relevant historical, cultural, and philosoph-

ical literatures at the intersection of mathematics

and education.

While this entry describes generally the

different meanings of values in mathematics

education and how they seem to develop in both

the individual and society, it finally introduces

the challenging issues of whether desirable

values can be developed in students through

mathematics education and how values in

mathematics education should be developed.

Values as Personal Constructs

Krathwohl et al. (1964) significant book on

educational goals gives us a useful starting

point. Their work was based on a behaviorist

approach and was hierarchical in structure. Thus

at their levels 3 and 4 (from 5), one finds the

following categories of goals:

3. Valuing: 3.1 acceptance of a value, 3.2 prefer-

ence for a value, and 3.3 commitment

4. Organization: 4.1 conceptualization of a value

and 4.2 organization of a value system.

Of particular interest is their behaviorist

background theory which gives us the distinction,

and relationship, between values and valuing.

From an educational viewpoint, this distinction is

highly significant. “Valuing” is clearly a behavior

but with no specification of what is to be valued.

“Values” on the other hand represent what is to be

valued, a totally different educational objective.

The research of Raths et al. (1987) offers

a related perspective. They describe seven gen-

eral criteria for calling something a value. Their

criteria are (1) choosing freely, (2) choosing from

alternatives, (3) choosing after thoughtful consid-

eration of the consequences of each alternative,

(4) prizing and cherishing; (5) affirming,

(6) acting upon choices, and (7) repeating.

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
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They say “unless something satisfies all seven

of the criteria, we do not call it a value, but rather

a ‘belief’ or ‘attitude’ or something other than

a value” (Raths et al. 1987, p. 199). They add

“those processes collectively define valuing.

Results of this valuing process are called values”

(p. 201). Their emphasis on choices and choosing

is also important in separating values from

beliefs. One may hold several different beliefs

but values are most likely to appear when the

individual makes specific choices. This point is

important for both research and practice.

Values in mathematics education have how-

ever generally been couched in terms of affect

and attitudes. As a leading proponent of this

research, McLeod (1989, 1992) separates beliefs,

attitudes, and emotions, where beliefs can be

about mathematics (e.g., mathematics is based

on rules), about self (e.g., I am able to solve

problems), about mathematics teaching (e.g.,

teaching is telling), and about the social context

(e.g., learning is competitive). Attitudes can be

exemplified by a dislike of geometric proof, the

enjoyment of problem solving, or a preference for

discovery learning. Emotions appear through,

for example, joy (or frustration) in solving

nonroutine problems or an aesthetic response to

mathematics.

However he like others at that time made no

reference to values, but one senses from his writ-

ing that he would see values as linking strongly

with both beliefs and attitudes. Krathwohl et al.

(1964) support this view: “Behaviour categorized

at this level (3) is sufficiently consistent and sta-

ble to have taken on the characteristics of a belief

or an attitude. The learner displays this behaviour

with sufficient consistency in appropriate

situations that he (sic) comes to be perceived as

holding a value” (p. 180). So from this perspec-

tive, values grow out of beliefs and attitudes.

Values as Sociocultural Constructs

The seminal work of Kroeber and Kluckhohn

(1952) and Kluckhohn (1962) gives us an entrée

into this other historical, and related, dimension

of research on values. This is best summed up by

the construct “cultural psychology,” a branch of

psychology which takes into consideration the

culture of the context in which the learner

(in this case) is operating. Lancy (1983) was an

early researcher in this area, and he updated

Piaget’s work with his research from Papua

New Guinea. He proposed that three stages

were/are significant in a learner’s development

where cultural influence is paramount:

Stage 1, where genetic programming has its

major influence and where socialization is

the key focus of communication.

Stage 2, where enculturation takes over from

socialization and, for example, where

ethnomathematics becomes relevant.

Stage 3, which concerns the metacognitive level

and where different cultural groups emphasize

different theories of knowledge. These theo-

ries of knowledge represent the ideals and

values lying behind the actual language and

symbols developed by a cultural group. Thus

in relation to the previous section, it is in

Stages 2 and 3 that values are inculcated in

the individual learners, and Stage 3 is where

the value system is developed.

In the classic work by Kroeber and Kluckhohn

(1952), they strongly support this general idea:

“Values provide the only basis for the fully intel-

ligible comprehension of culture because the

actual organisation of all cultures is primarily in

terms of their values” (p. 340). Moreover culture

has been defined as an organized system of values

which are transmitted to its members both for-

mally and informally (McConatha and Schnell

1995, p. 81).

Thus from the perspective of mathematics

education, the idea of mathematical thinking as

a form of metacognition affected by the norms

and values of the learner’s society and culture is

helpful. But where do these norms, values, and

knowledge come from, and how are they framed

in educational contexts?

Two points must be made here – firstly as

Bishop (1988) has explained, it was the values

which have been held by previous mathemati-

cians which have shaped the field we know as

mathematics today. Secondly, the research field

of ethnomathematics has demonstrated that all

cultures develop their own mathematical ideas

and practices. This has not only generated
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a great deal of interesting evidence, but it has

fundamentally changed many of our research

ideas and constructs. The most significant influ-

ences have been in relation to:

• Human interactions. Ethnomathematics

research concerns mathematical activities

and practices in society, which take place out-

side school, and it thereby draws attention to

the roles which people other than teachers and

learners play in mathematics education.

• Values and beliefs. Ethnomathematics

research makes us realize that any mathemat-

ical activity involves values, beliefs, and

personal choices.

• Interactions between mathematics and

languages. Ethnomathematics research

makes us aware that languages act as the

principal carriers of mathematical ideas and

values in different cultures.

• Cultural roots. Ethnomathematics research

is making us more aware of the cultural

starting points and histories of mathematical

development.

One example of an educational approach was

derived from the cultural perspective of White

(1959), an anthropologist interested in the ways

cultures develop. Based on his research he

argued that for all cultures to develop, they need

cultural components which are technological,

sentimental, societal, and ideological.

Translating this into mathematics, Bishop

(1988) argued that the value dimensions could

be formed of complementary pairs, usingWhite’s

categories, producing six values: rationalism and

objectivism (ideological), control and progress

(sentimental), and openness and mystery

(sociological). The technological component is

given by the symbolic technology of mathemat-

ics. Using these categories research has explored

teachers’ values, students’ values, and values

in the mathematics curriculum and in teacher

education.

Educating Values and Developing

Mathematics Education

One interesting fact is that there is little or no

indications in the research literature above

concerning the educational means of attaining

any of the value goals and objectives outlined

there, apart from the idea that values education

should involve the existence of alternatives,

choices and choosing, preferences, and consis-

tency. Bishop et al. (2001) set out to investigate

this in practice. The main conclusion was that

values did not seem to mean much to the mathe-

matics teachers in the study, while much harder

still for them was the idea of trying to “teach”

different values from the ones they normally

“taught.” A further study focused on understand-

ing the values that the students were learning.

The idea that values are revealed at choice points

is only helpful when people have the opportunity

to make valid and consistent choices. If one

considers a “normal” mathematics classroom,

however, students rarely have the opportunity to

exercise any choices.

There are many connections between values in

mathematics and in science (Bishop et al. 2006).

Their study showed that useful research on values,

and its associated data collection, should stay close

to the experienced situation of the subjects, empha-

sizing as Raths et al. (1987) argued, that values are

thoroughly personal attributes, and not easily

developedwithin the social context of a classroom.

Not only are values personal attributes, they

have a strong emotional characteristic, as

McLeod (1992) also suggested. Future research

can potentially increase our understanding of the

relationship of values with the positive emotional

side of mathematics learning.
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Definitions and Background

Visualization in mathematics learning is not new.

Because mathematics involves the use of signs

such as symbols and diagrams to represent

abstract notions, there is a spatial aspect involved,

that is, visualization is implicated in its represen-

tation. However, in contrast with the millennia in

which mathematics has existed as a discipline,

research on the use of visual thinking in learning

mathematics is relatively new. Such research has

been growing in volume and depth since the

1970s, initiated by Bishop (1973, 1980) and later

Clements (1981, 1982), who investigated prefer-

ences of individual learners with regard to visual-

ization in mathematics and how spatial abilities

interacted with these preferences. Visualization

has internal and external forms (Goldin 1992),

which may be designated as visual mental imag-

ery and inscriptions, respectively (Presmeg 2006).

Presmeg defined a visual image as a mental sign

depicting visual or spatial information and

inscriptions as symbols, diagrams, information

on computer screens, or any external representa-

tion with a visual component. Following Piaget

and Inhelder’s (1971) claim that visual imagery

underlies the creation of a drawing or a

spatial arrangement, Presmeg did not pursue the

distinction between external and internal visual

images.

Arcavi (2003, p. 217) blended definitions

given by previous authors (Hershkowitz et al.
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1989; Zimmermann and Cunningham 1991) to

provide the following summary:

Visualization is the ability, the process and

the product of creation, interpretation, use of

and reflection upon pictures, images, diagrams,

in our minds, on paper or with technological

tools, with the purpose of depicting and

communicating information, thinking about

and developing previously unknown ideas and

advancing understandings.

Preference for Visualization in Mathematics

Under the supervision of Ken Clements, early

research on learners’ preferences for using

visualization in mathematics was carried out

by Suwarsono (1982), who developed a

mathematical processing instrument (MPI) for

use with seventh graders in Australia. This instru-

ment included word problems capable of solution

by visual or by nonvisual mathematical means,

and a questionnaire in which learners could

identify the means they had used to solve the

problems, yielding a score of mathematical

visuality (MV). Presmeg (1985) followed

Suwarsono’s methodology in constructing his

instrument, but designed her MPI for use with

learners in grades 11–12 (parts A and B) and

their mathematics teachers (parts B and C, more

difficult), thus enabling comparison of the MV

scores of teachers and students on part B, which

was common. Nonparametric statistics revealed

no significant difference between boys and girls

in her study, but a significant difference between

teachers and students: the learners needed

more visual means than did their mathematics

teachers. For most populations the preference

for visuality (MV) scores follows a normal,

Gaussian, frequency distribution. Factors that

determine how a task will be approached include

the following: the task itself, instructions to do

the task in a certain way, individual preferences,

and, finally, the culture of the mathematical

learning environment including whether or not

visualization is valued. At the far ends of the

frequency distribution, some learners seldom

resort to visualization, whereas there are others

who always do so. The latter form part of a group

of learners who are called visualizers.

Theoretical Lenses

Early research on visualization in mathematics

(e.g., Clements 1981, 1982) used a conceptual

lens that opposed analysis and visualization, an

“ana-vis” scale, on which individuals could be

placed according to the preponderance of logical

analysis or visualization in their mathematical

thinking. However, Krutetskii (1976) argued, on

the basis of his vast data pool, that without logical

analysis there is no mathematics, whereas the use

of what he termed “visual supports” is optional.

Logic determines the strength of mathematical

processing, whereas visualization (or its absence)

determines the type. One might consider

these two aspects of mathematical thinking on

orthogonal axes: strength of logic on the x-axis

and amount of visualization on the y-axis.

Krutetskii (1976) worked with students who

were considered “capable” in mathematics. On

the basis of their problem solving in task-based

interviews, he classified these students

into groups according to the type of their

thinking, i.e., according to whether verbal-logical

or visual-pictorial thinking predominated

(analytical and geometric types, respectively) or

whether these aspects were in equilibrium (two

types of harmonic thinkers – abstract-harmonic

and pictorial-harmonic). These types would all

lie in the right-hand quadrants of the orthogonal

model, because of the ubiquitous strength of logic

demonstrated by Krutetskii’s learners. However,

when Presmeg (1985) analyzed the mathematical

achievements and type of thinking of grade

11 students according to her preference for

visualization test, individuals could be classified

in approximately equal numbers in all four of the

quadrants. It is significant that not all students

with strong spatial ability, who are capable

of using visualization in their mathematical

thinking, choose to do so. This aspect points to

the interaction of visualization learning styles

with other aspects of the classroom, as

summarized in the next section.

Interaction of Visualization Styles in Learning

and Teaching

Dreyfus (1991) and Eisenberg (1994) suggested

from their research that students are reluctant to
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visualize in mathematics. The evidence for their

claim was largely from students learning college-

level mathematics. However, this phenomenon

could be the result of cultural environments in

which visualization is not valued in mathematics.

Presmeg’s (1985 and later) frequency distribu-

tion graphs showed clearly that there is not

a shortage of visualizers in mathematics. She

explored the interactions between the teaching

styles of 13 high school teachers and 54 visual-

izers in the mathematics classes of these teachers.

It was noteworthy that there was a correlation of

only 0.4 (Spearman’s rho) between the teachers’

mathematical visuality (MV) and teaching

visuality (TV) scores. Several teachers realized

that their students required more visual supports

than they did and taught accordingly. The TV

scores enabled the teachers to be distributed into

a visual group, a middle group, and a nonvisual

group. Visualizers in the classes of teachers in the

nonvisual group attempted to follow the styles

of their teachers, without visualization, and

the result was lack of success, involving memo-

rization without understanding. Surprisingly,

visualizers with visual teachers also often expe-

rienced difficulty. It was the pedagogy of teachers

in the middle group that was optimal for these

visual learners. These teachers used and

encouraged visual methods of working, but they

also stressed that abstraction and generalization

are important in mathematics.

Difficulties and Affordances of Use of

Visualization in Mathematics

Several research studies have emphasized that

visualization needs to link with rigorous logic

and analytical thought processes to be effective

in mathematics (Arcavi 2003). Presmeg (1985,

1986) identified difficulties and strengths of

mathematical visualization in data from

task-based interviews with the 54 visualizers

in her study. All the difficulties related in one

way or another to the abstraction and generaliza-

tion that are essential aspects of doing

mathematics.

• The one-case concreteness of an image may

be tied to irrelevant details or introduce false

information.

• A prototype image may induce inflexible

thinking.

• An uncontrollable image may persist,

thereby preventing more fruitful avenues of

thought.

Implicit in these difficulties is compartmental-

ization, whose damaging effect in learning

mathematics has been noted by several authors

(Duval 1999; Nardi et al. 2005; Presmeg 1992).

There are two basic ways in which these

difficulties can be overcome (Presmeg 1986,

1992). Firstly, a visual image or inscription of

one concrete case can be the bearer of abstract

information, that is, a sign for an abstract object.

Dynamic imagery and pattern imagery are types

of imagery that are useful in this regard.

Secondly, metaphor can link the domain of

abstract mathematical objects with visual

imagery or inscriptions in a different domain.

Visual images of all types have mnemonic

advantages; pictures and spatial patterns are

often memorable.

Questions for Research on Visualization and

Learning in Mathematics

Presmeg (2006, p. 227) put forward a list of

13 questions requiring further research, which

she considered to be of significance for mathe-

matics education. Many of these questions have

received attention (e.g., Arcavi 2003; Nardi et al.

2005; Owens 1999; Presmeg 1992, 2008;

Yerushalmy et al. 1999), but the list is still

indicative of areas in which research is needed

in order to increase knowledge of the role of

visualization in effective learning of mathemat-

ics. Particularly in the computer age, the

affordances of technology inevitably change the

dynamics of the way in which mathematics is

learned, including its visualization (Yerushalmy

et al. 1999; Yu et al. 2009). Yu and colleagues

found that the use of interactive dynamic

geometry software in learning geometry at

middle school level inverted the order of the

levels of learning geometry established by van

Hiele and van Hiele-Geldof in The Netherlands

in the 1950s (Battista 2009).

1. What aspects of pedagogy are significant in

promoting the strengths and obviating the
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difficulties of use of visualization in learning

mathematics?

2. What aspects of classroom cultures promote

the active use of effective visual thinking in

mathematics?

3. What aspects of the use of different types of

imagery and visualization are effective in

mathematical problem solving at various

levels?

4. What are the roles of gestures in mathemat-

ical visualization?

5. What conversion processes are involved in

moving flexibly amongst various mathemat-

ical registers, including those of a visual

nature, thus combating the phenomenon of

compartmentalization?

6. What is the role of metaphors in connecting

different registers of mathematical inscrip-

tions, including those of a visual nature?

7. How can teachers help learners to make

connections between visual and symbolic

inscriptions of the same mathematical notions?

8. How can teachers help learners to make

connections between idiosyncratic visual

imagery and inscriptions and conventional

mathematical processes and notations?

9. How may the use of imagery and visual

inscriptions facilitate or hinder the reification

of processes as mathematical objects?

10. How may visualization be harnessed to

promote mathematical abstraction and

generalization?

11. How may the affect generated by personal

imagery be harnessed by teachers to increase

the enjoyment of learning and doing

mathematics?

12. How do visual aspects of computer technol-

ogy change the dynamics of the learning of

mathematics?

13. What is the structure and what are the

components of an overarching theory of visu-

alization for mathematics education?
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▶Metaphors in Mathematics Education
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Definition

Research on the effects of the amount of time

teachers wait for student responses after asking

a question.

Characteristics

Research in this area began in the 1960s in the

science education field (Rowe and Hurd 1966)

and asked the question of what connections there

might be between the time teachers wait after ask-

ing a question and the cognitive level of students’

responses. Tobin (1986) found, in a scientific study

set in a whole-class mathematics instructional set-

ting, that there were improvements in teachers’ and

students’ discourse, including length of student

responses, as well as higher mathematics achieve-

ment with increased wait time. More recently, the

encouragement to teachers to wait longer than the

typical 1s (though not more than 5, according to

Tobin (1986), as advantages are lost) has gained

further prominence by being seen as a key element

of formative assessment (Black et al. 2002). Future

research questions include research on gender- or

other group-specific effects, the cognitive level of

teachers’ initial questions, and relationship to

social and socio-mathematical norms.
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Modeling; Problem solving; Sociocultural

theories; Word problems

Definition and Function of Word
Problems

Word problems are typically defined as verbal

descriptions of problem situations wherein one or

more questions are raised the answer to which can

be obtained by the application of mathematical

operations to numerical data available in the prob-

lem statement (Verschaffel et al. 2000). As such

they differ both from bare sums presented in writ-

ten (e.g., 4 + 5¼ ?; 5x + 2¼ 22) or oral form (e.g.,

How much is 40 divided by 5?; What is the mean

of the numbers 12, 17, 17, 18?), as well as from

quantitative problems encountered in real life

(e.g., Which type of loan should we take? Can

I drive home from here without filling the tank?).

Importantly, the term “word problem” does

not necessarily imply that every task that meets

the above definition represents a true problem, in

the cognitive-psychological sense of the word,

for a given student, i.e., a task for which no

routine method of solution is available and

which therefore requires the activation of (meta)

cognitive strategies (Schoenfeld 1992). Whether

a word problem that a student encounters

constitutes a genuine problem depends on his/her

familiarity with the problem, his/her mastery of

the various kinds of required knowledge and

skills, the available tools, etc.

Word problems have always constituted an

important part of school mathematics worldwide.

Historically, their role in mathematics education

dates back even to antiquity. One can find word

problems already almost 4,000 years ago in

Egyptian papyri. They also figure in, for instance,

ancient Chinese and Indian manuscripts as well

as in arithmetic textbooks from the early days of

printing, such as the Treviso arithmetic of 1487,

and they continue to fill current mathematics

textbooks (Swetz 2009).

Despite this continuity across time and

cultures, there has been little explicit discussion

of why word problems should (continue to) be

such a prominent part of the curriculum, and

during the past decades writers have called for a

reexamination of the rationale for this privileged

position (see, e.g., Lave 1992). It can be inferred

that word problems have been included to accom-

plish several goals, the most important one being

to offer practice for everyday situations in which

learners will need what they have learned in

their arithmetic, geometry, or algebra lessons at

school (the so-called application function). Other

goals were and still are to motivate students to

study mathematics, to train students to think cre-

atively and to develop their problem-solving abil-

ities, and to develop new mathematical concepts

and skills.

Characteristics

Research Perspectives on Word Problem

Solving

Word problems have already for a long time

attracted the attention of researchers in psychol-

ogy and (mathematics) education (see, e.g.,

Thorndike 1922). Before the emergence of the

information-processing approach, research on

word problems focused mainly on the effects on

performance of various kinds of linguistic,

computational, and/or presentational task

features (e.g., number of words, grammatical

complexity, presence of particular key words,

number and nature of the required operations,

nature and size of the given numbers) and

subject features (e.g., age, gender, general

intelligence, linguistic, and mathematical ability

of the problem solver) (Goldin and McClintock

1984).

With the rise of the information-processing

approach, researchers’ attention shifted from

learners’ externally observable performance to

the underlying cognitive schemes and thinking

processes of students solving various kinds of

word problems, and, accordingly, their research

methods changed as well. Analyses of response

accuracies were complemented with analyses of

thinking aloud or retrospective protocols, indi-

vidual interviews, reaction times, eye move-

ments, and, most recently, neuropsychological

measurements.
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For instance, in the domain of one-step

addition and subtraction word problems, a basic

distinction emerged between three classes of

problem situations: change problems (involving

a change from an initial to a final state through the

application of a transformation), combine prob-

lems (involving the combination of two discrete

sets or splitting of one set into two discrete sets),

and compare problems (involving the quantified

comparison of two discrete sets of objects), each

of which was further subdivided leading to a

classification scheme of 14 problem types.

Numerous cognitive-psychological studies with

lower elementary school children provided

evidence for the psychological validity of this

classification scheme (Fuson 1992; Verschaffel

et al. 2007).

Researchers also analyzed pupils’ solution

strategies in the domain of one-step addition

and subtraction word problems (Carpenter and

Moser 1984). These analyses first demonstrated

that early in their development, children have a

wide variety of successful material and verbal

counting strategies, many of which are never

taught explicitly and/or systematically at school.

Gradually, these strategies develop into more

formal mental solution strategies based on

known and derived number facts. Second, it was

found that the situational structure of a word prob-

lem significantly affects the nature of children’s

strategy choices. More specifically, children

tended to solve each word problem with the type

of strategy that corresponds most closely to its

situation model. Similar findings have been found

for the domain of multiplication and division

word problems (Verschaffel et al. 2007).

Especially since the 1990s, insights from

ethnomathematics and sociocultural theories

have contributed to the insight that classical

information-processing models are insufficient

to grasp the full complexity of learners’ word

problem-solving processes. They need to be

enriched with the idea that word problem solving

is a human activity situated in the particular

microcosm of a mathematics classroom (Lave

1992; Verschaffel et al. 2000), and that, therefore,

students’ word problem-solving behavior can

only be understood by also seriously taking into

account the tactics and the affects that they have

built up along with their participation in the prac-

tice and culture of the mathematics classroom.

Phases and Components of Competent

Word Problem Solving

Currently the competent solution of a word prob-

lem is thought of as a complex multiphase

process the “heart” of which is formed by

(1) the construction of an internal model of the

problem situation, reflecting an understanding of

the elements and relations in the problem situa-

tion, and (2) the transformation of this situation

model into a mathematical model of the elements

and relations that are essential for the solution.

These two steps are then followed by (3) working

through the mathematical model to derive math-

ematical result(s), (4) interpreting the outcome of

the computational work, (5) evaluating if the

interpreted mathematical outcome is computa-

tionally correct and reasonable, and (6) commu-

nicating the obtained solution. This multiphase

model is not considered to be purely sequential;

rather, individuals can go back and forth through

the different phases of the model (Blum and Niss

1991; Verschaffel et al. 2000).

Arguably, pupils’ actual problem-solving pro-

cesses do not always fit with this theoretical

model. To the contrary, the process of actually

solving word problems for many students is often

along the lines of a “truncated” model, wherein

the problem text immediately guides the mathe-

matical model – the choice of an arithmetic

operation, the selection of a geometric formula,

or the composition of an algebraic expression –

based on a quick and superficial analysis of the

problem statement (e.g., by relying on key words

in the text, such as the word “more” in the prob-

lem text automatically triggers an addition). The

directly evoked mathematical operation, formula,

or expression is then worked through, and the

result of the calculation is found and given as

the answer, typically without reference back to

the problem text to verify whether the answer is

meaningful in view of the original problem situ-

ation (Verschaffel et al. 2000). Concerning the

competencies that are required to solve word

problems, there is nowadays a rather broad
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consensus that they involve (Schoenfeld 1992;

De Corte et al. 1996):

• A well-organized and flexibly accessible

knowledge base involving the relevant con-

ceptual knowledge (e.g., a schematic knowl-

edge of the different problem types) and

procedural knowledge (i.e., informal and for-

mal solution strategies) that is relevant for

solving word problems

• Heuristic methods, i.e., search strategies for

problem analysis and transformation which

increase the probability of finding a solution

(e.g., making a drawing or a scheme) and

metacognition, involving both metacognitive

knowledge and metacognitive skills

• Positive task-related affects, involving posi-

tive beliefs, attitudes, and emotions, as well

as meta-affect, involving knowledge about

one’s affects and skills for regulating one’s

affective processes

While there is evidence for the role of each of

these aspects in students’ word problem-solving

processes and skills, it should be clear that they

are strongly interrelated and interdependent.

Solving Word Problems Versus Problems in

the Real World

An issue that has received quite some attention

during the past decades is the complex relation

between word problems and reality. For a very

long time, word problems have played their role

as an unproblematic and transparent bridge

between the world of mathematics and the real

world. However, during the last 10–15 years,

more and more researchers have questioned this

role, partly on the basis of increasing empirical

evidence of students’ “suspension of

sense-making” (Schoenfeld 1991) when doing

school word problems and of aspects of the cur-

rent practice and culture of word problem solving

that seem directly responsible for this phenome-

non (Verschaffel et al. 2000).

Teaching Word Problem Solving

Besides ascertaining studies, researchers have

also done numerous intervention studies – both

design experiments and (quasi)experimental

teaching experiments. While these intervention

studies differ widely in terms of the age and

mathematical background of the learners (from

first graders up to university students) and the

aspect(s) of word problem-solving expertise

they are primarily aiming at (i.e., schematic

knowledge, problem-solving skills, attitudes,

and beliefs), common characteristics are:

• The use of varied, cognitively challenging,

and/or realistic tasks, which lower the chance

of developing superficial coping strategies

(such as the key word strategy) and which

involve the complexities of genuine mathe-

matical application and modeling tasks (such

as the necessity to seek and apply aspects of

the real context to proceed, to discuss alterna-

tive models, to decide upon the required level

of precision of the outcome).

• A variety of teaching methods and learner

activities, including expert modeling of the

strategic aspects of the problem-solving pro-

cess, appropriate forms of scaffolding, small-

group work, and whole-class discussions;

typically, the focus is not on presenting and

practicing well-established methods for solv-

ing well-defined types of problems, but rather

on demonstrating, experiencing, articulating,

and discussing what applied problem solving

and modeling is all about.

• The creation of a classroom climate that is

conducive to the development of a proper

view of applied problem solving and mathe-

matical modeling and of the accompanying

skills and affects (Lesh and Doerr 2003;

Verschaffel et al. 2000).

In most of these design experiments, (moder-

ately) positive outcomes have been obtained in

terms of performance, underlying (meta)cogni-

tive processes, and affective aspects of learning.

A final issue that has not yet elicited a lot of

research, but that will become more important

in the future, is whether word problems, which

rely after all on an “old” vehicle for creating an

applied problem situation (namely, printed text),

will continue to keep their prominent position in

the mathematics curriculum or whether they will

be replaced or at least complemented by new and

potentially more effective ways of bringing rich

and real problems into the mathematics
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classroom, based on new information and com-

munication technologies, such as video, com-

puter graphics, and the Internet.
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Definition

The zone of proximal development is a category

that emerged from the work of L. S. Vygotsky,

the father of activity theory. Inspired by K. Marx,

Vygotsky came to understand the specifically

human characteristics in terms of society (Roth

and Lee 2007). Explicitly referring to Marx,

Vygotsky states that “any higher psychological

function was external; this means it was social...

the relation between higher psychological func-

tions was at one time a physical relation between

people” (Vygotsky 1989, p. 56). As a result of

this perspective, our personalities are shaped by

society: “the psychological nature of man is the

totality of societal relations shifted to the inner

sphere” (p. 59). Based on this understanding, he

created a definition of the zone of proximal devel-

opment that now has aphoristic qualities in edu-

cational circles. Thus, it denotes “the distance

between the actual developmental level as deter-

mined by independent problem solving and the

level of potential development as determined

through problem solving under adult guidance

or in collaboration with more capable peers”

(Vygotsky 1978, p. 86).

Zone of Proximal Development:
An Example

The following example from a 3-D geometry

lesson in a second grade class illustrates how

the zone of proximal development tends to be

used in education. On this day, the second graders

each grabs a mystery object from a bag and places

it with an existing group of objects or starts a new

group. Connor has just completed placing his

“mystery object” with a group of objects next to

which one of the two teachers present has placed

a label with the words “squares” and “cubes.”

The following fragment from the lesson begins

when Mrs. Winter asks Connor what the group

was about.

1. W: Em an’ what did we say that group was

about?

2. C: What do you mean like?

3. W: What was the– What did we put for the

name of that group? What’s written on the

card?

4. C: Squares.

5. W: Square and...?

6. J: Cube.

7. W: Cube.

S. Lerman (ed.), Encyclopedia of Mathematics Education, DOI 10.1007/978-94-007-4978-8,
# Springer Science+Business Media Dordrecht 2014



At first, there is a counter-question rather

than a reply: What does she mean? (turn 2).

Mrs. Winter begins to rephrase: There is one

abandoned question and then there are two full

questions (turn 3). Now Connor replies providing

one of the two words: Squares (turn 4). Mrs.

Winter acknowledges his contribution by

restating the word with a constative statement:

Square (turn 5). She then says “and” with the

rising intonation of a question. Jane says “cube”

(turn 6), and Mrs. Winter acknowledges by

repeating the word as she had done in the first

instance (turn 7).

In the (dialogical) relation, Connor and Jane

arrive at providing the sought-for answer because

they do not do the entire task on their own. Here,

they are part of a dialogical relation where the

teacher takes one part of the task and the students

the other. Now the task is spread across all par-

ticipants. Later, once they are able to state the

name and properties of the group without being

asked, the children are said to have internalized.

But it is evident that this description does not

entirely match the situation. For the children to

take their part in the relation, they already have to

mobilize their understanding so that they can take

their position in the question answer game that

produces the result. The fact is, as Vygotsky’s

other way of framing says much more clearly,

that the higher psychological functions exist

in and as external relations between people.

Thus, “the relation of psychological functions

is genetically linked to real relations between

people: regulation of the word, verbalized

behavior ¼ power–submission” (Vygotsky

1989, p. 57). In the exchange, under the tutelage

of the teacher, they learn to provide the right

words; she regulates the production of the words

and regulated verbal behavior. As a result of the

exchange, when they no longer need the external

relation to name and characterize the group

of cubes, Connor and Jane are in a position to

individualize the social relation – they develop.

In the way the zone of proximal development

is defined, there is an asymmetrical relation

between those who know (teachers, more

advanced peers) and those who do not (students).

Researchers have drawn on the asymmetry

between learner and the social other, because it

orients to “the ways in which more capable par-

ticipants structure interactions so that novices

(children) can participate in activities that they

are not themselves capable of” and to the fact that

“with repeated practice, children gradually

increase their relative responsibility until they

can manage the adult role” (Cole 1984, p. 155).

It thereby leads us to think about the learning

process through the lens of the teacher who,

because she/he is responsible for structuring the

learning situation, becomes the “real subject in/of

the child’s learning” (Holzkamp 1993, p. 418).

Recent Critical Reworking of the Notion

Recent work inmathematics education shows that

the relations between teachers and students, such

as Mrs. Winter and Connor and Jane, are much

more symmetrical (Roth and Radford 2010). This

is so because each has to understand the other for

the episode to unfold as it does. For example,

Connor already has to understand that Mrs. Win-

ter is asking him a question, and he has to under-

stand that he has trouble with her question.

Similarly, Mrs. Winter has to understand that

Connor is asking her to restate the question.

Thus, the relation is more symmetrical than

researchers have led on in the past. For example,

precisely because her first question (turn 1) was

not intelligible,Mrs.Winter has to rephrase it. She

gives it several tries and eventually finds one that

allows the children to provide first one and then

the other expected word. That is, it is precisely in

such relations that teachers such as Mrs. Winter

become better and better at asking appropriate

questions. The zone of proximal development,

therefore, works both ways. Connor and Jane

learn to talk about, name, and characterize math-

ematical objects; and Mrs. Winter develops as

a teacher by learning to ask age-appropriate ques-

tions in a unit of 3-D geometry (it is her first time

to teach such a unit at that grade level).

From a systemic perspective on cultural-

historical activity theory, the concept of a zone
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of proximal development can be reformulated as

the “distance between the present everyday

actions of the individuals and the historically

new form of the societal activity that can be

collectively generated as a solution to the double

bind potentially embedded in the everyday

actions” (Engeström 1987, p. 174). We may

exemplify the core idea in this revised definition

in the following way. If Connor and Jane had

been in a class based on discovery learning,

they would have been left on their own to make

mathematical discoveries. They would have

arrived at certain results, which, in all likelihood,

would have been less advanced than the results

that they contribute to producing in the presence

of the teacher. Because there are now more

people working together, but with clearly

different role in the division of labor, a new

form of activity has emerged. This new form of

societal activity gives rise to higher-level

actions on the part of the children then in the

hypothetical discovery learning context; it also

gives the teacher new opportunities to learn

to teach.

A third way of defining the zone of proximal

development takes the perspective of individuals

who are integral and irreducible parts of society

(Holzkamp 1993). Individuals can expand their

individual agency and control over life conditions

by contributing to collective agency and collec-

tive control over conditions. In mathematics

classrooms, this means that students engage in

collaborations with others, because they increase

their individual agency and task control when

they contribute to the expansion of collective

agency and control by active participation.

Thus, Connor and Jane already participate with

the teacher; and it is because of their participation

that their agency expands. If one or the other had

said to the teacher, “I want to do this on my own”

or “I don’t need help,” then they would have

actively rejected contributing to the collective

agency and control and, perhaps, never arrived

at the point where they did.

This final definition allows us more easily than

the other two to conceptualize the important dis-

tinction between learning and development,

which, in the Vygotskian framing, are part of

one and the same process. In the relation, the

students expand their agency and control over

the mathematical task conditions: They learn.

But when they no longer need the relation with

the teacher or peers, they have reached the new

developmental level. Learning and development,

very different concepts in the constructivist par-

adigm of J. Piaget, are now two different sides of

the same movement (Roth and Radford 2011).

Similarly, by working with the children, in the

interest of allowing them to learn, the teacher

expands her own agency and control over the

conditions: She develops.

Summary

In summary, the zone of proximal development is

a powerful category for understanding learning

that arises when people enter relations with

others. Aphoristically we may state: What these

relations are today will be psychological func-

tions of the participants tomorrow.
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